Differential Amplifier

合集下载

差分运放积分

差分运放积分

差分运放积分
差分运放积分是一种可以通过运放来实现积分运算的电路。

差分
运放(Differential Amplifier)是一种能够将两个输入信号的差值
放大的放大器,积分运算是对输入信号进行时间上的累积运算。

差分运放积分电路的基本原理是将输入信号通过一个差分运放放
大器进行放大,并将放大后的信号通过一个电容进行积分。

电容的电
压将根据输入信号的变化率进行积累,从而实现积分运算。

差分运放积分电路一般由一个差分运放放大器和一个电容组成。

差分运放放大器负责将输入信号的差值放大,而电容则负责实现输入
信号的积分运算。

输入信号经过差分运放放大器放大后,通过电容进
行积分,电容的电压随着时间的变化而变化,达到积分的效果。

差分运放积分电路常用于模拟电路中的信号处理和滤波,可以用
于对信号进行积分运算或者滤除高频成分。

它在模拟电路中具有广泛
的应用,例如在音频处理、生物医学信号处理等领域都有应用。

同时,差分运放积分电路也可以作为一个基本的积分器模块,可以被其他电
路模块组合使用,实现更复杂的功能。

差分运放放大电路公式

差分运放放大电路公式

差分运放放大电路公式差分运放(Differential Amplifier)是一种常用的放大电路,其主要功能是将输入信号进行放大和差分运算。

差分运放放大电路的公式是指用来描述其输入输出关系的数学表达式,它是电路设计和分析的基础。

差分运放放大电路的公式可以用以下方式表示:Vout = Ad*(V2 - V1) + Vcm其中,Vout 表示输出电压,Ad 表示差分增益,V2 和 V1 分别表示差分输入信号的电压,Vcm 表示共模电压。

差分运放放大电路的公式可以分为两部分来理解,一部分是差分输入信号的放大,另一部分是对共模信号的处理。

差分运放放大电路对差分输入信号进行放大。

差分输入信号是指两个输入信号之间的差值,即 V2 - V1。

通过差分放大器的放大作用,这个差值可以被放大为输出电压的一部分。

差分增益 Ad 表示了差分放大器的放大倍数,它可以决定放大器对差分输入信号的放大程度。

差分运放放大电路还对共模信号进行处理。

共模信号是指两个输入信号的平均值,即 (V2 + V1)/2。

由于差分运放器是差分放大器,它会对共模信号进行抑制或滤除。

然而,在实际的电路中,共模信号往往无法完全消除,会在输出端产生一个与共模信号相关的偏置电压。

这个偏置电压就是公式中的 Vcm。

差分运放放大电路的公式是非常重要的,它可以帮助我们理解电路的工作原理,并进行电路的设计和分析。

在实际的应用中,我们可以根据具体的需求选择合适的差分增益和共模电压,来实现不同的功能和性能。

需要注意的是,在实际的电路设计中,差分运放放大电路的公式通常只是一个理想化的模型,实际电路中会存在各种非线性和失真因素,需要进行更加复杂的分析和计算。

此外,差分运放放大电路还需要配合其他电路组成完整的系统,如输入滤波电路、输出级等。

差分运放放大电路的公式是电路设计和分析的基础,它描述了电路的输入输出关系。

通过理解和运用这个公式,我们可以更好地设计和优化电路,实现各种不同的功能和性能要求。

电桥差分放大电路

电桥差分放大电路

电桥差分放大电路
电桥差分放大电路(Bridge Differential Amplifier Circuit)是一种常用于测量和放大微小信号的电路结构。

它通常由四个电阻和至少一个差分放大器构成,具有差分输入和单端输出的特点。

电桥差分放大电路的基本原理是通过电桥的非平衡输出信号来检测并放大输入信号。

电桥通常由两个垂直的电阻和两个平行的电阻组成,其中一个势点用作输入信号,另一个势点作为参考点。

当输入信号应用到电桥中时,如果存在差异或非平衡,即输入信号与参考电平之间的差异,则会产生一个差分电压。

这个差分电压被传输到差分放大器中进行放大。

差分放大器通常是由一个差分对组成,包括两个晶体管(或运算放大器)和与之配套的电流源。

差分放大器通过放大电桥的差分输入信号,并输出到单端输出端,这样就可以获得输入信号的放大版本。

电桥差分放大电路在测量和控制应用中非常常见,特别是在传感器信号检测和放大、变量测量、噪声抑制等方面。

它能够提供较高的信号放大增益和较好的抗干扰能力,使得在微弱的信号条件下仍能得到准确和可靠的输出结果。

需要注意的是,电桥差分放大电路的设计和调整需要对电桥网络和差分放大器的参数有一定的理解,以确保电路的稳定
性和性能。

此外,融入适当的滤波和放大电路保护措施也是必要的,以进一步提高电路的精度和可靠性。

全差分放大器共模增益

全差分放大器共模增益

全差分放大器共模增益一、全差分放大器的工作原理全差分放大器(Fully Differential Amplifier)是一种特殊类型的放大器,它采用两个对称的放大电路,分别对差分信号的两个正负分量进行放大。

