判别式与韦达定理的应用
韦达定理判别式
当 b 4ac 0 时,方程有两个相等实数根; ---------------------- 要注意:根的情况到底是作为已知条件出现
2
批注 1:利用根与系数之间的关系时特别需 的还是作为结论需要证明的。
当 b 4ac 0 时,方程没有实数根;
2
当 b 4ac 0 时,方程有实数根。
七升八暑假班知识点整理
第四、五讲 一元二次方程判别式和韦达定理一、2一元二源自方程根的判别式”标号,记做
把 b 4ac 叫做一元二次方程 ax 2 bx c 0 (a 0) 的根的判别式,通常用符号“
b 2 4ac 。
利用判别式判断方程根的情况: 当 b 4ac 0 时,方程有两个不相等实数根;
b c ; x1 x2 a a
b x1 x2 a x x c 1 2 a
2
二、
韦达定理的认识
编者的话:有的时候我们发现,对于一元二次方程,我并不需要知道确切的两根的值,但是对于两根的和 与及我们会有较大的兴趣,下面我们来推导一下两根的和与积。 (1) 法一:利用求根公式
b b2 4ac b b2 4ac ; x2 x1 2a 2a
易得: x1 x2
b c ; x1 x2 a a
(2) 法二:利用因式分解 假设方程两根为 x1 、 x2 ;所以可以构造方程 ( x x1 )( x x2 ) 0
2 还原方程 x ( x1 x2 ) x x1 x2 0 ,比较 ax bx c 0
2
易得: x1 x2 韦达公式:
关于判别式法与韦达定理的论述
关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
关键词:判别式法 韦达定理在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。
别式法与韦达定理说明了一元二次方程中根和系数之间的关系。
它们都有着广泛的应用在整个中学阶段。
一、韦达定理的由来法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
判别式法与韦达定理在方程论中有着广泛的应用。
二、对判别式法的介绍及概括一般的关于一元二次方程ax^2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b^2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
关于x 的一元二次方程x^2+mx+n=0有两个相等的实数根,求符合条件的一组的实数值。
这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a 、b 、c 的值;使用判别式的前提是方程为一元二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。
判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数(或参数)的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax^2+bx+c(a≠0)能否在实数范围内分解因式(1) 当△≥0 时,二次三项式在实数范围内能分解因式;(2)当△≤0 时,二次三项式在实数范围内不能分解因式。
一元二次方程-韦达定理的应用及答案
一元二次方程韦达定理的应用知识点:一元二次方程根的判别式 :当△>0 时________方程_____________,当△=0 时_________方程有_______________ ,当△〈0 时_________方程___________ .韦达定理的应用:1。
已知方程的一个根,求另一个根和未知系数2。
求与已知方程的两个根有关的代数式的值3.已知方程两根满足某种关系, 确定方程中字母系数的值4.已知两数的和与积, 求这两个数例 1.关于 x 的一元二次方程 2223840x mx m m --+-=.求证: 当 m 〉2 时,原方程永远有两个实数根.例 2.已知关于 x 的方程22(1)10kx x x k -++-=有两个不相等的实数根.(1)求 k 的取值范围;(2)是否存在实数 k , 使此方程的两个实数根的倒数和等于 0?若存在, 求出 k 的值;若不存在, 说明理由。
