采样控制系统分析

合集下载

自动控制原理第七章采样控制系统

自动控制原理第七章采样控制系统

第三节 信号复现与零阶保持器
一. 信号保持 把离散信号转换为连续信号,称为信号保持,该装置称
保持器。 保持器:用离散时刻信号复现连续时刻信号。
二. 零阶保持器
1. 作用:把采样信号e*(t) 每一个采样瞬时值e(kT)一直保持到下一个采 样瞬间e[(k+1)T], 从而使采样信号 e*(t)变成 阶梯信号eh(t)。
一阶保持器比零阶保持器信号恢复更
0 T 2T 3T 4T 5T 6T t
精确, 但相位滞后增加, 对稳定性不利.
图7-11 一阶保持器输出特性
第四节 Z变换理论
同拉氏变换一样, 是一种数学变换. 离散信号e*(t)的 拉氏变换为:

E*(s) e(nT )enTs n0
各项均含有 esT 因子,为S的超越函数。为便于应用,对 离散系统的分析一般采用Z变换.
G 0 ( s ) 1 s [ 1 e s] T 1 s 1 e 1 s T 1 s 1 1 s 1 T 1 T sT
零阶保持器的频率特性
信号e(t)在t = nT 及t = (n+1)T 之间的数值可以用一个级数来描述
单位脉冲响应
G h(s)L [gh(t) ]S 1S 1e TS 1 Se TS
G 0(j
)1ejT2sin T/(2 )ejT2 j
幅频特性: G 0(j)Tsi( n/ / ( s)s)2 s si( n/ / ( s)s)
上式是 eTs 的有理函数. 但 eTs是含变量S的超越函数,不便进行分析和运算, 因此常用Z变换代替拉氏变换。
三. 采样定理
从理论上指明了从采样信号中不失真的复现原连续信号 所必需的理论上的最小采样周期T.

零阶保持器

零阶保持器

T / 2
e
自动控制原理
第七章 采样数据控制系统分析
因为
T

s
,所以
j π
2 π sin ( π / s ) G h ( j ) e s π / s
|G h ( j ) |
s
零阶保持器的 频率特性:
T

O -
s
2s
3s
G h ( j )
≥ 2
s
m ax
时,则由采样得到的离散信号能无失真地恢 复到原来的连续信号,这就是采样定理,也 称为香农(Shannon)定理。
自动控制原理
第七章 采样数据控制系统分析
物理意义:如果选择这样一个采样角频率 ≥ 2 ,使得对连续信号中所含的最高 s m ax 频率信号来说,能做到在其一个周期内采 样两次以上,则在经采样所获得的离散信 号中将包含连续信号的全部信息。反之, 如果采样次数太少,就做不到无失真地再 现原连续信号。
自动控制原理
第七章 采样数据控制系统分析
第七章 采样数据控制系统分析
7.1 概 述 一、采样控制系统 采样控制系统,又称断续控制系统、离散 控制系统,它是建立在采样信号基础上的。 如果控制系统中有一处或几处信号是断续 的脉冲或数码,则这样的系统称为离散系统。 通常,把系统中的离散信号是脉冲序列形 式的离散系统,称为采样控制系统; 而把数字序列形式的离散系统,称为数字 控制系统或计算机控制系统。
自动控制原理
第七章 采样数据控制系统分析
7.2 信号的采样与保持 一、采样过程 把连续信号转换成离散信号的过程,叫作 采样过程。 实现采样的装置叫作采样开关或采样器。
e(t) e(t) T e * (t) e * (t)

(自动控制原理)采样控制系统

(自动控制原理)采样控制系统
X(s )= M(s ) N(s ) 的多项式, 其中, 其中,M(s )及 N(s )分别为复变量s 的多项式,并
且有 deg M( s ) ≤ deg N( s )以及 deg N( s ) = n . 展开成部分分式和的形式, 将 X(s)展开成部分分式和的形式,即
n
Ai X(s)= ∑ i =1 s + si 式中: 的零点, 的极点, 式中: i 为 N(s)的零点,即 X(s) 的极点,且设为 s
①线性性质 若 Z[ x1(t )] = X 1( z ), Z[ x2(t )] = X 2( z ) , a1, a2为常数 则 Z[a1 x1(t )+ a2 x2(t )] = a1 X 1( z )+ a2 X 2( z ) ②平移定理 若 Z[ x(t )] = X( z )
Z[ x(t + kT )] = z k X( z )− z k − j x( j ) ∑ 则 j =0 Z[ x(t − kT )] = z − k X( z ) 若 k = 1时,有 Z[ x(t + T )] = z[ X( z )− x(0)] Z[ x(t − T )] = z −1 X( z )
若上述级数收敛,则称 E ( z ) 为采样信号的z变换。 为采样信号的z变换。 若上述级数收敛, 为了书写方便, 为了书写方便,通常写成 E ( z ) = Z [e(t )] ,但仍理 变换。 解为是对取 Z 变换。
(2)常用函数的 Z 变换和 Z 变换的性质 变换见表8 1)常用普通时间函数的 Z 变换见表8-1 表8-1 Z 变换表
* n=0
+∞
( n 式中 e nT ) = e t )t = nT , (

