中考数学总复习练习题附答案 (14)

合集下载

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

中考数学总复习《一元一次方程》专项测试题-附参考答案

中考数学总复习《一元一次方程》专项测试题-附参考答案

中考数学总复习《一元一次方程》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.过去时全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为( )A.12x(x−1)=380B.x(x−1)=380C.2x(x−1)=380D.x(x+1)=3802.若关于x的方程2x+a−4=0的解是x=−2,则a的值等于( )A.−8B.0C.2D.83.如果x=2是方程12x+a=−1的解,那么a的值是( )A.−2B.2C.0D.−64.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场5.解方程x−16=3−2x−14,去分母时,方程两边乘各分母的最小公倍数( )A.10B.12C.24D.66.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )A.96里B.48里C.24里D.12里7.如图,用火柴棍分别拼成一排三角形组成的图形和一排正方形组成的图形,如果搭建三角形和正方形一共用了2020根火柴,且三角形的个数比正方形的个数多4个,则搭建三角形的个数是( )A.402B.406C.410D.4208.一元一次方程x−2=0的解是( )A.x=2B.x=−2C.x=0D.x=1二、填空题(共5题,共15分)9.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.10.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y−12y=12−■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y=−53,于是,他很快知道了这个常数,他补出的这个常数是.11.若x=−2是方程m(x+3)−3m−x=6的解,则m的值为.12.关于x的一元一次方程x2022−1=2022x+m的解为x=−2019,则关于y的方程3−y2022−1=2022(3−y)+m的解为.13.−113的倒数的相反数是。

中考数学总复习题及答案

中考数学总复习题及答案

中考数学总复习题及答案一、选择题1. 下列哪个选项是无理数?A. 2B. 0.5C. √2D. 0.33333...答案:C2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14答案:B3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),那么这个二次函数的解析式可能是:A. y = (x-1)^2 - 2B. y = -(x-1)^2 + 2C. y = (x-1)^2 + 2D. y = -(x-1)^2 - 2答案:D二、填空题1. 已知一个数的平方根是±2,那么这个数是______。

答案:42. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5 或 -53. 一个多项式除以x-2,余数为1,那么这个多项式可能是x^2 + 2x + ______。

答案:5三、解答题1. 解方程:2x - 3 = 7答案:2x - 3 = 72x = 10x = 52. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。

答案:根据勾股定理,斜边长度为√(6^2 + 8^2) = √(36 + 64) = √100 = 103. 一个工厂生产某种产品,每件产品的成本为50元,售价为70元。

如果工厂希望获得的利润不少于2000元,那么至少需要销售多少件产品?答案:设需要销售x件产品,则利润为(70-50)x = 20x。

要使利润不少于2000元,即20x ≥ 2000,解得x ≥ 100。

因此,至少需要销售100件产品。

2021年九年级数学中考一轮复习知识点中考真题演练14:反比例函数(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练14:反比例函数(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练:反比例函数(附答案)1.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣2.关于反比例函数y=的图象,下列说法正确的()A.经过点(2,3)B.分布在第二、第四象限C.关于直线y=x对称D.x越大,越接近x轴3.已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.4.如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.105.如图,l1是反比例函数y=在第一象限内的图象,且经过点A(1,2).l1关于x轴对称的图象为l2,那么l2的函数表达式为()A.y=(x<0)B.y=(x>0)C.y=﹣(x<0)D.y=﹣(x>0)6.如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)7.如图,点A在反比例函数y1=(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=(x>0)的图象于点C.P为y轴上一点,连接P A,PC.则△APC 的面积为()A.5B.6C.11D.128.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.9.如图,▱ABCD的顶点A在反比例函数图象上,边CD落在x轴上,点B在y轴上,AD交y轴于点E,OE:EB=1:2,四边形BCDE的面积为6,则这个反比例函数的解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣10.如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为()A.﹣B.C.﹣D.11.将代入反比例函数中,所得函数值记为y1,又将x=y1+1代入原反比例函数中,所得函数值记为y2,再将x=y2+1代入原反比例函数中,所得函数值记为y3,…,如此继续下去,则y2020=.12.如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是.13.如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于(结果保留π).14.已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)15.如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.16.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.17.若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.19.如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?20.如图,已知∠AOB=90°,∠OAB=30°,反比例函数y=﹣(x<0)的图象过点B (﹣3,a),反比例函数y=(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.21.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.22.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B (14﹣2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.23.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.24.如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.参考答案1.解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.2.解:A、把点(2,3)代入反比例函数y=得2.5≠3不成立,故A选项错误;B、∵k=5>0,∴它的图象在第一、三象限,故B选项错误;C、反比例函数有两条对称轴,y=x和y=﹣x;当x<0时,x越小,越接近x轴,故C选项正确;D、反比例函数有两条对称轴,y=x和y=﹣x;当x<0时,x越小,越接近x轴,故D选项错误.故选:C.3.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a<0时,b<0,直线y=bx+a经过第二、三、四象限,故B错误,C正确.故选:C.4.解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.5.解:A(1,2)关于x轴的对称点为(1,﹣2).所以l2的解析式为:y=﹣,因为l1是反比例函数y=在第一象限内的图象,所以x>0.故选:D.6.解:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,∵OB经过原点O,∴设OB的解析式为y=mx,∵OB经过点D(3,2),则2=3m,∴m=,∴OB的解析式为y=x,∵反比例函数y=经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,∴BC∥OA,S平行四边形OABC=2S△OBC,∴点B的纵坐标为,∵OB的解析式为y=x,∴B(,),∴BC=﹣a,∴S△OBC=××(﹣a),∴2×××(﹣a)=,解得:a=2或a=﹣2(舍去),∴B(,3),故选:B.7.解:连接OA和OC,∵点P在y轴上,AB∥y轴,则△AOC和△APC面积相等,∵A在上,C在上,AB⊥x轴,∴S△AOC=S△OAB﹣S△OBC=6,∴△APC的面积为6,故选:B.8.解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCP+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.9.解:∵DE∥BC,∴△EOD∽△BOC,∵OE:EB=1:2,∴=,∴=,∴=,解得:S△EOD=,∵AB∥DO,∴△ABE∽△DOE,∵=,∴=4,∴S△ABE=4×=3,∴四边形ABCD的面积为6+3=9,如图,过A作AF⊥x轴于F,则S矩形ABOF=S平行四边形ABCD=9,即|k|=9,又∵函数图象在二、四象限,∴k=﹣9,即函数解析式为:y=﹣.故选:C.10.解:由题意得,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴﹣==;故选:C.11.解:x=时,y1=﹣,x=﹣+1=﹣;x=﹣时,y2=2,x=2+1=3;x=3时,y3=﹣,x=﹣+1=;x=时,y4=﹣;按照规律,y5=2,…,我们发现,y的值三个一循环2020÷3=673........1,y2020=y1=.故答案为:﹣.12.解:一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是x<﹣1或0<x<2.13.解:由题意得,图中阴影部分的面积即为一个圆的面积.⊙A和x轴y轴相切,因而A到两轴的距离相等,即横纵坐标相等,设A的坐标是(a,a),点A在函数y=的图象上,因而a=1.故阴影部分的面积等于π.故答案为:π.14.解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.15.解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴,∵=,△AOB的面积为6,∴=2,∴=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,,∴|k|=6,∵k>0,∴k=6.故答案为:6.16.解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.17.解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.18.解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3.故答案为:﹣3.19.解:(1)∵反比例函数图象关于原点对称,图中反比例函数图象位于第四象限,∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5,即m的取值范围是m<5;(2)由(1)知,函数图象位于第二、四象限.所以在每一个象限内,函数值y随自变量x增大而增大.①当y1<y2<0时,x1<x2.②当0<y1<y2,x1<x2.③当y1<0<y2时,x2<x1.20.解:(1)∵比例函数y=﹣(x<0)的图象过点B(﹣3,a),∴a=﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD∴===,∴AD=•OE==3,OD=•BE==∴A(,3),∵反比例函数y=(x>0)的图象过点A,∴k=×=9;(2)由(1)可知AD=3,OD=,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y=上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.21.解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=(x>0);(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∴∠AOE=∠AEO,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.22.解:(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=;(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),设直线AB的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=﹣x+6;当x=0时,y=6,故点C(0,6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=×CD•x A=×12×3=18.23.解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=,当x=55时,y=<1,故一班学生能安全进入教室.24.解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,P A﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).。

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析一、单选题(共12题;共24分)1.如图,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm。