差分信号是指大小相等、相位相反的信号。

全差分放大器能够有效地放大差分信号,并且具有良好的抑制共模干扰的能力。

在全差分放大器中,两个对称的放大电路通常采用镜像对称的方式排列,以便实现电路参数的一致性。

输入信号被差分方式输入到两个对称的输入端,经过放大后,在输出端将差分信号合成输出。

由于全差分放大器的对称性,其两个输出端的电压变化幅度相同,但方向相反,从而实现对差分信号的放大。

二、共模增益的特性共模增益是指放大器对共模信号的放大能力。

在全差分放大器中,由于两个对称的放大电路的参数一致性,其对共模信号的放大能力是相同的。

因此,全差分放大器的共模增益特性是其两个输出端的电压变化幅度与输入端的共模信号变化幅度的比例关系。

共模增益的大小取决于全差分放大器的电路参数和偏置条件。

当全差分放大器的电路参数和偏置条件发生变化时,其共模增益也会发生变化。

此外,共模增益的大小还会受到电源电压、环境温度等因素的影响。

三、影响共模增益的因素影响全差分放大器共模增益的因素有很多,主要包括以下几个方面:1.电路参数:全差分放大器的电路参数对其共模增益有直接影响。

例如,输入电阻、输出电阻、跨导、反馈系数等参数的变化都会导致共模增益的变化。

2.偏置条件:全差分放大器的偏置条件也会影响其共模增益。

例如,偏置电流的大小、偏置电压的高低等都会对共模增益产生影响。

3.电源电压和环境温度:电源电压和环境温度的变化也会对全差分放大器的共模增益产生影响。

这是因为电源电压和环境温度的变化会导致电路参数和偏置条件发生变化,从而影响共模增益。

4.输入信号:输入信号的大小和类型也会对全差分放大器的共模增益产生影响。

特别是当输入信号为共模信号时,其对共模增益的影响更加显著。

LM733中文资料

LM733中文资料

TL H 7866LM733 LM733C Differential AmplifierAugust 1989LM733 LM733C Differential AmplifierGeneral DescriptionThe LM733 LM733C is a two-stage differential input differ-ential output wide-band video amplifier The use of internal series-shunt feedback gives wide bandwidth with low phase distortion and high gain stability Emitter-follower outputs provide a high current drive low impedance capability Its 120MHz bandwidth and selectable gains of 10 100and 400 without need for frequency compensation make it a very useful circuit for memory element drivers pulse amplifi-ers and wide band linear gain stagesThe LM733is specified for operation over the b 55 C to a 125 C military temperature range The LM733C is speci-fied for operation over the 0 C to a 70 C temperature rangeFeaturesY 120MHz bandwidth Y 250k X input resistanceY Selectable gains of 10 100 400Y No frequency compensationYHigh common mode rejection ratio at high frequenciesApplicationsY Magnetic tape systems Y Disk file memoriesY Thin and thick film memoriesY Woven and plated wire memories YWide band video amplifiersConnection DiagramsDual-In-Line PackageTL H 7866–1Top ViewOrder Number LM733CN See NS Package Number N14AMetal Can PackageTL H 7866–2Note Pin 5connected to caseTop ViewOrder Number LM733H or LM733CH See NS Package Number H10DC 1995National Semiconductor Corporation RRD-B30M115 Printed in U S AAbsolute Maximum RatingsIf Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Diffential Input Voltage g5V Common Mode Input Voltage g6V V CC g8V Output Current10mA Power Dissipation(Note1)500mW Junction Temperature a150 C Storage Temperature Range b65 C to a150 C Operating Temperature RangeLM733b55 C to a125 C LM733C0 C to a70 C Lead Temperature(Soldering 10sec )260 CElectrical Characteristics(T A e25 C unless otherwise specified see test circuits V S e g6 0V)Characteristics Test Test Conditions LM733LM733CUnitsCircuit Min Typ Max Min Typ MaxDifferential Voltage GainGain1(Note2)300400500250400600Gain2(Note3)19010011080100120Gain3(Note4)R L e2k X V OUT e3Vp-p9 010118 01012BandwidthGain14040MHz Gain229090MHz Gain3120120MHzRise TimeGain1V OUT e1Vp-p10 510 5ns Gain224 5104 512ns Gain32 52 5nsPropagation Delay V OUT e1Vp-pGain17 57 5ns Gain226 0106 010ns Gain33 63 6nsInput ResistanceGain14 04 0k X Gain220301030k X Gain3250250k XInput Capacitance Gain22 02 0pFInput Offset Current0 43 00 45 0m AInput Bias Current9 0209 030m AInput Noise Voltage BW e1kHz to10MHz1212m VrmsInput Voltage Range1g1 0g1 0VCommon Mode Rejection RatioGain21V CM e g1V f s100kHz60866086dB Gain2V CM e g1V f e5MHz6060dBSupply Voltage Rejection RatioGain21D V S e g0 5V50705070dBOutput Offset VoltageGain11R L e%0 61 50 61 5V Gain2and30 351 00 351 5VOutput Common Mode Voltage1R L e%2 42 93 42 42 93 4VOutput Voltage Swing1R L e2k3 04 03 04 0Output Sink Current2 53 62 53 6mAOutput Resistance2020XPower Supply Current1R L e%18241824mA2Electrical Characteristics (Continued)(The following specifications apply for b 55 C k T A k 125 C for the LM733and 0 C k T A k 70 C for the LM733C V S e g 6 0V)CharacteristicsTest Test ConditionsLM733LM733CUnitsCircuitMin TypMax Min TypMax Differential Voltage Gain Gain 1200600250600Gain 21R L e 2k X V OUT e 3Vp-p8012080120Gain 38 012 08 012 0Input Resistance Gain 288k X Input Offset Current 56m A Input Bias Current 4040m A Input Voltage Range1g 1g 1V Common Mode Rejection Ratio Gain 21V CM e g 1V f s 100kHz 5050dB Supply Voltage Rejection Ratio Gain 21D V S e g 0 5V 5050dBOutput Offset Voltage Gain 11R L e %1 51 5V Gain 2and 31 21 5V Output Voltage Swing 1R L e 2k2 52 8V pp Output Sink Current 2 22 5mAPower Supply Current1R L e %2727mANote 1 The maximum junction temperature of the LM733is 150 C while that of the LM733C is 100 C For operation at elevated temperatures devices in the TO-100package must be derated based on a thermal resistance of 150 C W junction to ambient or 45 C W junction to case Thermal resistance of the dual-in-line package is 90 C WNote 2 Pins G1A and G1B connected together Note 3 Pins G2A and G2B connected together Note 4 Gain select pins openNote 5 Refer to RETS733X drawing for specifications of LM733H versionTypical Performance CharacteristicsPulse ResponseTemperaturePulse Response vs Supply VoltagePulse Response vs vs Frequency Phase Shift vs Frequency Phase Shift Recovery TimeDifferential Overdrive TL H 7866–63Typical Performance Characteristics (Continued)Voltage Gain vs FrequencyTemperatureGain vs Frequency Supply VoltageGain vs Frequency vs Voltage Gain vs R ADJVoltage Gain vs TemperatureSupply VoltageVoltage Gain vs FrequencyOutput Voltage Swing vs Voltageand Current Swing vs Supply Supply Current Output Voltage Load ResistanceOutput Voltage Swing vs Ratio vs Frequency Common Mode Rejection Source Resistance Input Noise Voltage vs Resistance vs TemperatureSupply Current and Input TL H 7866–74Test CircuitsTest Circuit1TL H 7866–3Test Circuit2TL H 7866–4Voltage Gain Adjust CircuitTL H 7866–5V S e6V T A e25 C(Pin numbers apply to TO-5package)Schematic DiagramTL H 7866–85L M 733 L M 733C D i f f e r e n t i a l A m p l i f i e rPhysical Dimensions inches (millimeters)Metal Can Package (H)Order Number LM733H or LM733CHNS Package Number H10DMolded Dual-In-Line Package (N)Order Number LM733CN NS Package Number N14ALIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax (a 49)0-180-530858613th Floor Straight Block Tel 81-043-299-2309。