自动控制原理第七章采样系统

自动控制原理第七章采样系统

n>m
pi— 极点
Ai— 待定系数
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
F (s)=
1 S(S+1)
解:
F (s)=
1 S(S+1)
=
1 S

1 S+1
F (z)=
z z–1

z z–e –T
=
z(1–e –T ) (z–1)(z–e–T
)
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
+
=Σ k=0
8
f
(kT)∫0∞δ(t

kT
)e–stdt
+
=Σ f(kT)e –kTS k=0
第二节 采样控制系统的数学基础
二、求Z变换的方法
1.级数求和法
根据定义式展开
+
F (z)= Σ f (kT) k=0
= f (0)z0 + f (T)z-1 + f (2T)z-2 + f (3T)z-3 + ··· 利用级数求和法可求得常用函数
+(S+2)
S+3 (S+1)(S+2)
z z–eST S=-2
F (z)=
2z z–e –T

z–e
z
–2T
=
z2+z(e-T -2e-2T z2-(e-T +e-2T )z+e
)
-3T
ቤተ መጻሕፍቲ ባይዱ
第二节 采样控制系统的数学基础
三、Z变换的基本定理
例 z变求换Z[的t –基T 本] 定理为z变换的运算 提供了方便。

控制工程基础-计算机采样控制系统(2)

控制工程基础-计算机采样控制系统(2)

11
脉冲传递函数(10)
1.有采样开关分隔的两个环节串联时,其脉冲传递函数等于各 环节的脉冲传递函数之积。
X (z) G1(z) R(z)
C(z) G2 (z) X (z)
将X(z)代入C(z) C(z) G2 (z)G1zRz
Cz Rz
G1
z
G2
z
2.没有采样开关分隔的两环节串联时,其脉冲传递函数为各个
2021/2/20
第九章 计算机采样控制系统
15
脉冲传递函数(14)

G' p s Gp ss
并根据前面介绍的环节串、并联脉冲传递函数求取方法,参照上图
,则带保持器的广义控制对象脉冲传递函数
Gz
C1
z C2 U z
z
G1z
G2
z
G1z
C1 z U z
Z
Gp' s
Z
g p' t
G2z
1 G1H (z)
闭环传递函数 (z) 的推导步骤:
1) 在主通道上建立输出 C(z)与中间变量 E(z)的关系;
2) 在闭环回路中建立中间变量 E(z) 与输入 R(z) 的关系;
3) 消去中间变量 E(z),建立C(z) 和 R(z) 的关系。
2021/2/20
第九章 计算机采样控制系统
21
脉冲传递函数(20)
Gz ZGs
即符号 ZGs、ZL1Gs 和 Z g*(t) 、 ZgkT 是等价的。
Gz Zg*(t) ZgkT ZL1Gs ZGS
2021/2/20
第九章 计算机采样控制系统
7
脉冲传递函数(6)
如果系统的输入为任意函数 的采样脉冲序列 r(kT) ,其Z变换

6_离散控制系统(2)

6_离散控制系统(2)
19
Z变换
解: E * ( s ) = ∑ e( kT )e − kTs = 1 + e −Ts + e − 2Ts +
k =0 ∞
E * ( s ) = ∑ e( kT )e − kTs
k =0

例1:设e(t)=1(t),试求e*(t)的拉氏变换。
= 1 , − Ts 1− e e −Ts < 1
给定值 + 反 馈 信 号
扰动
-
A/D
数字 计算机 控制器
D/A
执行 元件
对象
测量元件
2
线性定常连续控制系统:微分方程、传递函数; r(t) e(t)
控制器
u(t)
执行元件 被控对象
c(t)
b(t)
检测元件
采样控制系统:差分方程、脉冲传递函数; 连续 信号
r(t) b(t) 测量元件
3
离散 信号
采样开关 e*(t)
k =0
∞ k =0
20

x*(t)的z变换记为Z[x*(t)], Z (x* ( t )) = X ( z ) = ∑ x( kT ) z − k
Z变换
1、定义法(级数求和法)
知道连续函数x(t)在各采样时刻的离散值x*(t),按定义求。 例2:求 x1 ( t ) = u( t ) 和 x 2 ( t ) = ∑ δ ( t − kT ) 的z变换表达式。 解: X ( z ) = x ( kT ) z − k = 1 + z −1 + z − 2 + ∑ 1
零阶保持器的频率特征
eh ( s ) 1 − e − Ts = = Gh ( s ) * e ( s) s