点P从点A出发,沿AB方向以2cm/s的速度向点B运动,同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ的最大面积是()A.0cm2B.8cm2C.16cm2D.24 cm2 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A.②④⑤⑥⑦B.①②③⑥⑦C.①③④⑤⑦D.①③④⑥⑦3.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时函数值y的最小值为﹣2,则m的值是()A.B.C.或D.- 或4.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣25.二次函数y=−x2+6x−7,当x取值为t≤x≤t+2时有最大值t=2,则t的取值范围为()A.t≤0B.0≤t≤3C.t≥3D.以上都不对6.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.√3cm2B.32√3cm2C.92√3cm2D.272√3cm27.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.x>1时y随x的增大而减小C.顶点坐标是(1,2)D.函数有最大值28.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣7 9.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时函数值y随x值的增大而增大;④当x=﹣1或x=3时函数的最小值是0;⑤当x=1时函数的最大值是4A.4B.3C.2D.110.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√2 11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=-1对称;③当x=-2时函数y的值等于0;④当x=-3或x=1时函数y的值都等于0.其中正确结论的个数是()A.1B.2C.3D.4 12.如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共6题;共6分)13.已知二次函数y=ax2+4ax+a2−1,当−4≤x≤1时y的最大值为5,则实数a的值为.14.函数y=2x2-8x+1的最小值是.15.当-2≤x≤1时二次函数若y=−(x−m)2+m2+1有最大值4,则m的值为.16.如图,在△ABC中△B=90°,AB=12cm,BC=24cm,动点P从点A开始向B点以2cm/s的速度移动(不与点B重合);动点Q从点B开始向点C以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒四边形APQC的面积最小.17.一条抛物线与x轴相交于A,B两点(点A在点B的左侧),若点M,N的坐标分别为(-1,-2),(1,-2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为.18.二次函数y=mx2+2x+m−4m2的图象经过原点,则此抛物线的顶点坐标是三、综合题(共6题;共66分)19.如图,在平面直角坐标系中点A、C的坐标分别为(﹣1,0)、(0,﹣√3),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.20.X市与W市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数n的部分数据如下:车厢节数n4710往返次数m16104b(k,b为常数,k≠0);②y=ax2+bx+c(a,b,c为常数,a≠0)中选取一个合适的函数模型,求出的m关于n的函数关系式是m=(不写n的范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时一天的设计运营人数Q最多(每节车厢载容量设定为常数p).21.在平面直角坐标系xOy中抛物线y=ax2+bx+2(a≠0)经过点A(1,−1),与y轴交于点B.(1)直接写出点B的坐标;(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时n存在最大值N.①若N=2,求抛物线的表达式;②若−9<a<−2,结合函数图象,直接写出N的取值范围.22.一商店销售某种商品,平均每天可售出20件,每件盈利50元,为了扩大销售、增加利润,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时该商店每天销售利润为1600元?(2)当每件商品降价多少元时该商店每天销售利润最大?最大为多少元?23.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?24.如图,已知直线y=﹣12x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y 轴上,M为抛物线的顶点.(1)请直接写出点A的坐标及该抛物线的解析式;(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】A 11.【答案】B 12.【答案】D13.【答案】2−√10 或1 14.【答案】-7 15.【答案】2或- √3 16.【答案】3 17.【答案】-3 18.【答案】(-4,-4)19.【答案】(1)解:设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 为常数)由抛物线的对称性知B 点坐标为(3,0) 依题意得: {a −b +c =09a +3b +c =0c =−√3解得: {a =√33b =−2√33c =−√3∴所求二次函数的解析式为 y =√33x 2−2√33x −√3(2)解:∵P 点的横坐标为m∴P 点的纵坐标为 √33m 2−2√33m −√3设直线BC 的解析式为y=kx+b (k≠0,k 、b 是常数) 依题意,得 {3k +b =0b =−√3∴{k=√33b=−√3故直线BC的解析式为y=√33x−√3∴点F的坐标为(m,√33m−√3)∴PF=−√33m2+√3n(0<m<3)(3)解:∵△PBC的面积S=S△CPF+S△BPF=12PF⋅BO=12×(−√33m2+√3m)×3=−√32(m−32)2+9√38∴当m=32时△PBC的最大面积为9√38把m=32代入y=√33x2−2√33x−√3得y=−5√34∴点P的坐标为(32,−5√3 4)20.【答案】(1)-2n+24(2)解:由题意得:Q=pmn=pn(−2n+24)=−2pn2+24pn ∵−2p<0∴Q有最大值∴当n=−24p2×(−2p)=6时Q有最大值此时答:一列火车每次挂6节车厢,一天往返12次时一天的设计运营人数最多. 21.【答案】(1)(0,2)(2)解:①依题意,当N=2时该抛物线的顶点为(0,2).设抛物线的解析式为y=ax2+2.由抛物线过A(1,−1),得a+2=−1解得a=−3∴抛物线的表达式为y=−3x2+2.②2≤N<322.【答案】(1)解:设每件商品应降价x元,根据题意,得(50-x)(20+2x)=1600 解得:x1=10,x2=30因要求每件盈利不少于25元,故x2=30应舍去……答:每件商品应减价10元,该商店每天销售利润为1600元.(2)解:设每件商品应降价x元,销售利润为W元。

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

D.当y增大时,BE·DF的值不变。

8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。

中考数学总复习《二次函数的三种形式》练习题及答案

中考数学总复习《二次函数的三种形式》练习题及答案

中考数学总复习《二次函数的三种形式》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.抛物线y=﹣2(x ﹣3)2+5的顶点坐标是( )A .(3,﹣5)B .(﹣3,5)C .(3,5)D .(﹣3,﹣5)2.将函数y=x 2﹣2x ﹣5变形为y=a (x ﹣h )2+k 的形式,正确的是( )A .y=(x ﹣1)2﹣5B .y=(x ﹣2)2+5C .y=(x ﹣1)2﹣6D .y=(x+1)2﹣43.抛物线y=(x-2)2+3的对称轴是( )A .直线x=-3B .直线x=-2C .直线x=2D .直线x=3 4.抛物线y=﹣ 15 x 2+ 25 x ﹣1,经过配方化成y=a (x ﹣h )2+k 的形式是( )A .y =15(x +1)2−45B .y =−15(x −1)2+45C .y=﹣ 15 (x ﹣1)2﹣ 45 .D .y =15(x +1)2+455.抛物线y=-2(x -1)2-3与y 轴的交点纵坐标为( )A .-3B .-4C .-5D .-16.二次函数 y =−x 2+6x −7 ,当x 取值为 t ≤x ≤t +2 时,有最大值t=2,则t 的取值范围为()A .t ≤0B .0≤t ≤3C .t ≥3D .以上都不对 7.抛物线y=x 2﹣2x+2的顶点坐标为( )A .(1,1)B .(﹣1,1)C .(1,3)D .(﹣1,3) 8.抛物线y =-(x +2)2-3的顶点坐标是 ( )A .(-2,3)B .(2,3)C .(-2,-3)D .(2,-3)9.抛物线y =−(x −1)2−2的顶点坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)10.顶点为(﹣5,﹣1),且开口方向,形状与函数y=﹣13x 2的图象相同的抛物线是( )A .y=13(x ﹣5)2+1B .y=﹣13x 2﹣5C .y=﹣13(x+5)2﹣1D .y=13(x+5)2﹣111.若二次函数y =x 2−mx +6配方后为y =(x −2)2+k ,则 m, k 的值分别为( )A .0,6B .0,2C .4,6D .4,2 12.二次函数y=-(x-1)2+3的图象的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)二、填空题13.利用配方法求出抛物线y=2x 2﹣4x ﹣1的顶点坐标、对称轴、最大值或最小值;若将抛物线y=2x 2﹣4x ﹣1先向左平移3个单位,再向上平移2个单位,所得抛物线的函数关系式为 . 14.二次函数y=x 2﹣4x ﹣3的顶点坐标是 .15.将抛物线y=x 2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 .16.把二次函数y=x 2﹣12x 化为形如y=a (x ﹣h )2+k 的形式17.将二次函数y=ax 2+bx+c 利用配方法化为顶点式 . 18.若二次函数y=x 2+bx+5配方后为y=(x ﹣2)2+k ,则b+k= . 三、综合题19.已知二次函数 y =−12x 2+x +32. (1)将 y =−12x 2+x +32化成 y =a(x −ℎ)2+k 的形式; (2)指出该二次函数的图象的顶点坐标;(3)请用描点法画出此二次函数的图象.20.如图,在平面直角坐标系xOy 中,抛物线C 1:y=a (x- 52)2+h 分别与x 轴、y 轴交于点A (1,0)和点B (0,-2),将线段AB 绕点A 逆时针旋转90°至AP .(1)求点P 的坐标及抛物线C 1的解析式;(2)将抛物线C 1先向左平移2个单位,再向上平移1个单位得到抛物线C 2,请你判断点P 是否在抛物线C 2上,并说明理由.21.已知二次函数y=﹣ 12 x 2﹣x+ 72(1)用配方法把该二次函数的解析式化为y=a (x+h )2+k 的形式;(2)指出该二次函数图象的开口方向、顶点坐标和对称轴.22.已知抛物线经过点(4,3),且当 x =2 时, y 有最小值 −1 .(1)求这条抛物线的解析式.(2)写出 y 随 x 的增大而减小的自变量 x 的取值范围.23.已知二次函数y=x 2﹣(2k+1)x+k 2+k (k >0)(1)当k= 12时,将这个二次函数的解析式写成顶点式; (2)求证:关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0有两个不相等的实数根. 24.通过配方,写出下列函数的开口方向,对称轴和顶点坐标.(1)y=﹣3x 2+8x ﹣2(2)y=﹣ 14x 2+x ﹣4.参考答案1.【答案】C2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】C7.【答案】A8.【答案】C9.【答案】C10.【答案】C11.【答案】D12.【答案】A13.【答案】y=2x2+8x+714.【答案】(2,﹣7)15.【答案】y=x2-8x+20.16.【答案】y=(x﹣6)2﹣3617.【答案】y=a(x+ b2a)2+ 4ac−b24a18.【答案】﹣319.【答案】(1)解:y=−12x2+x+32=−12(x2−2x)+32=−12(x−1)2+2(2)解:由(1)知,该二次函数的图象的顶点坐标为(1,2)(3)解:列表:x…−10123…y…0 1.52 1.50…20.【答案】(1)解:∵A (1,0)和点B (0,-2),∴OA=1,OB=2,过P 作PM ⊥x 轴于M由题意得:AB=AP ,∠BAP=90°,∴∠OAB+∠PAM=∠ABO+∠OAB=90° ∴∠ABO=∠PAM .在△ABO 于△APM 中,{∠AOB =∠AMP∠ABO =∠PAM AB =AP,∴△ABO ≌△APM ,∴AM=OB ,PM=OA ∴P (3,-1)∵A (1,0)和点B (0,-2)在抛物线C 1:y=a (x- 52 )2+h 上,∴{a (1−52)2+ℎ=0a (0−52)2+ℎ=−2解得: {a =−12ℎ=98,∴抛物线的解析式 C 1:y =−12(x −52)2+98 (2)解:∵将抛物线C 1先向左平移2个单位,再向上平移1个单位得到抛物线C 2 ∴y=- 12 (x- 52+2)2+ 98 +1 ∴抛物线C 2的解析式为:y=- 12 (x- 12 )2+ 178当x=3时,y=- 12 (3- 12 )2+ 178=-1 ∴点P 在抛物线C 2上.21.【答案】(1)解:y=﹣ 12 x 2﹣x+ 72=﹣ 12 (x 2+2x+1)+ 12 + 72=﹣ 12(x+1)2+4 (2)解:∵a=﹣ 12<0 ∴开口向下;顶点坐标(﹣1,4);对称轴为直线x=﹣122.【答案】(1)解:设抛物线的解析式为:y=a(x-2)2-1 把(4,3)代入,得4a-1=3∴a=1即y=(x-2)2-1 或y=x 2-4x+3(2)解:由y=(x-2)2-1知图形对称轴为x=2,且a=1>0∴y 随 x 的增大而减小的自变量 x 的取值范围是x<2.23.【答案】(1)解:把k= 12 代入y=x 2﹣(2k+1)x+k 2+k (k >0)得y=x 2﹣2x+ 34 因为y=(x ﹣1)2﹣ 14所以抛物线的顶点坐标为(1,﹣ 14) (2)证明:△=(2k+1)2﹣4(k 2+k )=1>0所以关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0有两个不相等的实数根24.【答案】(1)解:y=﹣3x 2+8x ﹣2=﹣3(x ﹣ 43 )2+ 103. 该抛物线的开口方向向下,对称轴为x= 43 ,顶点坐标( 43 , 103) (2)解:y=﹣ 14 x 2+x ﹣4=﹣ 14(x ﹣2)2﹣3。