差分运算放大器电路

差分运算放大器电路

差分运算放大器电路差分运算放大器(Differential Amplifier)是一种用于放大差分信号的电路。

它是运算放大器(Operational Amplifier)的一种特殊形式,常被用于测量和增强微弱的差分输入信号。

差分运算放大器的电路结构由两个输入端口和一个输出端口组成。

两个输入端口分别连接到两个输入电阻上,并与负反馈网络相连。

输出端口则连接到负载电阻上。

差分运算放大器的主要功能是放大差分信号,并抑制共模信号。

差分信号是通过将一个信号与另一个信号相减来获得的。

例如,当两个输入信号分别为Vin+和Vin-时,差分信号为Vd = Vin+ - Vin-。

差分运算放大器的工作原理如下:1.输入端口:差分运算放大器的输入端口由Vin+和Vin-两个输入引脚组成。

通常情况下,Vin+被作为非反相输入端口,Vin-则被作为反相输入端口。

这意味着,当Vin+上升时,输出电压Vout下降,反之亦然。

2.反馈网络:差分运算放大器的反馈网络通常由电阻和电容组成,用于实现负反馈。

负反馈可以使差分运算放大器的增益和频率响应更加稳定,并提高放大器的线性度。

3.输出端口:差分运算放大器的输出端口由Vout引脚组成。

输出电压Vout的幅度和极性取决于输入信号Vin+和Vin-之间的差异。

差分运算放大器的放大倍数可以通过改变反馈网络中的电阻值来调整。

通常情况下,差分运算放大器的放大倍数很高,达到数百甚至数千倍。

这使得差分运算放大器成为测量微弱差分信号和抑制共模噪声的理想选择。

差分运算放大器的主要优点包括:1.高放大倍数:差分运算放大器有很高的开环增益,可以有效地放大微弱的差分信号。

2.抑制共模信号:差分运算放大器通过差分输入和负反馈,能够有效地抑制共模噪声。

共模信号是同时施加于两个输入端口的噪声,如果没有差分放大器进行抑制,它可能会严重干扰信号。

3.精确性:差分运算放大器可以提供高精度的放大,并且具有很低的失调电压和失调电流。

示差检测器的相关使用介绍

示差检测器的相关使用介绍

示差检测器的相关使用介绍什么是示差检测器示差检测器(Differential Amplifier)是一种能够检测电路中微小变化的差动放大电路。

它可以将输入信号的微小差异放大成较大的输出信号。

示差检测器通常会以微分放大器的形式出现,比如文氏桥差分放大器、多级电路放大器等。

示差放大器常用于精度要求较高的传感器、电压检测、电流检测、滤波器、调解器等领域中。

示差检测器的优点示差检测器的优点包括:•放大的主要是差分信号,可以减少共模信号的干扰;•可以减小信号的热噪声、漂移等,提高信号的精度;•可以进行反向偏压操作,从而可以成为理想的偏差电压源;•可以进行反馈作用,改善电路的增益、频率特性等。

示差检测器的使用方法示差检测器的使用方法可以分为以下几个步骤:1.连接示差放大器。

将输入端与被检测的信号源相连,将输出端与其他测量仪器接入电路中。

2.进行校准。

示差放大器在使用前需要进行校准以使其输出精度更高。

通常在校准示差放大器时需要进行一定的调整,比如调整偏置电压、增益、电阻等。

3.进行信号放大。

将需要检测的信号输入到示差放大器的输入端,将放大的信号输出到其他测量仪器或设备中。

4.进行信号处理。

收到放大后的信号后,需要进行一定的处理,如滤波、调解等,以获得更为准确的数据。

示差检测器的应用场景示差检测器广泛应用于计算机、通信、电视、雷达、电子测试、测量控制等各个领域。

以下是几个具体的应用场景:1.电流检测。

示差放大器可以检测电路中极小的电流信号,并将其放大后输出到测量仪器或其他设备中。

2.温度测量。

示差放大器可以将温度传感器输出的微弱电压变化放大,从而得到更为准确的温度数据。

3.检测环境噪声。

示差放大器可以检测环境中微小的声音、震动等信号,并将其放大输出到其他设备中,便于进行后续处理。

4.滤波器。

示差放大器可以用于滤波器的设计,进行对特定频率范围的信号的过滤。

总结通过对示差检测器的介绍,我们了解了示差检测器的优点、使用方法和应用场景。

差分运算放大器的衰减原理

差分运算放大器的衰减原理

差分运算放大器的衰减原理
差分运算放大器(Differential Amplifier)是一种电路,用于放大输入信号的差分部分。

在差分运算放大器中,衰减(Common Mode Rejection Ratio,CMRR)指的是该电路对于共模信号的抑制程度,即对于同时加在两个输入端的信号,差动输出相对于共模输出的增益。