北航自控原理实验五采样系统研究

北航自控原理实验五采样系统研究

北航自控原理实验五采样系统研究
采样系统是指从被测系统采集信号、将其转换为数字信号、利用数字
信号进行信号处理和反馈等。

本次实验要求设计和实现一个采样系统,用
以采集模拟信号,进行数字采样、处理,最后发出控制信号,实施反馈控制。

本次实验使用的采样系统是由工控机、采样卡、示波器、模拟信号源、四路输出模拟量信号和调试软件组成。

工控机用于数据采集与处理,采样
卡用于连接工控机,完成对模拟电压的采样与数据处理;示波器可以用来
监视实验过程中模拟电压和调制调整量的变化;模拟信号源模拟和产生各
种信号,提供给采样系统进行实验;四路输出模拟量信号模块可以输出四
种不同的信号,用于实验测试。

实验步骤:
一、查看实验目的,了解实验中用到的仪器状态
二、设置采样条件,检查模拟源输出的信号
三、用示波器检查采样系统和信号源的连接情况
四、使用调试软件,进行采样,编写采样程序
五、实验验证,随机改变被控对象,检查采样系统反馈控制的效果
六、实验报告,书写实验详细过程,以及采样系统的参数和调试软件的运行结果。

控制系统仿真实验报告

控制系统仿真实验报告

采样控制系统仿真实验报告姓名胡晓健班级13学号08001331课题内容1、应用采样工作原理和离散控制系统设计方法设计采样控制系统。

2、掌握采样控制系统的特点及采样控制系统仿真的特殊问题,运用采样控制系统数字仿真的一般方法(差分方程递推求解法和对离散、连续部分分别计算的双重循环法)及Simulink 对系统进行仿真。

3、给出仿真设计方案和仿真模型。

4、仿真分析。

具体内容:采样控制系统如下图所示:一. 设计要求① 设被控对象sss G o +=21)(,采用零阶保持器,数字控制器为5.015.2)(+-=z z z D ,采样周期T=0.1s 。

应用差分方程递推求解法求系统输出的单位阶跃响应,并求其超调量、上升时间、峰值时间。

设计方案和实现差分方程递推求解法在构成采样控制仿真模型时,若连续部分不要求计算内部状态变量或不含非线性环节,则可以同样的采样周期分别建立离散部分和连续部分的差分方程,然后采用差分方程递推求解。