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。

中考数学总复习《方程不等式》练习题及答案

中考数学总复习《方程不等式》练习题及答案

中考数学总复习《方程不等式》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.实数x ,y 满足方程组{2x +y =7x +2y =8,则x +y 的值为( )A .3B .-5C .5D .-32.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有30名工人,每人每天可以生产900个口罩面或1200个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( ) A .2×1200(30﹣x )=900x B .1200(15﹣x )=900x C .1200(30﹣x )=900xD .1200(30﹣x )=2×900x3.小明和小亮各收集了一些废电池.如果小明 ,他的废电池个数就和小亮一样多.设小亮收集了 x 个废电池,则两人一共收集了 (2x −6) 个.要将题目补充完整,横线上可填( ) A .少收集3个B .少收集6个C .多收集3个D .多收集6个4.一元二次方程 x 2+x −6=0 的根的情况是( )A .有两个相等的实根B .没有实数根C .有两个不相等的实根D .无法确定5.我校九年级某班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1275张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x (x ﹣1)=1275 B .x (x+1)=1275 C .2x (x+1)=1275D .x(x−1)2=12756.已知关于 x 的方程 x 2+2x −k −2=0 没有实数解,则函数 y =kx的图象大致是图中的( )A .B .C .D .7.不等式组{4(x −1)>3x −22x+13≥x −1的整数解是一个一元二次方程的两根,则该方程为( )A .x 2+3x +4=0B .x 2+7x +12=0C .x 2−3x +4=0D .x 2−7x +12=08.已知一元二次方程 x 2−8x +12=0 的两根恰好是某等腰三角形的两边长,则该等腰三角形的底边长为( ) A .2B .6C .8D .2或69.不等式组 {x +2>03x −6≤0 的解集在数轴上表示正确的是( )A .B .C .D .10.对于两个不相等的有理数a ,b ,我们规定符号max{a ,b}表示a ,b 两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x ,-x}=3x-2的解为( ) A .12B .1C .1或 12D .12 或 5611.一元二次方程2x 2-3x +1=0根的情况是( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根12.下列解方程的步骤中正确的是( )A .由 x −5=7 ,可得 x =7−5B .由 8−2(3x +1)=x ,可得 8−6x −2=xC .由 16x =−1 ,可得 x =−16D .由 x−12=x 4−3 ,可得 2(x −1)=x −3二、填空题13.在虚线上填写一个二元一次方程,使所成方程组 {5x −2y =1____的解是 {x =1y =2 .14.疫情期间,某快递公司推出无接触配送服务,第一周的订单数是5万件,第三周的订单数比第一周增加2.8万件,如果设平均每周订单数的增长率为x,那么正确的方程是.15.若关于x的分式方程x−mx−1﹣3x=1无解,则m的值为.16.如图,一块长12m,宽8m的长方形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为60m2,则道路的宽应为m.17.方程(x+3)⋅√x−2=0的解是.18.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等,则这种服装每件的标价是元.三、综合题19.为弘扬爱国主义精神,某校组织七年级学生以班级为单位观看电影《长津湖》,票价为每张40元,701班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两个优惠方案可选择,方案一:全体人员打8折;方案二:5人免票,其他人员打9折.”(1)702班有41名学生,选择哪个方案更优惠?(2)701班班长思考了一会儿说:“我们班无论选择哪种方案,要付的钱是一样多的.”请问701班有多少名学生?20.已知关于x的一元二次方程x2−6x+k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2为该方程的两个实数根且满足求k的值21.如图,在△ABC中,△B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经过几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,经过几秒后,PQ的长度等于2√10cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.22.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍.(1)设:长方体的高为xcm,则其宽为cm.(2)求长方体的体积.23.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B 表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等. 24.已知关于的一元二次方程x 2 +2x+2k-4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求方程的根.参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】A9.【答案】A10.【答案】B11.【答案】B12.【答案】B13.【答案】x+y=314.【答案】5(1+x)2=5+2.815.【答案】﹣2或116.【答案】217.【答案】x=218.【答案】7519.【答案】(1)解:由题意可得方案一的花费为:41×40×0.8=1312(元)方案二的花费为:(41-5)×0.9×40=1296(元)∵1312>1296∴702班该选择方案二更优惠;(2)解:设701班有x名学生,根据题意得x×40×0.8=(x-5)×0.9×40解得x=45.答:701班有45名学生.20.【答案】(1)解:由题意可得△=36-4k>0所以k<9;(2)解:由x1+x2=6,x1x2=k得(x1·x2)2−(x1+x2)=115k2−6=115 k2=121k=±11∵k<9所以k=-11.21.【答案】(1)解:设经过x秒以后△PBQ面积为4cm2,根据题意得12(5−x)×2x=4整理得:x2-5x+4=0解得:x=1或x=4(舍去);或12(5−x)×7=4解得:x= 27 7答:1秒或277秒后△PBQ的面积等于4cm2(2)解:PQ= 2√10,则PQ2=BP2+BQ2,即40=(5-t)2+(2t)2解得:t=-1(舍去)或3.则3秒后,PQ的长度为2√10cm(3)解:令S△PQB=7,即BP× BQ2=7,(5-t)×2t2=7整理得:t2-5t+7=0由于b2-4ac=25-28=-7<0则原方程没有实数根;或Q到C了,P还在运动,(5-t)×7÷2=7解得t=3(舍去).所以在(1)中,△PQB的面积不能等于7cm222.【答案】(1)30−2x2(2)解:根据题意得:30−2x2=2x解得:x=5故长方体的宽为10,高为5,长为30﹣5×2=20则长方体的体积为5×10×20=1000cm3.答:长方体的体积为1000cm3.23.【答案】(1)解:点P运动至点C时,所需时间t=11÷2+10÷1+8÷2=19.5(秒)答:动点P从点A运动至C点需要19.5时间;(2)解:由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则11÷2+x÷1=8÷1+(10﹣x)÷2x=5答:M所对应的数为5.(3)解:P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上则:8﹣t=11﹣2t,解得:t=3.②动点Q在CB上,动点P在OB上则:8﹣t=(t﹣5.5)×1,解得:t=6.75.③动点Q在BO上,动点P在OB上则:2(t﹣8)=(t﹣5.5)×1,解得:t=10.5.④动点Q在OA上,动点P在BC上则:10+2(t﹣15.5)=t﹣13+10,解得:t=18综上所述:t的值为3、6.75、10.5或18.24.【答案】(1)因为x2+2x+2k -4 = 0有两个不相等的实数根所以Δ=b2−4ac>0,即22−4×1×(2k−4)>0所以8k<20,解得:k<5 2(2)因为k<52且k为正整数,所以k=1或2当k=1时,方程化为x2+2x−2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0解得x1=0,x2=2所以k=2,方程的有整数根为x1=0,x2=2.。

2024年中考数学总复习:多选题(附答案解析)

2024年中考数学总复习:多选题(附答案解析)

第1页(共29页)2024年中考数学总复习:多选题一.多选题(共25小题)(多选)1.某工厂生产工艺品,以每天生产35个为基本量,实际每天生产量与前一天相比有增减(上周最后一天生产量恰好是基本量,超产记为正,减产记为负).如表是本周一至周五的生产情况:星期 一 二 三 四 五 增减(单位:个)﹣1﹣4+2+7﹣3根据记录的数据,该厂本周每天生产量超过基本量35个的是( ) A .星期二B .星期三C .星期四D .星期五(多选)2.对于代数式3x 2﹣x +15,下列说法不正确的是( ) A .它按x 降幂排列 B .它是单项式 C .它的常数项是15D .它是二次二项式(多选)3.下列各式是分式的有( ) A .x3B .1aC .x 2xD .1y(15−πR 2)(多选)4.下列各式是分式的是( ) A .x3B .1aC .xxyD .1y(15﹣πR 2)(多选)5.下列各式变形正确的是( ) A .1−a a 2−2a+1=11−aB .xy−x 2(x−y)2=x x−yC .9ab 2+6abc3a 2b =3b+2c aD .a 2a−1−a −1=a 2−(a−1)2a−1(多选)6.在ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,下列各式一定成立的是( ) A .a =c •cos BB .a =b •cos AC .c =asinAD .a =b •tan A(多选)7.下列各式中,计算结果正确的是( )。