例 3.已知关于 x 的方程222(3)410x k x k k --+--=(1)若这个方程有实数根, 求 k 的取值范围;(2)若这个方程有一个根为 1, 求 k 的值;例 4。
已知关于 x 的一元二次方程21(2)302x m x m +-+-= (1)求证: 无论m 取什么实数值, 这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根12,x x 满足1221x x m +=+, 求 m 的值。
例 5。
当 m 为何值时, 方程28(1)70x m x m --+-=的两根:(1) 均为正数; (2)均为负数; (3)一个正数, 一个负数; (4)一根为零; (5)互为倒数; (6)都大于2。
求证: 这个三角形是直角三角形。
例 7.若 n>0 ,关于 x 的方程21(2)04x m n x mn ---=有两个相等的正的实数根, 求m n 的值。
课堂练习:1。
下列一元二次方程中, 没有实数根的是( )A. 2210x x +-= B 。
判别式和韦达定理
第三讲:判别式和韦达定理知识要点:设一元二次方程),,;0(02为实数c b a a c bx ax ≠=++的判别式为⊿ac b 42-=,二根为21,x x ,则(1)当⊿>0时,方程有二不等实数根,反之,亦成立;当⊿<0时,方程无实数根,反之亦成立;当⊿=0时,方程有二相等实数根,反之,亦成立。
(2)a b x x -=+21,a c x x =21。
反之,若二数21,x x 满足a b x x -=+21,a c x x =21,则次二数是方程02=++c bx ax 的二根,这就是韦达定理,即根与系数的关系。
应用举例:一、判别根的性质例1, 已知方程02=++c bx x 的两根为1,4,是判断方程022=++bx cx 的根的情况。
例 2 已知方程022=--m x x 无实数根(m 为实数),试判断方程0)1(22=+++m m mx x 有么有实数根。
二、求某些值21x x + 21x x 21x x -2221x x + 2221x x -2111x x +例3设21,x x 是方程03622=+-x x 的两根,试求2112x x x x +,21x x -的值。
例4 已知方程0)12(22=+++k x k x 的两实数根的平方和等于7,求k 的值。
三、求方程的解提示:已知方程和它的一个根,最好用韦达定理求解例5已知2=x 是方程032=+-b x x 的一根,求此方程的另一根及b 的值。
例6 解方程组:21,311=-=+xy y x 。
1、已知关于x 的一元二次方程02=++c bx x 有两个实数根,则下列关于判别式c b 42-的判断正确的是( )A .042≥-c b ;B .042≥-c b ;C .042≥-c b ;D .042≥-c b .2、已知一元二次方程ax 2+bx +c =0(a ≠0)中,下列命题是真命题的有( )个.①若a +b +c =0,则b 2-4ac ≥0;②若方程ax 2+bx +c =0两根为-1和2,则2a +c =0;③若方程ax 2+c =0有两个不相等的实根,则方程ax 2+bx +c =0必有两个不相等的实根。
一元二次方程根的判别式与韦达定理
于是,上述方程两个根的和、积与系数的关系分别有如下关系:
x1+x2=-p,x1x2=q
例1
(1)已知关于x的一元二次方程x2Байду номын сангаас2x+m=0有解,求m的范围.
(2)己知关于x的一元二次方程x2- x-m=0有两个不相等实数根,求m的取值范围.
(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根
(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围
(2)己知:a、b、c分别是△ABC的三边长,
求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.
练习
己知△ABC三边a,b,c,关于x的方程(a+c)x2+2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.