由题意可知被控对象不含非线性环节且不要求计算其内部状态变量,为了简化仿真过程并提高仿真精度,将连续部分的离散化模型嵌入到整个仿真模型中,即求出系统闭环脉冲传递函数(离散化模型),得到系统的差分方程后递推求解由题意得数字控制器(离散部分)为5.015.2)(+-=z z z D求解传递函数的程序如下:Ts=0.1 %采样周期num1=[1]den1=[1,1,0]G1c=tf(num1,den1)G1d=c2d(G1c,Ts) %采用零阶保持法进行系统变换G2d=tf([2.5 -1],[1 0.5],0.1)Gd=G1d*G2dGHd=feedback(Gd,1) %建立闭环系统模型Ts =0.1000num1 =1den1 =1 1 0%G1c的传递函数Transfer function:1-------s^2 + s%G1c转换后的Z传递函数Transfer function:0.004837 z + 0.004679----------------------z^2 - 1.905 z + 0.9048Sampling time: 0.1%G2d的传递函数Transfer function:2.5 z - 1---------z + 0.5Sampling time: 0.1%开环系统的Z传递函数Transfer function:0.01209 z^2 + 0.00686 z - 0.004679------------------------------------z^3 - 1.405 z^2 - 0.04758 z + 0.4524Sampling time: 0.1%闭环系统的Z 传递函数 Transfer function:0.01209 z^2 + 0.00686 z - 0.004679 ------------------------------------z^3 - 1.393 z^2 - 0.04072 z + 0.4477Sampling time: 0.1由上式可知当采样周期为T =0.1s 时,连续部分的脉冲传递函数为系统闭环脉冲传递函数系统差分方程为求解差分方程的MATLAB 程序如下clear allm=2;n=3; % 明确脉冲传递函数分子m=2;分母n=3 A=[-1.393 -0.04072 0.4477]; % 脉冲传递函数分母多项式的系数行向量 B=[0.01209 0.00686 -0.004679]; % 脉冲传递函数分子多项式的系数行向量R=zeros(m+1,1); % 建立参与递推运算的输入信号序列存储列向量Y=zeros(n,1); % 建立参与递推运算的输出信号序列存储列向量 T=0.1; % 明确采样周期T =0.1sM=150; % 设定仿真总时间为M*T=15s(进行M=150次递推计算) yt=0;t=0;for k=1:MR(k)=1; % r (t )=1(t )的离散序列R(0)=R(1)=…R(k)=1 R=[R(k);R(1:m)];% 刷新参与递推运算的输入信号序列 yk=-A*Y+B*R; % 递推运算21219048.0905.1104679.0004837.0)(----+-+=zzz z z G 3213214477.004072.0393.11004679.000686.001209.0)()(1)()()()()(------+---+=+==zz z zzzz G z D z G z D z R z Y z G cl )3(004679.0)2(00686.0)1(01209.0)3(4477.0)2(04072.0)1(393.1)(---+-+---+-=k k r k r k y k y k y k yY=[yk;Y(1:n-1)];% 刷新参与递推运算的输出信号序列yt=[yt,yk]; % yt 为记载各采样(kT)时刻输出响应的行向量 t=[t,k*T]; % t 为记载各采样(kT)时刻的行向量(与yt 对应) endplot(t,yt,'*k'); % 绘制各采样(kT)时刻的输出响应图 grid;xlabel('time(s)'); ylabel('y(kT)');超调量 σ% 指响应的最大偏离量h(tp)与终值h (∞)的差与终值h (∞)比的百分数h(tp)-h %*100%h σ∞=∞()()峰值时间 tp 指响应超过其终值到达第一个峰值所需的时间上升时间 tr 指响应从终值10%上升到终值90%所需的时间求超调量的程序 maxy=max(yt); yss=yt(length(t));pos=100*(maxy-yss)/yss求峰值时间的程序 for i=1:50if yt(i)==maxy,n=i;end endtp=(n-1)*15/length(t)求上升时间的程序 for i=1:50if (yt(i)<yss*0.1),t1=i;end if (yt(i)<yss*0.9),t2=i;end endts=(t2-t1)*15/length(t)测试和结果.输出的单位阶跃响应为由程序算出的超调量,峰值时间和上升时间超调量pos = 14.0155峰值时间tp =3.5762上升时间ts =1.6887由上面两张截图算出的超调量σ%=(1.163-1.02)/1.02=14.02%峰值时间tp=3.6由上面两张截图可得上升时间tr=2-0.4=1.6性能分析该仿真算法不仅简单易行且仿真精度高。