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题及答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题及答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x−1013y−3131x<2时,函数值y随x 的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个2.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小3.已知抛物线y=ax2+bx+c(a<0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定4.已知二次函数y=−x2+2mx−m2−m+1(m为常数)的图象与x轴有交点,且当x<−3时,y随x 的增大而增大,则m的取值范围是()A.−3≤m<1B.−3≤m≤1C.−3<m<1D.m≤−3或m≥15.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,△ABC的面积为() A.1B.3C.4D.66.如表是二次函数y=ax2+bx+c的几组对应值:x 6.17 6.18 6.19 6.20y=ax2+bx+c﹣0.03﹣0.010.020.04A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.抛物线y=x2−6x+m与x轴只有一个交点,则m的值为()A.-6B.6C.3D.98.关于二次函数y=−4(x+6)2−5的图象,下列说法正确的是()A.对称轴是直线x=6B.顶点坐标为(−6,5)C.图象与y轴交点的坐标是(0,−5)D.当x<−6时,y随x的增大而增大9.已知a,b是抛物线y=(x﹣c)(x﹣c﹣d)﹣3与x轴交点的横坐标,a<b,则|a﹣c|+|c﹣b|化简的结果是()A.b﹣a B.a﹣b C.a+b﹣2c D.2c﹣a﹣b10.已知抛物线y=ax2+bx+c如图所示,则下列结论中,正确的是()A.a>0B.a-b+c>0C.b2-4ac<0D.2a+b=011.抛物线y=x2−2x+1与坐标轴的交点个数为()A.无交点B.1个C.2个D.3个12.如图,抛物线y=2x2−52x+a与x轴正半轴交于A,B两点(点A在点B的左边),与y轴正半轴交于C,且∠OCA=∠OBC,则点B的坐标是()A.(14,0)B.(1,0)C.(4,0)D.(3√3,0)二、填空题13.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(−52,y1),C(−12,y2)为函数图象上的两点,则y1<y2.其中正确结论是.14.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣2,0)、B(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的上方,顶点为C.直线y=kx+m(k≠0)经过点C、B.则下列结论:①b>a;②2a﹣b>﹣1;③2a+c<0;④k>a+b;⑤k<﹣1. 其中正确的结论有(填序号)15.已知抛物线y=x2+2x−n与x轴交于A,B两点,抛物线y=x2−2x−n与x轴交于C,D两点,其中n>0,若AD=2BC,则n的值为.16.已知抛物线y=x2−2kx+k2+k−2的顶点在坐标轴上,则k=.17.抛物线y=x2+3x−4与y轴的交点坐标是,与x轴的交点坐标是.18.二次函数y=ax2+bx+c(a≠0)中,自变量x与函数y的部分对应值如表:则一元二次方程ax2+bx+c=0(a≠0)的两个根x1,x2的取值范围是.x﹣1-120121322523y﹣2﹣14142741﹣14﹣219.已知二次函数y=−x2−2x+3.(1)求这个二次函数图象与y轴的交点坐标、与x轴的交点坐标.(2)画出这个二次函数图象.20.已知二次函数y=ax2+bx-4(a,b是常数,且a≠0)的图象过点(3,-1).(1)判断点(2,2-2a)是否也在该函数的图象上,并说明理由.(2)若该二次函数的图象与x轴只有一个交点,求该函数的表达式.(3)已知点(x1,y1)和(x2,y2)在该函数图象上,且当x1<x2≤23时,始终有y1>y2,求a的取值范围.21.已知抛物线y=x2﹣2x﹣3的图象如图所示.(1)求抛物线与x轴、y轴的交点坐标;(2)根据图象回答:当x取何值时,y>0?当x取何值时,y<0?22.抛物线y=﹣2x2+8x﹣6.(1)求抛物线的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.23.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C(1)分别求A,B,C三点的坐标;(2)求△ABC的面积.24.已知:抛物线y=−x2+2x+m.(1)若抛物线过点A(3,0),与y轴交于点B,与x轴的另一个交点是点C.①求这个抛物线的解析式,并求出点B,C的坐标;②若该抛物线有一点D(x,y),且点D与点B不重合,若S△ABC=S△ACD,求点D的坐标.(2)若M(−1,3),N(4,3),抛物线y=−x2+2x+m与线段MN有两个不同交点,则m 的取值范围是.参考答案1.【答案】A2.【答案】B3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】D9.【答案】A10.【答案】D11.【答案】C12.【答案】B13.【答案】①④14.【答案】①⑤15.【答案】816.【答案】0或217.【答案】(0,4);(-4,0),(1,0)18.【答案】﹣12<x1<0,2<x2<5219.【答案】(1)解:∵y=−x2−2x+3∴当x=0时∴这个二次函数图象与y轴的交点坐标是(0,3)∵令y=0,即−x2−2x+3=0解得:x1=−3,x1= 1∴图象与x轴的交点坐标为(−3,0)(2)解:正确列表x…−4−3−2−1012…y…−503430−5…20.【答案】(1)解:当x=3,y=-1时,有3a+b-1=0,所以b=-3a+1.把x=2与b=-3a+1同时代入y=ax2+bx-4 得y=-2a-2≠2-2a所以点(2,2-2a)不在该函数的图象上;(2)解:因为二次函数y=ax2+(-3a+1)x-4与x轴只有一个交点∴△=0,即(-3a+1)2+16a=0解得a=-1或a=-19所以y=-x2+4x-4或y=-19x2+43x-4;(3)解:y1-y2=a(x1-x2)(ax1+ax2-3a+1)>0因为x1-x2<0,所以a(x1+x2)-3a+1<0因为x1<x2≤ 23时,始终有y1>y2,所以a>0因为抛物线的对称轴直线为x=3a−12a所以x1+x2< 3a-1a=3−1 a因为x1+x2< 43,所以3−1a≤ 43即a≥ 3 5.21.【答案】(1)解:令x=0,则y=-3∴抛物线与y轴的交点为(0,-3)令y=0,则x2-2x-3=0解得:x1=-1,x2=3∴抛物线与x轴的交点为(-1,0)和(3,0).(2)解:由图象以及抛物线与x轴的交点坐标可知当x>3或x<-1时,y>0;当-1<x<3时,y<0.22.【答案】(1)解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2∴顶点坐标为(2,2),对称轴为直线x=2(2)解:∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2∴当x>2时,y随x的增大而减小(3)解:令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<023.【答案】(1)在y=x2﹣4x+3中当y=0时,x2﹣4x+3=0解得x=1或3则A(1,0)、B(3,0)当x=0时,y=3则C(0,3)(2)由(1)知,A(1,0)、B(3,0)、C(0,3).故△ABC的面积为:12×(3﹣1)×3=3.24.【答案】(1)解:①∵y=−x2+2x+m过点A(3,0)∴0=−9+6+m∴m=3∴y=−x2+2x+3当x=0时∴B(0,3)当y=0时∴x1=3∵A(3,0)∴C(−1,0)②∵S△ABC=S△ACD∴点D的纵坐标为3或−3当y=3时∴x2−2x=0∴x1=0∵点D与点B不重合∴D1(2,3)当y=−3时∴x2−2x−6=0∴x1=1−√7∴D2(1−√7,−3),D3(1+√7,−3);(2)2<m⩽6。

九年级数学中考复习训练题(培优14)

九年级数学中考复习训练题(培优14)

九年级数学中考复习训练题(培优14)1.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣12.下列说法错误的是()A.平行四边形的对边相等 B.正方形既是轴对称图形、又是中心对称图形C.对角线相等的四边形是矩形 D.对角线互相垂直的平行四边形是菱形3.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥4.已知线段a,b,c,如果a:b:c=1:2:3,那么:的值是()A.:B.:C.:D.:5.方程2x2﹣1=6x的两根为x1、x2,则x1+x2等于()A.B.C.﹣3 D.36.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象上的概率是()A.B.C.D.7.3﹣2tan60°=.8.一位作家先用m天写完了一部小说的上集,又用n天写完下集,这部小说上下集共120万字,这位作家平均每天的写作量为万字.9.如图,人字梯AB,AC的长都为2米,当α=50°时,人字梯顶端离地面的高度AD是米(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).10.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE 上的G 点,并使折痕经过点B ,折痕BF 与AE 交于点H ,点F 在AD 上,若DE =5,则AH 的长为 .11.直径为8的⊙O 中,弦AB =4cm ,则弦AB 所对的圆周角是----- 12.如图12,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .13.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC 的度数.14.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是的中点,E 为OD 延长线上一点,且∠CAE =2∠C ,AC 与BD 交于点H ,与OE 交于点F .(1)求证:AE 是⊙O 的切线; (2)若DH =9,tan C =,求直径AB 的长.15.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,过OA 上的点P 作PD ⊥AC ,交CB 的延长线于点D ,交AB 于点E ,点F 为DE 的中点,连接BF .2B图12(1)求证:BF与⊙O相切;(2)若AP=OP,cos A=,AP=4,求BF的长.16.去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).月份…二月三月四月五月…销售价… 6 7 7.6 8.5 …x(元/件)…30 20 14 5 …该月销售量y(万件)(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额﹣成本+政府当月补贴)17.【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.【实践探究】(1)在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN =45°,若,求证:M是CD的中点.【拓展】(3)如图③,在矩形ABCD中,AB=6,AD=8,点M、N分别在边DC、BC上,连接AM、AN,已知∠MAN=45°,BN=2,则DM的长是.18.如图1,在平面直角坐标系中,直线与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.。

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。

2024年中考数学总复习:尺规作图(附答案解析)

2024年中考数学总复习:尺规作图(附答案解析)
上,其中Q1Q2=Q2Q3=Q3Q4,若将纸上所画的直线视为数轴,并将线上的点用数轴上
的实数来表示,则以下选项中,可能是此四点在纸上数轴表示的实数是( )
A.1,2,4,8B.3,4,6,9C.1,5,8,9D.1,7,9,10
22.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是( )
8.如图,由作图痕迹做出如下判断,其中正确的是( )
A.FH=HGB.FH>HGC.FH<HGD.FH≤HG
9.如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图的痕迹推断,以下结论错误的是( )
A.AD=CDB.∠ABP=∠CBPC.∠BPC=115°D.∠PBC=∠ACD
17.如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是( )
A.AF=BFB.∠AFD+∠FBC=90°
C.DF⊥ABD.∠BAF=∠CAF
18.如图,在△ABC中,∠A=30°,∠C=90°.下列尺规作图痕迹中,不能将△ABC的面积平分的是( )
A. B.
C. D.
19.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是( )
2024年中考数学总复习:尺规作图
一.选择题(共25小题)
1.如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的一半长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB=( )
A.80°B.25°C.105°D.95°