差分运算放大器的衰减原理基于其特定的电路结构。

以下是一些关键的原理:
1.差动增益:
•差分运算放大器的设计目的是放大输入信号的差分部分,即两个输入端的电压差。

这个增益通常表示为 Ad。

2.共模增益:
•共模信号是同时加在两个输入端的信号,其电压相等。

差分运算放大器会尽量抑制这种共模信号,但总会有一定程度的共模增益(表示为 Acm)。

3.共模抑制比(CMRR):
•共模抑制比是衡量差分运算放大器抑制共模信号的性能指标。

它定义为差动增益与共模增益之比,即 CMRR= Ad/Acm。

4.共模抑制比的作用:
•共模抑制比越高,表示差分运算放大器对于共模信号的抑制能力越强。

较高的CMRR是设计中追求的目标,因为它有助于减小对于共模干扰的敏感度。

5.电桥网络:
•一些差分运算放大器采用电桥网络,如差动对输入信号敏感,而对共模信号则具有较低的灵敏度。

这有助于提高共模抑制比。

总体而言,通过优化电路结构和设计,尽量使共模增益降到最低,从而提高共模抑制比。

高CMRR对于许多应用中对共模信号要求较高的场合,例如在测量和传感器应用中,是非常重要的。

差分放大器版图设计

差分放大器版图设计

一.绪论1.1差分放大器的概述差分放大器(Differential amplifier),是能把两个输入电压的差值加以放大的电路,也称差动放大器。

这是一种零点漂移很小的直接耦合放大器,常用于直流放大。

它可以是平衡(术语“平衡”意味着差分)输入和输出,也可以是单端(非平衡)输入和输出,常用来实现平衡与不平衡电路的相互转换,是各种集成电路的一种基本单元。

由两个参数特性相同的晶体管用直接耦合方式构成的放大器。

若两个输入端上分别输入大小相同且相位相同的信号时,输出为零,从而克服零点漂移。

适于作直流放大器。

差分放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器,有时简称为“差放”。

差分放大器通常被用作功率放大器(简称“功放”)和发射极耦合逻辑电路(ECL, Emitter Coupled Logic) 的输入级。

差分放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。

很多系统在差分放大器的一个输入端输入信号,另一个输入端输入反馈信号,从而实现负反馈。

常用于电机或者伺服电机控制,以及信号放大。

在离散电子学中,实现差分放大器的一个常用手段是差动放大,见于多数运算放大器集成电路中的差分电路。

差分放大器可以用晶体三极管(晶体管)或电子管作为它的有源器件。

输出电压u0=u01-u02,是晶体管T1和T2集电极输出电压u01和u02之差。

当T1和T2的输入电压幅度相等但极性相反,即us1=-us2 时,差分放大器的增益Kd(称差模增益)和单管放大器的增益相等,即Kd≈Rc/re,式中Rc=Rc1=Rc2,re是晶体管的射极电阻。

通常re很小,因而Kd较大。

当us1=us2 ,即两输入电压的幅度与极性均相等时,放大器的输出u0应等于零,增益也等于零。

实际放大电路不可能完全对称,因而这时还有一定的增益。

这种增益称为共模增益,记为Kc。

在实际应用中,温度变化和电源电压不稳等因素对放大作用的影响,等效于每个晶体管的输入端产生了一个漂移电压。

可调增益差分放大电路

可调增益差分放大电路

可调增益差分放大电路
可调增益差分放大电路(Adjustable Gain Differential Amplifier Circuit)是一种常见的电子电路,用于放大差分信号并可以调节增益大小。