自动控制原理采样数据系统知识点总结

自动控制原理采样数据系统知识点总结

自动控制原理采样数据系统知识点总结自动控制原理采样数据系统是现代控制理论中重要的组成部分,广泛应用于各个领域,如工业控制、仪器仪表和机电设备等。

它通过对被控对象进行采样和处理,实现对系统的控制和监测。

本文将对自动控制原理采样数据系统的相关知识点进行总结。

一、采样基础知识采样是将连续时间的信号转换为离散时间的信号,即在一定时间间隔内对信号进行测量、记录或存储。

采样频率是采样的重要参数,它决定了信号的还原能力。

根据香农采样定理,采样频率应不小于信号最高频率的两倍。

二、理想采样器理想采样器是指对输入信号进行瞬时量化和保持的装置,它的输出是离散时间的序列。

理想采样器的输入输出关系可以用冲激函数表示,即输出等于输入乘以冲激函数。

三、采样定理采样定理是指信号在连续时间和离散时间之间的转换条件。

香农采样定理是其典型例子,它要求采样频率大于信号最高频率的两倍。

违反采样定理会导致混叠现象,即高频信号在离散频谱中出现。

四、模拟滤波器模拟滤波器用于对采样信号进行滤波,以去除混叠现象和噪声。

常见的模拟滤波器包括低通滤波器、带通滤波器和带阻滤波器等。

滤波器的设计要考虑滤波器类型、频率响应和滤波器阶数等参数。

五、采样保持电路采样保持电路用于对输入信号进行保持,使得采样结果能够在采样间隔内有效保存。

采样保持电路一般由开关、电容和运算放大器等组成。

在采样阶段,开关闭合,将输入信号传递到电容上;在保持阶段,开关断开,电容上的电压被保持。

六、数字滤波器数字滤波器用于对采样信号进行滤波和处理,以获取目标信号。

常见的数字滤波器包括FIR滤波器和IIR滤波器等。

滤波器的设计要考虑滤波器类型、截止频率和滤波器阶数等参数。

七、采样数据系统的实现采样数据系统的实现主要包括信号采样、信号处理和控制算法等步骤。

信号采样通过采样器和采样保持电路实现,信号处理通过模拟滤波器和数字滤波器实现,控制算法通过计算机或专用芯片实现。

八、采样数据系统的应用采样数据系统广泛应用于仪器仪表、机电设备和工业控制等领域。

采样周期对控制系统稳定性的影响

采样周期对控制系统稳定性的影响

采样周期对控制系统稳定性的影响采样周期对控制系统稳定性的影响采样周期是指控制系统中每个采样周期内进行一次测量和控制操作的时间间隔。

控制系统的稳定性是指系统在受到外部干扰或系统参数变化时,能够保持输出稳定在期望值附近的能力。

采样周期对控制系统的稳定性有着重要的影响,下面将逐步分析其影响因素。

1. 采样周期与系统动态响应:采样周期的长度会直接影响控制系统的动态响应。

较长的采样周期会导致系统响应迟缓,反馈控制信号的延迟较大,可能会引起系统的超调和振荡。

相反,较短的采样周期能够更快地控制系统响应,减小超调和振荡的可能性。

2. 采样周期与采样误差:采样过程中可能会引入采样误差,即由于测量和模拟过程的离散性而引起的误差。

采样周期越短,采样误差就越小。

因此,较短的采样周期有利于提高控制系统的精确度和稳定性。

3. 采样周期与信号截断:在控制系统中,如果采样周期过长,可能会导致对控制信号的截断。

即使在采样周期内,控制信号的变化可能也无法完整地表示出来。

这种截断会引起控制系统的不稳定行为,可能导致系统振荡或失稳。

4. 采样周期与采样频率:采样周期和采样频率是对采样过程的不同描述。

采样周期是指采样点之间的时间间隔,而采样频率是指在单位时间内进行采样的次数。

较高的采样频率意味着较短的采样周期,可以提高控制系统的稳定性和性能。

5. 采样周期与系统带宽:控制系统的带宽是指系统能够有效响应输入信号的频率范围。

较短的采样周期可以增加系统的带宽,提高系统对高频输入信号的响应能力。

然而,过短的采样周期可能会引起采样噪声和混叠效应,从而降低系统的稳定性。

综上所述,采样周期对控制系统的稳定性有着重要的影响。

较短的采样周期可以提高系统的响应速度、精确度和稳定性,但也可能引入额外的采样误差和噪声。

控制系统设计时需要根据实际需求和系统特性选择合适的采样周期,以达到最佳的控制性能和稳定性。

离散 系统的基本概念

离散 系统的基本概念
实际采样装置是多种多样的,但无论其具体实现形式如何,根据其基本功 能均可以用一个开关表示,通常将这个开关称为采样开关。
1.2 数字控制系统
典型数字控制系统如图所示,其中被控对象是在连续信号作用下工
作的,其控制信号 u1(t) 、输出信号 f (t)、反馈信号 c(t) 及参考输入信号 r(t) 等均为连续信号,而计算机的输入、输出信号则是采样的数字信号。
如果采用采样控制方式,可在偏差信号和执行电机之间加装一个开关,使其每 隔较长时间闭合一次,且闭合时间相对很短。当开关闭合时,系统根据偏差闭环控 制电机转动,以此来调节炉温,而当开关断开时,电机停止转动。由于闭环时间很 短,开环传递系数可以取较大值,使系统在保持动态性能的同时提高稳态控制精度。
由此可知,对连续对象进行采样控制时,必须将连续信号变为离散时间上 的脉冲序列信号。这种将连续信号变为脉冲序列信号的过程称为采样过程,简 称采样。
由于炉温调节是一个大惯性过程,控制对象的相位滞后非常明显,如果采用连 续控制方式,为保证系统具有足够的相位裕度,开环传递系数就要取很小值,这就 对系统的稳态精度控制造成很大困难。当加大开环增益来提高系统的控制精度时, 由于系统的灵敏度相应提高,而炉温的变化相对缓慢很多,这就容易造成过度调节, 产生振荡。
由于计算机处理的是二进制数据,其输入信号不能是连续信号,所以误差 信号e(t) 要经过模数转换器(A/D)变成计算机能接受的数字信号 e(kT ) 。计 算机根据由差分方程表述的预定算法得到数字形式的控制信号 u(kT ),并由数 模转换器(D/A)将数字信号转换成脉冲序列信号 u1(t) ,以此来断续控制被控 对象,也可经保持器连续控制被控对象。
自动控制原理
离散系统的基本概念
离散输入信号包括脉冲序列信号和数字序列信号,所对应的控制系统分别 称作采样控制系统和数字控制系统(也称计算机控制系统),它们均为离散系 统,可采用统一的离散系统分析方法进行研究。