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图在四边形ABCD中AB=CD,对角线AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,若DE=BF,则下列结论不一定正确的是()A.CF=AE B.OE=OFC.△CDE为直角三角形D.四边形ABCD是平行四边形2.如图四边形ABCD中AB∥CD,∥B=∥D点E为BC延长线上一点,连接AE,AE交CD于点H,∥DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的值为()A.9B.√97C.10D.3 √103.如图在Rt∥ABC中∥ACB=90°,分别以AB、AC为腰向外作等腰直角三角形∥ABD和∥ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.AC B.AB C.BC D.AB4.如图在菱形ΑΒCD中∠Α=60∘,AD=8,F是ΑΒ的中点.过点F作FΕ⊥ΑD,垂足为Ε.将ΔΑΕF沿点Α到点Β的方向平移,得到ΔΑ′Ε′F ′.设Ρ、Ρ′分别是ΕF、Ε′F ′的中点,当点Α′与点Β重合时,四边形ΡΡ′CD的面积为()A.28√3B.24√3C.32√3D.32√3−85.下列说法中错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.如图点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∥ABC+∥ADC=120°,则∥A的度数是()A.100°B.110°C.120°D.125°8.如图在∥ABC中AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则∥BED与∥DFC的周长的和为()A.34B.32C.22D.209.如图在平面直角坐标系中点A(1,5),B(4,1),C(m,−m),D(m−3,−m+4),当四边形ABCD 的周长最小时,则m 的值为().A.√2B.32C.2D.310.如图分别在四边形ABCD的各边上取中点E,F,G,H,连接EG,在EG上取一点M,连接HM,过F作FN∥HM,交EG于N,将四边形ABCD中的四边形①和②移动后按图中方式摆放,得到四边形AHM′G′和AF′N′E,延长M′G′,N′F′相交于点K,得到四边形MM′KN′.下列说法中错误的是()A.S四边形MM′KN′=S四边形ABCD B.HM=NFC.四边形MM′KN′是平行四边形D.∠K=∠AHM′11.如图,已知∥ABC与∥CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤∥AOE与∥COF成中心对称.其中正确的个数为()A.2B.3C.4D.512.如图P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若S四边形AHPE=3,S四边形PFCG=5,则S∥PBD为()A.0.5B.1C.1.5D.2二、填空题13.如图在平行四边形ABCD中点E,F分别在BC,AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.如图在Rt△ABC中AC=2√3,BC=2,点P是斜边AB上任意一点,D是AC的中点,连接PD并延长,使DE=PD.以PE,PC为边构造平行四边形PCQE,则对角线PQ的最小值为.15.如图▱ABCD中∥BAD=120°,E、F分别在CD和BC的延长线上,AE∥BD,EF∥BC,EF=5√3,则AB的长是16.如图在∥ABC中∥ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= 13BD,连接DM、DN、MN.若AB=6,则DN=.17.若AC=10,BD=8,那么当AO=DO=时,四边形ABCD是平行四边形。

中考数学复习专题复习训练试题汇总(附答案)

中考数学复习专题复习训练试题汇总(附答案)

中考数学复习专题复习训练试题汇总(附答案)一、代数部分1. 题目:求解一元二次方程 $ x^2 3x + 2 = 0 $ 的解。

答案:$ x_1 = 1, x_2 = 2 $。

2. 题目:求解一元二次方程 $ x^2 + 4x 5 = 0 $ 的解。

答案:$ x_1 = 5, x_2 = 1 $。

3. 题目:求解一元二次方程 $ x^2 5x + 6 = 0 $ 的解。

答案:$ x_1 = 2, x_2 = 3 $。

二、几何部分1. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ AC = 4 $,求 $ BC $ 的长度。