差分放大电路由两个输入端和一个输出端组成。

其中一个输入端称为非反相输入端(+IN),另一个输入端称为反相输入端(-IN)。

增益是通过调节反相输入端的电阻值来实现的。

一种常见的实现方式是使用一个可变电阻(通常为电位器)作为反相输入端的电阻。

调节电位器的位置可以改变反相输入端的电阻值,从而改变整个电路的增益。

这种电路常用于信号放大、滤波和运算等应用中。

例如,在音频应用中,可以使用可调增益差分放大电路来控制音量大小。

在数据通信应用中,可以使用可调增益差分放大电路来放大接收到的信号。

需要注意的是,增益的调节范围和精度取决于可变电阻的特性和电路设计。

在实际应用中,还需要考虑其他因素,比如输入和输出的电压范围、频率特性等。

总结起来,可调增益差分放大电路是一种常见的电子电路,用于放大差分信号并可以通过调节反相输入端的电阻值来调节增益大小。

它在各种应用中都有广泛的应用。

全差分运算放大器共模点

全差分运算放大器共模点

全差分运放(Fully Differential Amplifier)是一种基于差分输入和差分输出的放大器电路,能够在差分信号中放大信号同时抑制共模信号。

共模点(Common Mode Point)则是指全差分运放的输入共模电压的值。

在全差分运放器中,共模点是指两个输入端的电压相等时的电压值。

在理想情况下,全差分运放器能够将共模信号进行完全抵消,使其在输出端不产生任何增益。

但在实际电路中,由于器件的不匹配和偏置电流等影响,使得共模信号无法完全抵消,会在输出端产生一定的共模幅度。

当全差分运放器失去共模抑制能力时,通常会出现共模放大(Common-Mode Gain)的情况,即输入的共模电压在输出端产生了有放大的幅度。

共模放大会引入不必要的噪声和失真,影响电路的性能。

为了实现更好的共模抑制性能,可以采取一些措施,如优化差分对输入电路的设计、增加电流源的稳定性和匹配性,以及采用高质量的元件等。

另外,可通过加入补偿电路、调整工作点和增加反馈等方式来提高共模抑制能力和共模稳定性。

总之,共模点是指全差分运放器的输入共模电压值,通过优化电路设计和采取相应措施,可以提高共模抑制性能,减少共模放大现象,提高差分信号的放大效果。

模拟集成电路设计英文课件:Differential Amplifier

模拟集成电路设计英文课件:Differential Amplifier

2020/9/12

2
3.1 Single-Ended and Differential Operation
• A differential signal is defined as one that is measured between two nodes that have equal and opposite signal excursions around a fixed potential. The two nodes must also exhibit equal impedances to that potential (common-mode level).
• As Vin1becomes more positive than Vin2,
2020/9/12 the reverse characteristics is obtained.
6
– Common mode characteristics
ISS is implemented by an NMOS, Vin,CM increases from 0 to VDD,
• Vin1 is increasing, M1gradually turn on, Vout1 decreased, since ID1+ID2=ISS,the drain current of M2decreases and Vout2increases. For Vin1=Vin2 , we have Vout1=Vout2=VDD-RDISS/2。
Design of Analog Integrated Circuits
Differential Amplifier
Outline
• 3.1 Single-Ended and Differential Operation • 3.2 Basic Differential Pair • 3.3 Common-Mode Response • 3.4 Differential Pair with MOS loads

Differential Amplifiers差分放大器英文版讲义

Differential Amplifiers差分放大器英文版讲义

School Of EngineeringKNE222 Electronic Engineering Differential Amplifiers Introduction:One of the most useful circuits in the field of instrumentation is the differential amplifier. This device is designed to amplify the difference between two voltages and to provide a ground referenced output voltage. Operational amplifiers are frequently used in this application, and a common approach is shown in Figure 1.Figure 1. A Simple Differential AmplifierThis circuit amplifies the difference between input signals v 1(t) and v 2(t). It can be analysed using the Principle of Superposition by summing the contributions to v o (t) from v 1(t) and v 2(t) when acting independent of each other.Consider the case where v 1(t) alone is applied, as shown in Figure 2.Figure 2. Differential Amplifier with v 1(t) acting alone.Here v 2(t) has been replaced by its internal impedance , which for a voltage source is zero Ohms . If we define the voltage at the non-inverting input terminal as v + and that at the inverting input as v- then we can write:)()(2121R R R t v v +=+ (1)And since the amplifier has a very high open loop gain we know that to a good approximation -+=v v . Because the input impedance of the Op Amp is very high we can also write:)()(2'1''10R R R t v v +=- …(2) Therefore by combining (1) and (2) we find:()'1'2'12121)()()(R R R R R R t v t v o ++= (3)Similarly, when v 2(t)acts on its own, the circuit can be redrawn as shown in Figure 3. Figure 3. Differential Amplifier with v 2(t) acting alone.In this case 0==-+v v , therefore summing the currents at the inverting input we can write:0'2'12=+R v R v o Thus: '1'22)()(R R t v t v o -= (4)Finally to obtain the complete expression for )(t v o we must sum these contributions to obtain: ()'1'22'1'2'12121)()()()(R R t v R R R R R R t v t v o -++= …(5) And if R 1’= R 1 and R 2’= R 2 then: []1221)()()(R R t v t v t v o -= …(6) Differential Mode and Common Mode Signals.Equation (6) has shown that we can amplify the difference between two signals,)(1t v and )(2t v . However from the point of view of our amplifier ’s performance , we need to consider the relative size of the differential voltage as opposed to the size of either )(1t v or )(2t v . To do this we define two new terms, the Differential Mode Voltage and the Common Mode Voltage as follows:(Differential Mode Voltage)/2 2)()(21t v t v -=And: Common Mode Voltage 2)()((21t v t v +=For example, take the trivial case where v 1(t)= 3 volts and v 2(t)= 1 volt. In this case the (Differential Mode Voltage)/2 is 1 volt, and the Common Mode Voltage is 2 volts. When applied to our differential amplifier the Differential Mode component must be amplified , however the Common Mode component must be