模块二一元二次方程根与系数关系
知识导航:
练习
(1)方程x2—2x-1=0的两个实数根分别为x1、x2,(x1-l)(x2-1)=______________
cz,设x1、x2是方程2x2—6x+l=o的两个实数根,则(x1- )(x2- )的值为__________
【总结】
1、用韦达定理,常见的恒等变形有:
+ = ,x12+x22=(x1+x2)2-2x1x2,(x1-x2)2=(x1+x2)2-4x1x2
(2)一元二次方程x2—4x-c=0的一个根是3,则另一个根是____,c=___________
韦达定理的应用题证明公式
韦达定理的应用题证明公式YUKI was compiled on the morning of December 16, 2020根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论. 1.判别式的应用例1 (1987年武汉等四市联赛题)已知实数a、b、c、R、P满足条件PR>1,Pc+2b+Ra= 0.求证:一元二次方程ax2+2bx+c=0必有实根.证明△=(2b)2-4ac.①若一元二次方程有实根,必须证△≥0.由已知条件有2b=-(Pc+Ra),代入①,得△ =(Pc+Ra)2-4ac=(Pc)2+2PcRa+(Ra)2-4ac=(Pc-Ra)2+4ac(PR-1).∵(Pc-Ra)2≥0,又PR>1,a≠0,(1)当ac≥0时,有△≥0;(2)当ac<0时,有△=(2b)2-4ac>0.(1)、(2)证明了△≥0,故方程ax2+2bx+c=0必有实数根.例2(1985年宁波初中数学竞赛题)如图21-1,k 是实数,O 是数轴的原点,A 是数轴上的点,它的坐标是正数a.P 是数轴上另一点,坐标是x,x <a ,且OP 2=k·PA·OA.(1)k 为何值时,x 有两个解x1,x2(设x 1<x 2);此处无图(2)若k >1,把x 1,x 2,0,a 按从小到大的顺序排列,并用不等号“<”连接.解(1)由已知可得x 2=k·(a-x )·a,即x 2+kax-ka 2=0,当判别式△>0时有两解,这时△ =k 2a 2+4ka 2=a 2k (k+4)>0.∵a >0, ∴k (k+4)>0,故k <-4或k >0.(2)x 1<0<x 2<a.例3(1982年湖北初中数学竞赛题)证明不可能分解为两个一次因式之积.分析 若视原式为关于x 的二次三项式,则可利用判别式求解.证明将此式看作关于x的二次三项式,则判别式△ =显然△不是一个完全平方式,故原式不能分解为两个一次因式之积.例3(1957年北京中学生数学竞赛题)已知x,y,z是实数,且x+y+z=a,①②求证:0≤x≤0≤y≤0≤z≤分析将①代入②可消去一个字母,如消去z,然后整理成关于y的二次方程讨论. 证明由①得z=a-x-y,代入②整理得此式可看作关于y的实系数一元二次方程,据已知此方程有实根,故有△ =16(x-a)2-16(4x2-4ax+a2)≥0≥0≤x≤同理可证:0≤y≤,0≤z≤.例5设a1,a2,a3,b是满足不等式(a1+a2+a3)2≥2()+4b的实数.求证:a1a2+a2a3+a3a1≥3b.证明由已知可得≤0.设则∵a3是实数,故△≥0,即有(a1+a2)2≥()-2a1a2+4b+r≥2()-(a1+a2)2+4b.于是(a1+a2)2≥()+2b,∴a1a2≥b.同理有a2a3≥b,a3a1≥b.三式相加即得a1a2+a2a3+a3a1≥3b.例6 设a、b、c为实数,方程组与均无实数根.求证:对于一切实数x都有>证明由已知条件可以推出a≠0,因为若a=0,则方程组至少有一个有实数解.进一步可知,方程ax2+bx+c=±x无实根,因此判别式△=<0,于是(b-1)2+(b+1)-8ac<0.即4ac-b2>1.∴>2.韦达定理的应用例7 (1899年匈牙利数学奥林匹克竞赛题)假设x1、x2是方程x2-(a+d)x+ad-bc=0的根.证明这时是方程的根. 证明由已知条件得∴=a3+d3+3abc+3bcd,由韦达定理逆定理可知,、是方程的根. 例8已知两个系数都是正数的方程a1x2+b1x+c1=0,①a2x2+b2x+c2=0,②都有两个实数根,求证:(1)这两个实数根都是负值;(2)方程 a1a2x2+b1b2x+c1c2=0③③也有两个负根. 