采样控制系统的分析试题及答案

采样控制系统的分析试题及答案

采样控制系统的分析试题及答案【课后自测】8-1 求下列拉氏变换式的Z 变换。

(1)1()()()E s s a s b =++ (2)21()(1)E s s s =+(3)21()s E s s += (4)21()(1)se E s s s --=+ (5)3()(1)(2)s E s s s +=++解:(1)1111()()()E s s a s b b a s a s b ⎛⎫==- ⎪++-++⎝⎭,查表知11,()()aT bTz zZ Z s a z e s b z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得11()()aTbT z z Z s a s b b a z ez e --⎛⎫⎛⎫=- ⎪ ⎪++---⎝⎭⎝⎭ (2)221111()(1)(1)1E s s s s s s ==--+++,查表知 22111,,11(1)()T T T z z Tze Z Z Z s z s z e s z e ---⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-+-+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得221(1)1()T T Tz Tze zZ s s z z e z e---⎛⎫=-- ⎪+---⎝⎭ (3)22111()s E s s s s+==+,查表知 2211,1(1)z Tz Z Z s z s z ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得2211(1)s z Tz Z s z z +⎛⎫=+ ⎪--⎝⎭(4)()221111()1(1)1s s e E s e s s s s s ---⎛⎫==--+ ⎪++⎝⎭,查表知22111,,1(1)1Tz Tz z Z Z Z s z s z s z e -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪--+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得12211(1)(1)1s TT e Tz z z Z z s s z z z e ---⎛⎫⎛⎫⎛⎫-=--+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭ (5)311()(1)(2)12s E s s s s s +==+++++,查表知 211,12T Tz z Z Z s z e s z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得23(1)(2)T Ts z zZ s s z ez e --⎛⎫+=+ ⎪++--⎝⎭ 8-2 求下列函数的Z 反变换。

第七章 自动控制系统的采样控制系统

第七章 自动控制系统的采样控制系统
引入新变量则有我们称为的z变换并记作????????dtetfsfst0??????ktttftfk????????0??tf??????dtektttfsfstk?????????????????00????dtekttktfstk??????????00??ktskektf??????0ktse?tsez?????kkzktfzf??????0??zf??tf???????tfzzf??第二节采样控制系统的数学基础722求z变换的方法1
图7-3 数字控制系统结构图
第一节
采样控制系统的基本概念
系统中的连续误差信号通过A/D转换器转换成数字量, 经过计算机处理后,再经D/A转换器转换成模拟量,然后 对被控对象进行控制。这里,若将A/D转换器和D/A转换 器的比例系数合并到系统的其他系数中去,则A/D转换器 相当于一个采样开关,D/A转换器相当于一个保持器,此 时图7-3可改画成图7-4所示。
采样控制系统的数学基础
5z 的反变换。 2 z 3z 2
F (z )
5 z 1 可以写为 F ( z ) 1 3z 1 2 z 2
用 F z 的分子除以分母,得
F ( z) 5z 1 15z 2 35z 3 75z 4 ...
图7-6
零阶保持器的输入输出特性
第二节
采样控制系统的数学基础
7.2.1 z变换的定义
对连续函数 f t 进行拉氏变换,即
k 0
F s
f t e st dt 0
对离散函数 f t f t t kT 进行拉氏变换,即
kTs st st F s f t t kT e dt f kT t kT e dt f Kt e 0 k 0 k 0 0 k 0