ignored. This can be a tall order when the Common Mode component is large compared to the Differential component.Figure 4 shows how the Differential Mode and Common Mode signals are presented to the amplifier. Effectively the non-inverting input sees +V DM /2 while the inverting input sees -V DM /2, both superimposed on the Common Mode component, V CM .Figure 4. Common and Differential Mode Signals The Differential Mode Gain (DMG)It is useful to quantify the performance of our amplifier for purely Differential Mode signals and so we evaluate the Differential Mode Gain as by removing the Common Mode component, thus v 1(t)=V DM /2 and v 2(t)= - V DM /2. From equation (5) we find:()12'1'2'1'2'1212)()(2)()(R R t V R R R R R R R R t V t v DM DM o =⎥⎦⎤⎢⎣⎡+++= if R 1’= R 1 and R 2’= R 2 Thus the DMG becomes: DMG = ()⎥⎦⎤⎢⎣⎡+++='1'2'1'2'1212)(21)()(R R R R R R R R t V t v DM o (7)In most cases the DMG will be close to R 2/R 1 as shown in (6).The Common Mode Gain (CMG)In a similar way we define the Common Mode Gain , by removing the Differential input component. Thus v 1(t)= v 2(t)= V CM . From equation (6) we now find that:CMG = ()⎥⎦⎤⎢⎣⎡-++='1'2'1'2'1212)()()(R R R R R R R R t V t v CM o (8)Ideally the Common Mode Gain will be zero , however the resistors must be precisely matched for this to occur, i.e. R 1’=R 1 and R 2’=R 2. This will rarely be the case, so it is usual for some Common Mode signal to appear at the output of a differential amplifier, just how much depends on the CMG and amplitude of the Common Mode component itself.Common Mode signals can arise for many reasons. One of the most common in instrumentation applications is the induction of AC mains, (50Hz) noise in signal wiring, as illustrated in Figure 5 (upper). Here the signal leads are generally twisted (and sometimes shielded as well) so as to ensure that any noise is induced in equal proportion in each. This ensures that what noise is induced becomes Common Mode noise , which can be removed by using an amplifier with good Common Mode rejection .Figure 5 (lower) illustrates the case where the induced noise is not in equal proportion in each lead and thus a greater noise component arises in one than in the other. The net difference is called Normal Mode noise and it is particularly troublesome since it cannot be distinguished from the required Differential Mode signal. Where noise is unavoidable, Common Mode noise is far more acceptable since it can usually be removed with a good differential amplifier.Figure 5. Upper: Twisted Pair Signal Cable sees a Common Mode Signal InducedLower: Separate Conductors suffer a Normal Mode Signal (in one conductor only)The Common Mode Rejection Ratio (CMRR)The ability of an amplifier to reject Common Mode signals is quantified in the Common Mode Rejection Ratio (CMRR), defined as follows:()()⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+++=='1'2'1'2'1212'1'2'1'2'1212)()(21R R R R R R R R R R R R R R R R CMG DMG CMRRThe CMRR is often expressed in decibels (dB) thus:⎥⎦⎤⎢⎣⎡=CMG DMG CMRR log 20dB.Just how large the CMRR can become really depends upon how well the gain resistors are matched. Perfect matching will result in an infinite CMRR, since the CMG will become zero. In practice this will never be the case. The CMRR can also be improved by operating with large DMG values.Consider the worst case CMRR likely when the resistor tolerance is 1% and the design DMG is 10. It is relatively easy to show that the largest CMG possible will be 0.037, and the worst DMG will be 10.18, (when the tolerances accumulate adversely). Thus a worst case CMRR of 274 (or 46dB) can be expected. Significant improvements to this figure can be achieved by using laser trimmed precision resistors , fabricated as part of an integrated circuit. In addition a three op-amp arrangement known as an Instrumentation Amplifier offers further CMRR improvements over the simple circuit shown in Figure 1. This circuit will be discussed later.Finally, in an effort to attenuate induced noise in instrumentation applications, the differential amplifier in Figure 1 can be modified as shown below, to include a low pass characteristic . This will enable unwanted 50Hz signals to be (partially?) removed from thermocouple or strain gauge circuits where the desired response is primarily one at DC.Figure 6. Differential Amplifier with a Low Pass CharacteristicThe Differential Gain of the circuit shown in Figure 6 is:)()()()(1221o o o j R R t v t v t v DMG ωωω+=-= where CR 201=ω.And the CMG is approximately:⎥⎦⎤⎢⎣⎡-+≈+='1'21221)()()()(2R R R R j t v t v t v CMG o o o ωωω.Thus if o ωis chosen appropriately much of the interfering Common Mode signal can be attenuated.。