答案:$ BC = 5 $。

2. 题目:求直角三角形 $ ABC $ 中,已知 $ BC = 5 $,$ AC = 4 $,求 $ AB $ 的长度。

答案:$ AB = 3 $。

3. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ BC =4 $,求 $ AC $ 的长度。

答案:$ AC = 5 $。

三、应用题部分1. 题目:某工厂生产的产品,每件成本为 50 元,销售价为 80 元。

已知该工厂生产 100 件产品的总成本为 5000 元,求该工厂生产的产品数量。

答案:该工厂生产的产品数量为 100 件。

2. 题目:某商店销售一款商品,原价为 100 元,打 8 折后的售价为 80 元。

求该商品的折扣率。

答案:该商品的折扣率为 20%。

3. 题目:某水果店购买一批苹果,每千克进价为 5 元,销售价为 10 元。

已知该水果店购买了 100 千克苹果,求该水果店的利润。

答案:该水果店的利润为 500 元。

中考数学复习专题复习训练试题汇总(附答案)四、函数部分1. 题目:已知一次函数 $ y = 2x + 1 $,求 $ x = 3 $ 时的$ y $ 值。

答案:当 $ x = 3 $ 时,$ y = 7 $。

2. 题目:已知二次函数 $ y = x^2 4x + 4 $,求该函数的顶点坐标。

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点A到x轴的距离为2,到y轴的距离为5,且点A在第四象限,则点A的坐标是()A.(2,−5)B.(5,−2)C.(−2,5)D.(−5,2)2.若点P(m+5,m−3)在x轴上,则点P的坐标为()A.(8,0)B.(0,−8)C.(4,0)D.(0,−4)3.在平面直角坐标系中,若直线AB经过点(3,−4)和(−3,4),则直线AB() A.平行于x轴B.平行于y轴C.经过原点D.无法确定4.在平面直角坐标系中,将点P(−1,5)绕原点O顺时针旋转90°得到P′,则点P′的坐标为()A.(1,5)B.(5,1)C.(−1,−5)D.(−5,−1) 5.点P坐标为(6−3a,a+2),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,−3)C.(3,3)或(−6,6)D.(3,−3)或(6,−6)6.在平面直角坐标系中,点A(3,4),B(−1,b),当线段AB最短时,b的值为()A.5B.4C.3D.07.如图,雷达探测器测得六个目标A,B,C,D,E,F,目标E,F的位置分别表示为E(3,330°),F(2,30°)按照此方法,目标A,B,C,D的位置表示不正确的是()A.A(5,60°)B.B(3,120°)C.C(3,210°)D.D(5,270°) 8.如图A1(1,0),A2(1,1),A3(−1,1),A4(−1,−1),A5(2,−1)…按此规律,点A2022的坐标为()A.(505,505)B.(−506,506)C.(506,506)D.(−505,−505)二、填空题9.电影票上“10排8号”记作(10,8),那么(15,9)表示的意义是10.已知A(a,−4)与B(3,4)两点关于x轴对称,则a的值为11.已知点A(m+1,2)和点B(3,m−1),若直线AB∥x轴,则A的坐标为.12.如图,在平面直角坐标系xOy中,Rt△OAB的斜边OB在x轴上∠ABO=30°,若点A的横坐标为1,则点B的坐标为.13.如图,△ABC为等腰直角三角形∠ABC=90°,点B、C在坐标轴上,已知点A坐标为(3,4),则△ABC的面积为.14.在平面直角坐标系中,用大小、形状完全相同的长方形纸片摆放成如图所示的图案,已知点A的坐标为(−1,3),则点B的坐标为.15.如图所示,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C 在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB全等.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2023次运动后,动点P的坐标是.三、解答题17.为了更好的开展古树名木的系统保护工作,某公园对园内的4棵百年古树都利用坐标确定了位置,并且定期巡视.(1)请在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A,B的位置分别表示为A(2,1),B(5,5);(2)在(1)建立的平面直角坐标系xOy中.①表示古树C的位置的坐标为______,并在网格中标出古树E(4,−1)的位置;②现需要在沿y轴的道路某处P点向古树A,B修建两条步道,使得点P到古树A,B的距离和最小.请在网格中画出点P(保留作图痕迹,不写作图过程);该距离和的最小值为______.18.已知平面直角坐标系中有一点M(m−1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到两坐标轴的距离相等时,求点M的坐标.19.如图,已知△ABC的三个顶点的坐标分别为A(−6,0),B(−2,3),C(−1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(2)在格点图内,若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.20.如图,在直角坐标系中A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中描点,画出△ABC;并作出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积;(3)设点P在y轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.21.如图,已知△ABC的顶点分别为A(−2,2),B(−4,5),C(−5,1).(1)作出△ABC关于x轴对称的图形△A1B1C1(2)写出点C1的坐标(3)在x轴上找一点P,使得AP+CP最小(画出图形,找到点P的位置).22.如图,在平面直角坐标系中,设一点M自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位长度至P2处,再向下运动3个单位长度至P3处,再向右运动4个单位长度至P4处,再向上运动5个单位长度至P5处…如此继续运动下去,设P n(x n,y n),n=1,2,3,…….(1)计算x1+x2+x3+x4.(2)计算x1+x2+⋅⋅⋅+x2023+x2024的值.参考答案1.解:设A(x,y)∵点A到x轴的距离为2,到y轴的距离为5∴x=±5,y=±2∵点A在第四象限∴x>0,y<0∴x=5,y=−2∴A(5,−2)故选:B.2.解:依题意得:m−3=0,即:m=3∴m+5=3+5=8∴点P的坐标为(8,0)故选A.3.解:点(3,−4)和(−3,4)的横纵坐标互为相反数故点(3,−4)和(−3,4)关于原点对称故直线AB经过原点.故选:C.4.解:如图,过P、P′分别向x轴作垂交于H、K根据旋转的定义可知OP=OP′,∠POP′=90°∴∠POH+∠P′OK=90°,∠P′OK+∠P′=90°∴∠POH=∠P′∴∠PHO=∠P′KO=90°∴△PHO≌△P′OK(AAS).∴PH=OK=5,OH=P′K=1即P′(5,1).故选B.5.解:由点(6−3a,a+2)到两坐标轴的距离相等,得6−3a=a+2,或6−3a+a+2=0解得a=1,或a=4则该点的坐标为(3,3)或(−6,6)故选:C.6.解:由题意知,点B(−1,b)在直线x=−1上运动∴当AB⊥直线x=−1时,线段AB最短此时b=4.故选:B.7.解:∴E(3,330°),F(2,30°)∴A(5,60°),B(3,120°),C(4,210°),D(5,270°)故选:C8.解:由题可知第一象限的点:A2,A6,A10,……角标除以4余数为2;第二象限的点:A3,A7,A11……角标除以4余数为3;第三象限的点:A4,A8,A12……角标除以4余数为0;第四象限的点:A5,A9,A13……角标除以4余数为1;由上规律可知:2022÷4=505⋯2∴点A2022在第一象限.观察图形,得:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),……∴第一象限点的横纵坐标数字隐含规律:点的横纵坐标=n+2(n为角标)4∴点A2022的坐标为(506,506).故选:C.9.解:∴“10排8号”记为(10,8)∴(15,9)表示的意义是15排9号.故答案为:15排9号.10.解:∴A(a,−4)与B(3,4)两点关于x轴对称∴a=3故答案为:3.11.解:∴直线AB∥x轴∴m−1=2∴m=3∴m+1=4即点A坐标:A(4,2)故答案为:(4,2).12.解:过点A作x轴的垂线,垂足为点C ∴Rt△OAB中∠ABO=30°∴∠AOB=60°∴AC⊥OB∴∠OAC=30°∴点A的横坐标为1∴OC=1∴OA=2OC=2∴∠ABO=30°∴OB=2OA=4∴点B的坐标为(4,0)故答案为:(4,0).13.解:如图所示,过点A作AD⊥y轴于点D∴△ABC是等腰直角三角形∴AB =BC ,∠ABC=90°∴∠ABD =90°−∠OBC =∠OCB又∠ADB =∠BOC =90°∴△ADB ≌△BOC (AAS)∴AD =OB,DB =OC∴点A 坐标为(3,4)∴AD =OB =3∴S △ABC =S 梯形−S △ABD −S △OBC =12(1+3)×4−12×1×3−12×1×3=5 故答案为:5.14.解:设每个长方形纸片的宽为x ,长为y由题意可得:{2y −x −y =12x +y =3解得{x =23y =53∴点B 的到x 轴的距离为x +y =73,到y 轴的距离为2y −x =83 ∴点B 的坐标为(−83,73). 故答案为:(−83,73).15.解:如图(1)所示当点C 在x 轴负半轴上,点D 在y 轴负半轴上时若△AOB ≌△COD ,则CO =AO =2∴点C 的坐标为(−2,0);若△AOB ≌△DOC ,则OC =OB =4∴点C 的坐标为(−4,0);如图(2)所示当点C在x轴负半轴上,点D在y轴正半轴上时若△AOB≌△DOC,则CO=BO=4∴点C的坐标为(−4,0).若△AOB≌△COD,则CO=AO=2∴点C的坐标为(−2,0);如图(3)所示当点C在x轴正半轴上,点D在y轴正半轴上时同理可得C的坐标为(4,0);如图(4)所示当点C在x轴正半轴上,点D在y轴负半轴上时,同理可得点C的坐标为(4,0);综上所述,点C的坐标为(−4,0)或(−2,0)或(4,0)故答案为:(−4,0)或(−2,0)或(4,0).16.解:由图可得,动点P的横坐标和运动的次数相同,纵坐标以1,0,2,0为一个循环组依次循环∴经过第2023次运动后,动点P的横坐标为2023∴2023÷4=505 (3)∴经过第2023次运动后,动点P的纵坐标为2∴动点P的坐标是(2023,2)故答案为:(2023,2).17.解:(1)如图所示(2)①点C(−2,2),点E(4,−1)的位置如图所示;②过点A作关于y轴的对称点为A′,则A′(−2,1),连接A′B与y轴交于点P,此时PA+PB最小等于A′B的长度;A′B=√[5−(−2)]2+(5−1)2=√72+42=√65∴点P到古树A,B的距离和的最小值为√65;故答案为:√6518.解:(1)∵|2m+3|=1∴2m+3=1或2m+3=−1解得:m=−1或m=−2∴点M的坐标是(−2,1)或(−3,−1);(2)∵|m−1|=|2m+3|∴m−1=2m+3或m−1=−2m−3解得:m=−4或m=−23∴点M的坐标是:(−5,−5)或(−53,5 3 ).19.(1)解:△A′B′C′如图所示∴A′(0,−6);(2)解:如图平行四边形A′B′C′D′即为所求:根据平行四边形性质可得D′(3,−5)故答案为:D′(3,−5).20.(1)解:如图所示,△ABC即为所求;△A1B1C1即为所求.(2)S△ABC=3×4−12×1×2−12×2×4−12×2×3=4;(3)当点P在y轴上时,△ABP的面积=12AP×|x B|=4即12AP×2=4解得:AP=4.∴点P的坐标为(0,5)或(0,−3).21.解:(1)如图1所示,△A1B1C1即为所求;(2)点C1的坐标为(−5,−1);(3)如图2所示,点P即为所求.22.(1)解:由题意可知P1(1,1),P2(−1,1),P3(−1,−2),P4(3,−2),P5(3,3),P6(−3,3),P7(−3,−4),P8(5,−4),……于是得到x1,x2,x3,x4的值为1,-1,-1,3∴x1+x2+x3+x4=1−1−1+3=2(2)解:∴x5,x6,x7,x8的值分别为3,-3,-3,5∴x5+x6+x7+x8=3−3−3+5=2;∴x1+x2+x3+x4=1−1−1+3=2x5+x6+x7+x8=3−3−3+5=2…x2021+x2022+x2023+x2024=2∴2024÷4=506∴x1220232024。