采样控制系统的分析

采样控制系统的分析

采样控制系统的分析1. 引言采样控制系统是现代自动控制系统中的一个重要组成部分。

它通过对被控对象进行采样和控制操作,实现对系统动态特性的精确控制。

本文将对采样控制系统进行深入分析,包括系统的基本原理、特点以及应用。

2. 采样控制系统的基本原理采样控制系统是基于采样周期的自动控制系统,其基本原理是通过周期性采样对被控对象的状态进行测量,并根据测量结果进行控制操作。

采样系统由采样器、控制器和执行器组成。

2.1 采样器采样器是采样控制系统中用于对被控对象进行采样的部件。

它包括传感器和采样信号处理器两部分。

传感器将被控对象的状态转换为电信号,而采样信号处理器则对传感器输出的信号进行采样和处理,获得被控对象在每个采样周期内的状态。

2.2 控制器控制器是采样控制系统中用于根据采样结果进行控制操作的部件。

它根据被控对象的状态和目标控制要求,计算并输出控制信号。

常见的控制器包括比例-积分-微分(PID)控制器、模糊控制器等。

2.3 执行器执行器是采样控制系统中用于执行控制操作的部件。

它接收控制信号并将其转换为对被控对象的操作,实现对被控对象状态的调节。

常见的执行器包括电动执行器、气动执行器等。

3. 采样控制系统的特点采样控制系统具有以下特点:3.1 时变性由于采样控制系统是周期性的,它对被控对象的控制是离散的。

这使得系统在不断变化的环境和外界干扰下,能够对被控对象的状态进行实时调节。

3.2 数字化采样控制系统使用数字技术对被控对象进行采样和控制,使得系统具有较高的精度和稳定性。

此外,数字化还使得系统易于实现自动化和远程控制。

3.3 离散性采样控制系统是离散系统,它通过周期性采样和控制操作来实现对被控对象的控制。

这种离散性使得系统具有一定的响应速度和抗干扰能力,但也会对系统的控制性能产生一定影响。

4. 采样控制系统的应用采样控制系统广泛应用于工业自动化、航空航天、电力系统等领域。

4.1 工业自动化在工业自动化中,采样控制系统用于对机械设备、生产线等进行控制。

采样控制系统

采样控制系统
五.Z反变换
添加标题
01
长除法
添加标题
02
分子除以分母,将商按z-1的升幂排列:
添加标题
03
将F(z)的分子,分母多项式按z的降幂形式排列。
添加标题
04
实际应用中,常常只需计算有限的几项就够了。

2.部分分式法
步 骤 ① ② 对 进行部分分式展开 ③ 将 同乘以 z 后变为F(z) ④ 由典型信号的z变换可求出 f *(t) 或 f (kT)
相角滞后可达-180°,使闭环系统的稳定性变差。
添加标题
理想低通滤波器
时间延迟
零阶保持器的输出为阶梯信号eh(t) ,其平均响应为 e[t-(T/2)] ,表明输出在时间上要滞后输入T/2,相当于 给系统增加了一个延迟环节,不利于系统的稳定性。
§8-2 Z变换
一. Z变换的定义 f(t) —— 连续信号 —— 采样(离散)信号 —— 采样点上的信号值 习惯上称为f(t)的Z变换。
T
采样控制系统
e(t)*:离散信号
采样周期。 采样开关每隔时间T闭合一次,每次闭合时间为τ
r(t) e(t) e(nT) u(nT) u(t) c(t) A/D 数字计算机 D/A 被控对象 b (t) 检测环节
02
e *(t) eh (t)
03
T 2T …….. t 0 T 2T ……….. t
关于函数F(z)zk-1在极点处的留数计算方法如下:
若pi为单极点,则
若F(z)zk-1有ri 阶重极点,则
例 8-11:设z变换函数 ,试用留数法求其z反变换。
解:因为函数 有p1=-1 ,p2=-2两个极点,极点处的留数
c*(t)

自动控制原理 第七章 采样系统理论

自动控制原理 第七章 采样系统理论
2. 幂级数法(综合除法) n -1 -2 由Z变换的定义 E ( z ) e(nT )z e (0) e (T)z e (2T)z
b0 b1 z b2 z bm z m 而 E( z) (m n) c0 c1z-1 c2z-2 1 a 1 z 1 a 2 z 2 a n z n
t 0 z
(7) 终值定理 若e (t)的z变换为E(z),函数序列e(nT)为有限值(n=0,1,2,…), 且极限 lim e ( nT ) 存在,则
n
lim[e( nT )] lim( z 1) E ( z )
n z 1
离散系统的数学模型
脉冲传递函数 脉冲传函定义
第七章
采样系统理论
离散系统的相关概念 离散系统的数学模型 离散系统的稳定性分析 离散系统的稳态误差计算
离散系统的校正
信号的采样与保持
采样过程与采样定理
采样过程
e(t) S e*(t) T e(t) e*(t)

0
t
0

T 2T
t
(a)
(b)
(c)
基本概念:
1)采样周期:采样开关经一定时间T,重复闭合,每次闭合时间为τ, τ<T,T称为采样周期。f=1/T为采样频率。 2)采样角频率:ωs=2π/T rad/s。 3)采样脉冲序列:连续时间函数经采样开关采样后变成重复周期T的时 间序列,称为采样脉冲序列。 4)采样过程:将连续时间函数经过采样开关的采样而变成脉冲序列的 过程,称为采样过程。
R(s) + - T
K s(s 4)
C(s)
K K 1 1 Z G(z) Z s( s 4) 4 s s 4 K z z K 1 e 4T 4T 4 z 1 z e 4 ( z 1)(z e 4T )