全差分放大器单位增益接法

全差分放大器单位增益接法

全差分放大器单位增益接法全差分放大器(Unit-Gain Differential Amplifier)是一种常见的电子电路,用于放大微弱的差分信号。

它的特点是具有单位增益,即输入和输出之间的电压增益为1。

本文将介绍全差分放大器的工作原理、应用领域以及设计要点。

一、工作原理全差分放大器由两个差分放大器组成,分别为正相放大器和负相放大器。

它们通过相同的输入信号源来产生差分信号,并通过负反馈来实现单位增益。

正相放大器将差分信号的一个输入端连接到信号源,另一个输入端连接到地,输出端连接到负相放大器的一个输入端。

负相放大器将差分信号的一个输入端连接到信号源,另一个输入端连接到正相放大器的输出端,输出端连接到负载。

通过这样的连接方式,正相放大器和负相放大器之间形成了反馈回路。

在工作时,输入信号经过正相放大器放大后,在反馈回路中形成一个反向信号,通过负相放大器放大后再反馈到正相放大器。

经过多次放大和反馈,最终实现了单位增益。

二、应用领域全差分放大器广泛应用于模拟信号处理和数据转换领域。

它在模拟信号处理中常用于放大传感器信号、滤波和增益控制等。

在数据转换中,全差分放大器常用于模数转换器(ADC)和数模转换器(DAC)中,用于放大和处理输入和输出信号。

三、设计要点1. 选择合适的放大器芯片:选择具有低噪声、高增益和高输入阻抗的差分放大器芯片,以满足设计要求。

2. 设置合适的偏置电流:通过合适地设置放大器的偏置电流,可以提高放大器的线性度和稳定性。

3. 选择合适的反馈电阻:反馈电阻的选择对全差分放大器的增益和带宽有重要影响。

需要根据具体应用需求选择合适的数值。

4. 保持良好的布局和屏蔽:在设计电路时,需要注意良好的布局和屏蔽,以减少电路中的干扰和噪声。

5. 考虑功耗和供电电压:在设计全差分放大器时,需要考虑功耗和供电电压的限制,以满足实际应用的需求。

总结全差分放大器是一种重要的电子电路,在模拟信号处理和数据转换领域有着广泛的应用。

带偏置电压差分运放偏移电路

带偏置电压差分运放偏移电路

带偏置电压差分运放偏移电路差分运放(Differential Amplifier)是一种常用的电路,可以对输入信号进行放大和增益,并且具有抑制共模信号的能力。

然而,差分运放器的输出信号在理想情况下应该是零,但实际上会存在一定的偏移电压。

为了解决这个问题,可以使用带偏置电压的差分运放偏移电路。

带偏置电压差分运放偏移电路的基本原理是在输入信号的两个输入端之间加入一个与输入信号反向的偏置电压。

这样一来,输入信号的每个部分都会受到相同的偏置电压的影响,从而在差分运放器的输出端产生的偏移电压就会被抵消掉。

一个常见的带偏置电压差分运放偏移电路如下所示:```R1 R2│ │Vin+ ───+─R3─┬───│────────────┤──── Vout │ │ │├──R4─┴──┼─R6─┬────────(Vbias)│ │ │ │└──R5───┤ │││ │ │└─Vin-┘ └─GND```其中,Vin+和Vin-分别为输入信号的正负端,R1和R2构成差分输入电阻,R3和R4构成差分放大电阻,R5和R6构成偏置电压分压电阻。

具体操作步骤如下:1. 设计好所需的放大倍数和偏置电压值。

2. 根据放大倍数计算R3和R4的取值。

一般来说,其比值应为放大倍数的倒数。

3. 根据输入信号的电压范围确定偏置电压Vbias,这个值应该为输入信号的振幅的一半。

4. 根据Vbias确定R6和R5的取值。

一般来说,其比值应为R6/R5 = (Vcc - Vbias)/Vbias。

5. 连接电路。

将Vin+和Vin-分别与R3和R4相连,将R5和R6与Vbias相连,将R1和R2与输入信号源相连,将输出信号Vout连接到输出负载电阻上。

6. 测试电路。

给予适当的电源电压,将输入信号施加到Vin+和Vin-上,观察输出信号Vout的偏移情况。

如果偏移电压未能完全消除,可以微调R5和R6的取值,或者使用光栅、可调电阻等来调整偏置电压。

全差分运放的英语

全差分运放的英语

全差分运放的英语
(最新版)
目录
1.差分运放的概念
2.全差分运放的特点
3.全差分运放的应用
4.全差分运放的英语表达
正文
1.差分运放的概念
差分运放(Differential amplifier),是一种模拟电路,主要用于放大差分输入信号。