中考数学总复习《二次函数与一次函数的综合应用》练习题附带答案

中考数学总复习《二次函数与一次函数的综合应用》练习题附带答案

中考数学总复习《二次函数与一次函数的综合应用》练习题附带答案一、单选题(共12题;共24分)1.如图是二次函数 y 1=ax 2+bx +c(a ≠0) 和一次函数 y 2=mx +n(m ≠0) 的图象.则下列结论正确的是( )A .若点 M(−2,d 1),N(12,d 2),P(2,d 3) 在二次函数图象上,则 d 1<d 2<d 3B .当 x <−12或 x >3 时C .2a −b =0D .当 x =k 2+2 ( k 为实数)时2.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y 1≠y 2时,则取y 1,y 2中的较大值记为N ;当y 1=y 2时,则N=y 1=y 2.则下列说法:①当0<x <2时,则N=y 1;②N 随x 的增大而增大的取值范围是x <0;③取y 1,y 2中的较小值记为M ,则使得M 大于4的x 值不存在;④若N=2,则x=2﹣√2或x=1.其中正确的有( )A .1个B .2个C .3个D .4个3.已知抛物线y 1= 14(x ﹣x 1)(x ﹣x 2)交x 轴于A (x 1,0)B (x 2,0)两点,且点A 在点B 的左边,直线y 2=2x+t 经过点A .若函数y=y 1+y 2的图象与x 轴只有一个公共点时,则则线段AB 的长为( ) A .4B .8C .16D .无法确定4.如图,抛物线y =ax 2+bx +c 和直线y =kx +b 都经过点(﹣1,0),抛物线的对称轴为x =1,那么下列说法正确的是( )A .ac >0B .b 2﹣4ac <0C .k =2a +cD .x =4是ax 2+(b ﹣k )x +c <b 的解5.直线y=ax ﹣6与抛物线y=x 2﹣4x+3只有一个交点,则a 的值为( )A .a=2B .a=10C .a=2或a=﹣10D .a=2或a=106.如图是函数y =x 2+bx+c 与y =x 的图象,有下列结论:(1)b 2﹣4c >0;(2)b+c+1=0;(3)方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3;(4)当1<x <3时,则x 2+(b ﹣1)x+c <0.其中正确结论的个数为( ) A .1B .2C .3D .47.在直角坐标系中,直线y=x+2和抛物线y=x 2-x+1的若干组函数值如下表所示:x … 1 1.5 2 2.5 3 … y=x+2 … 3 3.5 4 4.5 6 … y=x 2-x+1…11.7534.7513…A .1<x<1.5B .1.5<Xx2C .2<x<2.5D .2.5<x<38.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=14(x −4)2的图象与两坐标轴所围成的图形最接近的面积是( )A .5B .225C .4D .17﹣4π9.如图,“心”形是由抛物线 y =−x 2+6和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,直线AB 为“心”形对称轴,点E ,F ,G 是抛物线与坐标轴的交点,则AB=( )A .6√3B .8C .10D .10√310.已知一次函数y=ax+c 与二次函数y=ax 2+bx+c ,它们在同一坐标系内的大致图象是( )A .B .C .D .11.如图,抛物线y =﹣x 2+4x ﹣3与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向右平移得到C 2,C 2与x 轴交于B 、D 两点.若直线y =kx ﹣k 与C 1、C 2共有3个不同的交点,则k 的最大值是( )A .12B .2 √5 ﹣6C .6+4 √2D .6﹣4 √212.在平面直角坐标系中,已知点 A(−1,4) , B(2,1) 直线 AB 与 x 轴和 y 轴分别交于点 M ,N 若抛物线 y =x 2−bx +2 与直线 AB 有两个不同的交点,其中一个交点在线段 AN 上(包含 A , N 两个端点),另一个交点在线段 BM 上(包含 B , M 两个端点),则 b 的取值范围是( )A.1≤b≤52B.b≤1或b≥52C.52≤b≤113D.b≤52或b≥113二、填空题(共6题;共6分)13.如图,抛物线y=ax2﹣2与y轴交于点A,过点A与x轴平行的直线交抛物线y=﹣12 x2于点B,C,则S△BOC= .14.在平面直角坐标系xOy中,函数y1=x(x<m)的图象与函数y2=x2(x≥m)的图象组成图形G.对于任意实数n,过点P(0,n)且与x轴平行的直线总与图形G有公共点,写出一个满足条件的实数m的值为(写出一个即可).15.如图,抛物线y=ax2+bx+1的顶点在直线y=kx+1上,对称轴为直线x=1,以下四个结论:①ab<0;②b<13;③a=−k;④当0<x<1其中正确的是.(填序号)16.如图,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).若抛物线y=x2﹣2x+k上有点Q,使△BCQ是以BC为直角边的直角三角形,则点Q的坐标为.17.已知抛物线p :y=ax 2+bx+c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x轴的对称点为C ′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC ′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x 2+2x+1和y=2x+2,则这条抛物线的解析式为 .18.如图,抛物线y=13x 2﹣4√33x+3与x 轴交于A ,B 两点,与y 轴交于点C ,点M 的坐标为(2√3,1).以M 为圆心,2为半径作⊙M .则下列说法正确的是 (填序号). ①tan ∠OAC=√3; ②直线AC 是⊙M 的切线; ③⊙M 过抛物线的顶点; ④点C 到⊙M 的最远距离为6;⑤连接MC ,MA ,则△AOC 与△AMC 关于直线AC 对称.三、综合题(共6题;共73分)19.在平面直角坐标系中,已知A ,B 是抛物线y=ax 2(a >0)上两个不同的点,其中A 在第二象限,B 在第一象限.(1)如图1所示,当直线AB 与x 轴平行,∠AOB=90°,且AB=2时,则求此抛物线的解析式和A ,B 两点的横坐标的乘积;(2)如图2所示,在(1)所求得的抛物线上,当直线AB 与x 轴不平行,∠AOB 仍为90°时,则求证:A、B两点横坐标的乘积是一个定值;(3)在(2)的条件下,如果直线AB与x轴、y轴分别交于点P、D,且点B的横坐标为1 2.那么在x轴上是否存在一点Q,使△QDP为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.20.某公司成功开发出一种产品,正式投产后,生产成本为5元/件.公司按订单生产该产品(销售量=产量),年销售量y(万件)与售价x(元/件)之间满足如图1所示的函数关系,公司规定产品售价不超过15元/件,受产能限制,年销售量不超过30万件;为了提高该产品竞争力,投入研发费用P 万元(P万元计入成本),P与x之间的函数关系式如图2所示,当10≤x≤15时可看成抛物线P= 14x2−4x+m.(1)求y与x之间的函数关系式.(2)求这种产品年利润W(万元)与售价x(元/件)满足的函数关系式.(3)当售价x为多少元时,则年利润W最大,并求出这个最大值.21.如图,抛物线y=ax2+32 x+c(a≠0)与x轴交于点A,B两点,其中A(-1,0),与y轴交于点C(0,2).(1)求抛物线的表达式及点B坐标;(2)点E是线段BC上的任意一点(点E与B、C不重合),过点E作平行于y轴的直线交抛物线于点F,交x轴于点G.①设点E的横坐标为m,用含有m的代数式表示线段EF的长;②线段EF长的最大值是.22.已经二次函数y=ax2+bx+1 .(1)如图,其图象与x轴交于点A(−1,0)和点B,与y轴交于点C,对称轴为直线x=1 .①求二次函数解析式;②F为线段BC上一点,过F分别作x轴,y轴垂线,垂足分别为E、F,当四边形OEFG为正方形时,则求点F坐标;(2)其图象上仅有一个点的横坐标、纵坐标互为相反数,且二次函数y=ax2+bx+1函数值存在负数,求b的取值范围.23.定义符号min{a,b}的含义为:当a≥b时,则min{a,b}=b;当a<b时,则min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.(1)求min{x2﹣1,﹣2};(2)已知min{x2﹣2x+k,﹣3}=﹣3,求实数k的取值范围;(3)已知当﹣2≤x≤3时,则min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15.直接写出实数m的取值范围.24.某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y(万件)与售价x(元/件)的函数关系式为y={−2x+140,(40≤x<60)−x+80.(60≤x≤70)(1)当售价为60元/件时,则年销售量为万件;(2)当售价为多少时,则销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x的取值范围.参考答案1.【答案】D 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】C 12.【答案】C 13.【答案】414.【答案】1(答案不唯一) 15.【答案】①③④16.【答案】(1,﹣4)和(﹣2,5) 17.【答案】y=x 2﹣2x ﹣3 18.【答案】①②③④ 19.【答案】(1)解:如图1作BE ⊥x 轴∴△AOB 是等腰直角三角形 ∴BE=OE= 12AB=1∴A (﹣1,1),B (1,1)∴A ,B 两点的横坐标的乘积为﹣1×1=﹣1∵抛物线y=ax 2(a >0)过A ,B ∴a=1 ∴抛物线y=x 2 (2)解:如图2作BN ⊥x 轴,作AM ⊥x 轴 ∴∠AOB=AMO=∠BNO=90° ∴∠MAO=∠BON ∴△AMO ∽△ONB ∴AM ON =OM BN ∴AM ×BN=OM ×ON设A (x 1,y 1),B (x 2,y 2)在抛物线上 ∴AM=y 1=x 12,BN=y 2=x 22,OM=﹣x 1,ON=x 2 ∴x 12×x 22=﹣x 1×x 2 ∴x 1×x 2=﹣1∴A ,B 两点横坐标的乘积是一个定值;(3)解:由(2)得,A ,B 两点横坐标的乘积是一个定值为﹣1,∵点B 的横坐标为 12,∴点A 的横坐标为﹣2,∵A ,B 在抛物线上,∴A (﹣2,4),B ( 12 , 14 ),∴直线AB 解析式为y=﹣ 32x+1,∴P ( 23 ,0),D (0,1)设Q (n ,0),∴DP 2= 139 ,PQ 2=(n ﹣ 23)2,DQ 2=n 2+1∵△QDP 为等腰三角形∴①DP=PQ ,∴DP 2=PQ 2,∴139 =(n ﹣ 23 )2,∴n= 2±√133 ,∴Q 1( 2+√133 ,0),Q 2( 2−√133 ,0)②DP=DQ ,∴DP 2=DQ 2,∴139 =n 2+1,∴n= 23 (舍)或n=﹣ 23 ,Q 3(﹣ 23 ,0)③PQ=DQ ,∴PQ 2=DQ 2,∴(n ﹣ 23 )2=n 2+1∴n=﹣ 512 ,∴Q4(﹣ 512 ,0),∴存在点Q 坐标为Q 1( 2+√133 ,0),Q 2(2−√133 ,0),Q 3(﹣ 23 ,0),Q4(﹣ 512 ,0)20.【答案】(1)解:设y 与x 的函数关系式为:y=kx+b将点(5,30),(15,10)代入可得:{30=5k +b 10=15k +b解得:{b =40k =−2∴y 与x 的函数关系式为:y=-2x+40(5≤x ≤15); (2)解:当5≤x ≤10时,则根据图像可得:P=60 ∴W=(x-5)y-P=(x-5)(-2x+40)-60=-2x 2+50x-260;当10≤x ≤15时,则P =14x 2−4x +m由图可得经过点(10,60),将其代入可得:60=14×102−4×10+m 解得:m=75∴P =14x 2−4x +75;∴W=(x-5)y-P=(x-5)(-2x+40)-(14x 2−4x +75)=−94x 2+54x −275;综上:W ={−2x 2+50x −260(5≤x ≤10)−94x 2+54x −275(10≤x ≤15);(3)解:由(2)可得:当5≤x ≤10时W=-2x 2+50x-260=-2(x −252)2+1052∴x =252不在5≤x <10,由于开口向下在5≤x <10内随x 增大而增大 在x=10时,则取得最大值为W=40; 当10≤x ≤15时W=−94x 2+54x −275对称轴为x=−b2a=12 由于函数开口向下 ∴当x=12时,则W=49∴当x=12时,则W 取得最大值为49;综上可得:当售价为12元时,则年利润最大,最大为49万元.21.【答案】(1)解:将A(-1,0)、 C(0,2)代入y =ax 2+ 32x +c (a ≠0)得:a =- 12, c =2y =- 12 x 2+ 32x +2 当y =0时,则x 1=-1,x 2=4,故B(4,0)(2)解:设直线BC 的函数表达式为y =kx +b ,将B(4,0)、 C(0,2)代入 得:y =- x +2,EF =FG -GE =- m 2+ m +2-(- m +2) =- m 2+2m ;2 22.【答案】(1)解:①由题: {a −b +1=0−b 2a =1 解得 {a =−13b =23∴ 二次函数解析式为: y =−13x 2+23x +1 ; ②设BC 解析式为: y =kx +b 对称轴为直线 x =1 .∵ 图象与x 轴交于点 A(−1,0) 和点B ,对称轴为直线 x =1 .∴ 点 B(3,0)将 B(3,0) , C(0,1) 代入得: {3k +b =0b =1解得: {a =−13b =1∴BC 解析式为: y =−13x +1 设点 F(m,−13m +1) ∵ 四边形 OEFG 是正方形∴EF =GF∴m =−13m +1解得 m =34∴F(34,34) (2)解:二次函数的图象其有且只有一个点横、纵坐标之和互为相反数∴−x =ax 2+bx +1 有两相等实根,即 ax 2+(b +1)x +1=0 有两相等实根 ∴{a ≠0(b +1)2−4a =0解得: a =(b+1)24>0 ,且 b ≠−1 ∵y =ax 2+bx +1 存在负值∴b 2−4a =b 2−(b +1)2>0 ,解得 b <−12综上: b <−12且 b ≠−123.【答案】(1)解:∵x2≥0∴x2﹣1≥﹣1∴x2﹣1>﹣2.∴min{x2﹣1,﹣2}=﹣2(2)解:∵x2﹣2x+k=(x﹣1)2+k﹣1∴(x﹣1)2+k﹣1≥k﹣1.∵min{x2﹣2x+k,﹣3}=﹣3∴k﹣1≥﹣3.∴k≥﹣2(3)解:对于y=x2﹣2x﹣15,当x=﹣2时,则y=﹣7当x=3时,则y=﹣12由题意可知抛物线y=x2﹣2x﹣15与直线y=m(x+1)的交点坐标为(﹣2,﹣7),(3,﹣12)所以m的范围是:﹣3≤m≤7.24.【答案】(1)20(2)解:设销售该产品的年利润为W万元当40≤x<60时W=(x−30)(−2x+140)=−2(x−50)2+800 .∵-2<0∴当x=50时W最大=800当60≤x≤70时W=(x−30)(−x+80)=−(x−55)2+625∵−1<0∴当x=60时W最大=600∵800>600∴当x=50时W最大=800∴当售价为50元/件时,则年销售利润最大,最大为800万元.(3)解:45≤x≤55理由如下:由题意得(x−30)(−2x+140)≥750解得45≤x≤55。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习数学练习题一、选择题1.下列各式中,一定成立的是( ) A .()2222=- A .()3322=-C .2222-=-D .()()3322-=-答案:A解析:A;2.设a<0,则下列说法中正确的是 ( ) A.a 的偶次方的偶次方是负数 B.a 的奇次方的偶次方是负数 C.a 的奇次方的奇次方是负数 D.a 的偶次方的奇次方是负数 解析:C;3.下列4个数中,有一个数的相反数的倒数是正整数,则这个数是( ) A.51 B.-31C.3D.-5 解析:B;4.若家用电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低22℃,则冷冻室的温度为( ) A.18-℃B.18℃C.26-℃D.26℃解析:A;5.有下列说法:①两数相加和为正数时,这两个数均为正数;②两数相加和为负数时,这两个数均为负数;③两个有理数的和可能等于其中的一个加数;④两个有理数的和可能等于0.其中,正确的有( ) A .1个B .2个C .3个D .4个解析:B;6.(-1)200+(-1)201=( )A 、0 treutrB 、1 sdgsdgf gdfgdC 、2D 、-2 答案:A7.如果线段a 、b 、c 能组成直角三角形,则它们的比可以是( ) A. 1:2:4 B. 1:3:5 C. 3:4:7 D. 5:12:13 答案:D解析:【答案】D .【解析】常见的一些勾股数如:3、4、5;5、12、13;7、24、25及倍数等,应熟练掌握.D中设三边的比中每一份为k,则(5k)2+(12k)2=(13k) 2,所以该三角形是直角三角形.其它答案都不满足,故选D.8.如图,矩形ABCD中,其长为a,宽为b ,如果,则的值为().A .B .C .D .答案:A解析:【答案】A.【解析】由题意,,.9.已知方程组ax by4ax by2⎧-=⎨+=⎩的解为x2y1⎧=⎨=⎩,则2a-3b的值为().A.4B.-4C.6D.-6 答案:C解析:【答案】C;【解析】由题意可知2a b42x b2⎧-=⎨+=⎩,解得3a2b1⎧=⎪⎨⎪=-⎩,∴2a-3b=6.10.如图所示的一组几何体的俯视图是()答案:B解析:【答案】B;【解析】圆锥的俯视图是带圆心的圆,六棱柱的俯视图是正六边形,所以它们的俯视图是B.11.下列函数中,当x>0时,y值随x值增大而减小的是( )A.y=x2 B.y=x-1 C.y=34x D.y=1x答案:D解析:【答案】D;【解析】y=1x分布第一、三象限,当x>0时,y随x的增大而减小.12.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ).A .90°B .60°C .45°D .30°答案:C解析:【答案】C .【解析】连接AC ,计算AC=BC= ,AB=,满足勾股定理,△ABC 是等腰直角三角形,∴∠ABC=45°.13.函数123y x x =--中自变量x 的取值范围是( ) A. x ≤2B. x =3C. x <2且x ≠3D. x ≤2且x ≠3二、填空题14.一个数的平方等于它本身,这个数是 . 解析:0和1; 15.若a ·(-5)=58,则a = . 解析:258-;提示:a=)5(58-÷; 16.-(-6.3)的相反数是________. 解析:-6.3;提示:先化简,-(-6.3)=6.3;17.要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的的方钢x 厘米,可得方程为 . 答案:64π*5=36x 解析:x 36564=⋅π18.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为__________.答案:【答案】7:【解析】由主视图知几何体左右共两排由左视图知几何体前后三排且左排最高两层所以组成这个几何体的小正方体的个数最多为7个 解析:【答案】7:【解析】由主视图知几何体左右共两排,由左视图知几何体前后三排,且左排最高两层,所以组成这个几何体的小正方体的个数最多为7个.19.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,则需要C类卡片张.答案:【答案】3张;【解析】本题考查的相关知识有整式的乘法乘法公式数形结合思想解答思路:可由面积相等入手图形拼合前后面积不变所以(a+2b)(a+b)=a2+3ab+2b2三解答题解析:【答案】3张;【解析】本题考查的相关知识有整式的乘法,乘法公式,数形结合思想.解答思路:可由面积相等入手,图形拼合前后面积不变,所以(a+2b) (a+b)=a2+3ab+2b2.三、解答题20.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数,2008应排在A、B、C、D、E中的位置.-7-11-12A答案:【答案】-29B三解答题解析:【答案】-29 , B .三、解答题21.已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是 .答案:【答案】y=2x+2;【解析】设y关于x的函数关系式为y=k(x+1)∵当x=5时y=12∴12=(5+1)k∴k=2∴y关于x的函数关系式为y=2x+2解析:【答案】y=2x+2;【解析】设y关于x的函数关系式为y=k(x+1).∵当x=5时,y=12,∴12=(5+1)k,∴k=2.∴y关于x的函数关系式为y=2x+2.三、解答题22.已知|x-3|、|y+1|互为相反数,求x+y的值.解析:由已知可得|x-3|+|y+1|=0,所以x-3=0,y+1=0,得x=3,y=-1,则x+y=2.23.如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片还……峰1 峰n峰2原,使点D与P重合,得折痕EF(点E、F为折痕与矩形边的交点,再将纸片还原。