自动控制原理第七部分采样系统

自动控制原理第七部分采样系统
n 0
1 1 1 1 2 3 ....... z z z
上式是一个公比为 1 ,首项为 1 的几何级数 ,其和为: z 1 z E( z) . z 1 -1 1- z z -1
例7-5
求理想脉冲序列
T (t )
n 0
的z变换
e(t ) T (t ) (t nT )
E ( z)
1 z ( z 1 1) 1 z 1 z 1
e* (t )
从例7-4和例7-5可见,相同的z变换 E(z) 对应于相同的采样函数 ,但是不一定对应于相同的连续函数 e(t).
例7-6
求指数函数
e(t ) e-at
anT
的 z变换
解:
E( z) e
解: 因为 T 为采样周期,故
*
e (t ) T (t ) (t nT )
由拉氏变换知 因此
E * ( s ) e nsT
n 0
E ( z ) z n 1 z 1 z 2
的z变换为 (t )
T
n 0
n 0
把上式写成闭合形式.得
iii、z变换的收敛和特性
z变换定义为 E ( z ) e(nT ) z n
以z为自变量的罗朗级数。 收敛条件 z 1
n 0

7.3.2
z 变换方法
⑴ 级数求和法(从定义出发) 例7-4 求单位阶跃函数的z变换
解 : 因为e(t ) 1(t ) 所以E ( z ) Z 1(t ) 1(nT ) z n
图7-9 零阶保持器的频率特 性 ③ 时间滞后特性.零阶保持器的输出为阶梯信号eh(t),其平均响应

自动控制原理--脉冲传递函数及采样系统的分析

自动控制原理--脉冲传递函数及采样系统的分析

系统输出
Y
(z)
G1G2
(
z)E(z)
1
G1G2 (z) G1G2H (z)
R(z)
闭环系统的误差脉冲传递函数
E(z)
1
Ge (z) R(z) 1 G1G2H (z)
闭环系统脉冲传递函数为
GB (z)
Y (z) R(z)
G1G2 (z) 1 G1G2H (z)
当系统有扰动作用时 ,可得闭环系统的误差与扰动间 的脉冲传递函数为
2
r t
et T
e* t
1 eTs s
100.5s 1
yt
s2
解:系统的开环脉冲传递函数为
G(z)
(1
z 1 ) Z
10(0.5s s3
1)
z
1 5T 2z(z 1)
z
(z 1)3
5Tz (z 1)2
解:系统的开环脉冲传递函数为
G(z)
(1
z 1 ) Z
10(0.5s s3
1)
x
x
x
xx
x
暂态响应与极点位置关系
• 1)当闭环脉冲传递函数的极点位于z平面上以 原点为圆心的单位圆内时,其对应的暂态分量是 衰减的。
• 2)要使控制系统具有比较满意的暂态响应,其闭 环极点应尽量避免分布在Z平面单位圆内的左 半部,最好分布在单位圆内的右半部。
• 3)极点尽量靠近坐标原点,相应的暂态分量衰减 速度较快。
二、串联环节的脉冲传函
1、两个环节有采样开关时
rt
r*t G1s y1t
y1*t G2s
y*t yt
根据脉冲传递函数的定义:
G(z)
Y (z) R(z)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制实验
采样控制系统分析
一.实验目的
1.了解判断采样控制系统稳定性的充要条件。

2.了解采样周期T对系统的稳定性的影响及临界值的计算。

3 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。

三、实验内容及步骤
1.闭环采样系统构成电路如图3-5-1所示。

了解采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。

2.改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入实验报告。

图3-5-1 闭环采样系统构成电路
闭环采样系统实验构成电路如图3-5-1所示,其中被控对象的各环节参数:
积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。

实验步骤:注:‘S ST’不能用‘短路套’短接!
(1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。

(D1)单元选择“方波”,(B5)“方波输出”孔输出方波。

调节“设定电位器1”控制相应的输
出频率。

(2)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t):
B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。

阶跃信号输出(B1-2的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。

(3)构造模拟电路:按图3-5-1安置短路套及测孔联线,表如下。

(a)安置短路套(b)测孔联线
(4)运行、观察、记录:
①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示
波器(B3)单元的CH1测孔测量波形。

②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。

观察相应实验现象,记录波形,并判断其稳定性,填入表3-5-1。

三.实验报告要求:
截图如下:
1.T=15ms
2.T=30ms
3.T=90ms
4.稳定周期T=76.9ms。

相关文档
最新文档