差分放大电路有两个输入端,分别为非反相输入端和反相输入端。

当两个输入端的电压存在差分时,差分运放会产生输出电压,从而实现对差分信号的放大。

2.全差分运放的特点
全差分运放(Common-mode rejection ratio,CMRR),是一种衡量差分运放抑制共模输入信号能力的参数。

全差分运放的特点有以下几点:(1)高共模抑制比:全差分运放的共模抑制比很高,可以有效抑制共模输入信号,提高电路的抗干扰能力。

(2)恒定的偏置电压:全差分运放的输出电压与输入电压之间的差分电压成正比,且偏置电压基本恒定,不随输入电压的变化而变化。

(3)低输入偏差电流:全差分运放的输入偏差电流很小,可以降低电路的输入偏差电压,提高电路的精度。

3.全差分运放的应用
全差分运放在电子电路中具有广泛的应用,如:
(1)信号放大:全差分运放可以用于对差分信号进行放大,提高信号的抗干扰能力。

(2)模拟滤波:全差分运放可以用于构成滤波电路,对模拟信号进行滤波处理。

(3)传感器信号处理:全差分运放可以用于处理传感器输出的差分信号,提高传感器的测量精度。

4.全差分运放的英语表达
全差分运放的英语表达为:Common-mode rejection ratio(CMRR)。

差分运放计算

差分运放计算

差分运放计算差分运放(Differential Amplifier),也称为差动放大器,是一种电子放大器,用于对差分信号进行放大。

它是现代电路设计中最为常用的模拟电路之一,广泛应用于各种电子设备和系统中。

差分运放由两个输入端和一个输出端组成,输入端分别连接到一个输入信号源和地,输出端连接到负载电阻或其他后级电路。

差分运放的主要功能是将两个输入信号的差值放大到输出端,同时对共模信号(两个输入信号的平均值)进行抑制。

差分运放的工作原理是,当两个输入信号的电势差发生变化时,会引起差分运放内部的晶体管或场效应管的工作状态发生改变,从而改变输出信号的幅值。

具体来说,当一个输入信号电势上升时,输出信号电势上升,当另一个输入信号电势上升时,输出信号电势下降。

因此,差分运放的输出信号与两个输入信号的差值成正比。

差分运放的放大倍数可以通过改变差分对输入电阻、反馈电阻和负载电阻的数值来调整。

一般来说,差分运放的放大倍数越大,输入信号的微小变化就可以被放大得更明显。

同时,差分运放的输入电阻可以很大,从而使得输入信号的源电阻对放大器的输入影响极小。

差分运放还具有很好的共模抑制能力。

共模信号是指两个输入信号的平均值,当两个输入信号的幅值相等时,共模信号的幅值为零。

差分运放通过差分放大的原理,只对差值进行放大,对共模信号进行抑制。

这样,即使在输入信号中存在较强的干扰信号,差分运放也能将其抑制到很低的水平,从而保证输出信号的纯净性。

总之,差分运放是一种功能强大、性能稳定的放大器,广泛应用于信号处理、测量与控制等领域。

它的工作原理简单,设计灵活,非常适合在电子系统中对差分信号进行放大和处理。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Differential AmplifierThus far we have used only one of the operational amplifiers inputs to connect to the amplifier, using either the "inverting" or the "non-inverting" input terminal to amplify a single input signal with the other input being connected to ground. But we can also connect signals to both of the inputs at the same time producing another common type of operational amplifier circuit called a Differential Amplifier.Basically, as we saw in the first tutorial about operational amplifiers, all op-amps are "Differential Amplifiers" due to their input configuration. But by connecting one voltage signal onto one input terminal and another voltage signal onto the other input terminal the resultant output voltage will be proportional to the "Difference" between the two input voltage signals of V1 and V2.Then differential amplifiers amplify the difference between two voltages making this type of operational amplifier circuit a Subtractor unlike a summing amplifier which adds or sums together the input voltages. This type of operational amplifier circuit is commonly known as a Differential Amplifier configuration and is shown below:Differential AmplifierBy connecting each input inturn to 0v ground we can use superposition to solve for the output voltage Vout. Then the transfer function for a Differential Amplifier circuit is given as:When resistors, R1 = R2 and R3 = R4 the above transfer function for the differential amplifier can be simplified to the following expression:Differential Amplifier EquationIf all the resistors are all of the same ohmic value, that is: R1 = R2 = R3 = R4 then the circuit will become a Unity Gain Differential Amplifier and the voltage gain of the amplifier will be exactly one or unity. Then the output expression would simply beVout = V2 - V1. Also note that if input V1 is higher than input V2 the ouput voltage sum will be negative, and if V2 is higher than V1, the output voltage sum will be positive.The Differential Amplifier circuit is a very useful op-amp circuit and by adding more resistors in parallel with the input resistorsR1 and R3, the resultant circuit can be made to either "Add" or "Subtract" the voltages applied to their respective inputs. One of the most common ways of doing this is to connect a "Resistive Bridge" commonly called a Wheatstone Bridge to the input of the amplifier as shown below.Bridge AmplifierThe standard Differential Amplifier circuit now becomes a differential voltage comparator by "Comparing" one input voltage to the other. For example, by connecting one input to a fixed voltage reference set up on one leg of the resistive bridge network and the other to either a "Thermistor" or a "Light Dependant Resistor" the amplifier circuit can be used to detect either low or high levels of temperature or light as the output voltage becomes a linear function of the changes in the active leg of the resistive bridge and this is demonstrated below.Light Activated SwitchHere the circuit above acts as a light-activated switch which turns the output relay either "ON" or "OFF" as the light level detected by the LDR resistor exceeds or falls below a pre-set value at V2 determined by the position of VR1. A fixed voltage reference is applied to the inverting input terminal V1 via the R1 - R2 voltage divider network and the variable voltage (proportional to the light level) applied to the non-inverting input terminal V2. It is also possible to detect temperature using this type of circuit by simply replacing the Light Dependant Resistor (LDR) with a thermistor. By interchanging the positions of VR1 and the LDR, the circuit can be used to detect either light or dark, or heat or cold using a thermistor.One major limitation of this type of amplifier design is that its input impedances are lower compared to that of other operational amplifier configurations, for example, a non-inverting (single-ended input) amplifier. Each input voltage source has to drive currentthrough an input resistance, which has less overall impedance than that of the op-amps input alone. This may be good for a low impedance source such as the bridge circuit above, but not so good for a high impedance source.One way to overcome this problem is to add a Unity Gain Buffer Amplifier such as the voltage follower seen in the previous tutorial to each input resistor. This then gives us a differential amplifier circuit with very high input impedance and low output impedance as it consists of two non-inverting buffers and one differential amplifier. This then forms the basis for most "Instrumentation Amplifiers".Instrumentation AmplifierInstrumentation Amplifiers (in-amps) are very high gain differential amplifiers which have a high input impedance and a single ended output. Instrumentation amplifiers are mainly used to amplify very small differential signals from strain gauges, thermocouples or current sensing devices in motor control systems.Unlike standard operational amplifiers in which their closed-loop gain is determined by an external resistive feedback connected between their output terminal and one input terminal, either positive or negative, "instrumentation amplifiers" have an internal feedback resistor that is effectively isolated from its input terminals as the input signal is applied across two differential inputs, V1 and V2.The instrumentation amplifier also has a very good common mode rejection ratio, CMRR (zero output when V1 = V2) well in excess of 100dB at DC. A typical example of a three op-amp instrumentation amplifier with a high input impedance ( Zin ) is given below:High Input Impedance Instrumentation AmplifierThe two non-inverting amplifiers form a differential input stage acting as buffer amplifiers with a gain of 1 + 2R2/R1 for differentialinput signals and unity gain for common mode input signals. Since amplifiers A1 and A2 are closed loop negative feedback amplifiers, we can expect the voltage at Va to be equal to the input voltage V1. Likewise, the voltage at Vb to be equal to the value at V2.As the op-amps take no current at their input terminals (virtual earth), the same current must flow through the three resistor network of R2, R1 and R2 connected across the op-amp outputs. This means then that the voltage on the upper end of R1 will be equal to V1 and the voltage at the lower end of R1 to be equal to V2. This produces a voltage drop across resistor R1 which is equal to the voltage difference between inputs V1 and V2, the differential input voltage, because the voltage at the summing junction of each amplifier, Va and Vb is equal to the voltage applied to its positive inputs.However, if a common-mode voltage is applied to the amplifiers inputs, the voltages on each side of R1 will be equal, and no current will flow through this resistor. Since no current flows through R1 (nor, therefore, through both R2 resistors, amplifiers A1 and A2 will operate as unity-gain followers (buffers). Since the input voltage at the outputs of amplifiers A1 and A2 appears differentially across the three resistor network, the differential gain of the circuit can be varied by just changing the value of R1.The voltage output from the differential op-amp A3 acting as a subtractor, is simply the difference between its two inputs ( V2 - V1 ) and which is amplified by the gain of A3 which may be one, unity, (assuming that R3 = R4). Then we have a general expression for overall voltage gain of the instrumentation amplifier circuit as:Instrumentation Amplifier EquationIn the next tutorial about Operational Amplifiers, we will examine the effect of the output voltage, Vout when the feedback resistor is replaced with a frequency dependant reactance in the form of a capacitance. The addition of this feedback capacitance produces a non-linear operational amplifier circuit called an Integrating Amplifier.。

相关文档
最新文档