(1)当x=0时,折痕EF的长为;当点与E与A重合时,折痕EF的长为;(2)请求出使四边形EPFD为菱形的x的取值范围,并求出x=2时菱形的边长:(3)令EF2为y ,当点E在AD,点F在BC上时,写出y与x的函数关系式。

当y取最大值时,判断△EAP与△PBF是否相似;若相似,求出x的值;若不相似,请说明理由。

解析:【解析】(1)∵纸片折叠,使点D与点P重合,得折痕EF,当AP=x=0时,点D与点P重合,即为A,D重合,B,C重合,那么EF=AB=CD=3;当点E与点A重合时,∵点D与点P重合是已知条件,∴∠DEF=∠FEP=45°,∴∠DFE=45°,即:ED=DF=1,利用勾股定理得出EF=2∴折痕EF的长为2;(2)∵要使四边形EPFD为菱形,∴DE=EP=FP=DF,只有点E与点A重合时,EF最长为2,此时x=1,当EF最短时,即EF=BC,此时x=3,∴探索出1≤x≤3当x=2时,如图,连接DE、PF.∵EF是折痕,∴DE=PE,设PE=m,则AE=2-m∵在△ADE中,∠DAE=90°,∴AD2+AE2=DE2,即12+(2-m)2=m2解得m=54,此时菱形EPFD的边长为54.(3)过E作EH⊥BC;∵∠OED+∠DOE=90°,∠FEO+∠EOD=90°,∴∠ODE=∠FEO,∴△EFH∽△DPA,∴FH APEH AD,∴FH=3x;∴y=EF2=EH2+FH2=9+9x2;当F 与点C 重合时,如图,连接PF ; ∵PF=DF=3,∴PB=2231 =22,∴0≤x ≤3-22.24.(2014秋•延庆县期末)在平面直角坐标系xOy 中,已知抛物线C 1:y=﹣mx 2+2mx+4(m≠0)与抛物线C 2:y=x 2﹣2x ,(1)抛物线C 1与y 轴交于点A ,其对称轴与x 轴交于点B .求点A ,B 的坐标; (2)若抛物线C 1在﹣2<x <﹣1这一段位于C 2下方,并且抛物线C 1在1<x <3这一段位于C 2上方,求抛物线C 1的解析式.解析:【答案与解析】解:(1)当x=0时,y=﹣mx 2+2mx+4=4,则A 点坐标为(0,4), 抛物线的对称轴为直线x=﹣=1,则B 点坐标为(1,0);(2)抛物线C 2:y=x 2﹣2x 的对称轴为直线x=﹣=1,则抛物线C 1和抛物线C 2的对称轴都是直线x=1,由于抛物线C 1在﹣2<x <﹣1这一段位于C 2下方,则抛物线C 1在3<x <4这一段位于C 2下方,而抛物线C 1在1<x <3这一段位于C 2上方, 所以两条抛物线的交点横坐标为x=3,当x=3时,y=x 2﹣2x9﹣2×3=3,即两抛物线的交点坐标为(3,3), 把(3,3)代入y=﹣mx 2+2mx+4得﹣9m+6m+4=3,解得m=, 所以抛物线C 1的解析式y=﹣x 2+x+4.25.如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n . (1)将方程组1的解填入表中.(2)请依据方程组和它的解的变化规律,将方程组n 和它的解直接填入表中;解析:【答案与解析】显然该方程组不符合(2)中的规律.。

相关文档
最新文档