证明∵方程①有两个实数根,∴>0. ④同理>0. ⑤又a1、b1、c1都是正数,∴>0,<0.由此可知方程①的两根是负值.同样可证方程②的两根也是负值.显然a1c1<4a1c1代入④,得>0,⑥由>0,得>⑦∴△=≥=>0,∴方程③也有两个实数根.又a1a2>0,b1b2>0,c1c2>0,∴>0,<0.由此可知方程③的两个根也是负值.例9(1983年上海初中数学竞赛题)对自然数n,作x的二次方程x2+(2n+1)x+n2=0,使它的根为αn 和βn.求下式的值:+解由韦达定理得=而=(n≥3),∴原式=+=例10(1989年全国初中联赛试题)首项不相等的两个二次方程(a-1)x2-(a2+2)x+(a2+2a)=0①及(b-1)x2-(b2+2)x+(b2+2b)=0②(其中a,b为正整数)有一公共根,求的值.解由题得知,a,b为大于1的整数,且a≠b.设x0是方程①②的公共根,则x≠1,否则将x=1代入①得a=1,矛盾.得x代入原方程,并经变形得③及④所以a,b是关于t的方程相异的两根,因此于是ab-(a+b)=2,即(a-1)(b-1)=3.由或解得或∴例11 (仿1986年全国高中联赛题)设实数a,b,c满足①②求证:1≤a≤9.证明由①得bc=a2-8a+7.①-②得b+c=所以实数b,c可看成一元二次方程的两根,则有△≥0,即≥0,即(a-1)(a-9)≤0,∴1≤a≤9.例12 (1933年福建初中数学竞赛题)求证:对任一矩形A,总存在一个矩形B,使得矩形A和矩形B的周长和面积比都等于常数k(k≥1).分析设矩形A及B的长度分别是a,b及x,y,为证明满足条件的矩形B存在,只须证明方程组(k,a,b为已知数)有正整数解即可.再由韦达定理,其解x,y可以看作是二次方程z2-k(a+b)z+kab=0的两根.∵k≥1,故判别式△ =k2(a+b)2-4kab ≥k2(a+b)2-4k2ab =k2(a-b)2≥0,∴上述二次方程有两实根z1,z2.又z1+z2=k(a+b)>0,z1z2=kab>0,从而,z1>0,z2>0,即方程组恒有x>0,y>0的解,所以矩形B总是存在的.练习二十一1.填空题(1)设方程的两根为m,n(m>n),则代数式的值是_______; (2)若r和s是方程x2-px+q=0的两非零根,则以r2+和为根的方程是__________; (3)已知方程x2-8x+15=0的两根可以写成a2+b2与a-b,其中a与b是方程x2+px+q=0的两根,那么|p|-q=__________.2.选择题(1)若p,q都是自然数,方程px2-qx+1985=0的两根都是质数,则12p2+q的值等于( ).(A)404 (B)1998 (C)414 (D)1996(2)方程的较大根为r,的较小根为s,则r-s等于().(A) (B)1985 (C) (D)(3)x2+px+q2=0(p≠0)的两个根为相等的实数,则x2-qx+p2=0的两个根必为().(A) 非实数 (B)相等两实数 (C)非实数或相等两实数 (D)实数(4)如果关于方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m+2)x+m=0的实根个数为(A)2 (B)1 (C)0 (D)不确定3.(1983年杭州竞赛)设a1≠0,方程a1x2+b2x+c1=0的两个根是1-a1和1+a1;a1x2+b1x+c2=0的两个根是和;a1x2+b1x+c1=0的两根相等,求a1,b1,c1,b2,c2的值.4.常数a是满足1≤a≤50的自然数.若关于x的二次方程(x-2)2+(x-a)2=x2的两根都是自然数,试求a的值.5.设x2、x2为正系数方程ax2+bx+c=0的两根,x1+x2=m,x1·x2=n2,且m,n.求证:(1) 如果m<n,那么方程有不等的实数根;(2) 如果m>n,那么方程没有实数根.6.求作一个以两正数α,β为根的二次方程,并设α,β满足7.(1987年全国初中竞赛题)当a,b为何值时,方程x2+(1+a)x+(3a2+4ab+4b2+2)= 0有实根8.(1985年苏州初中数学竞赛题)试证:1986不能等于任何一个整系数二次方程ax2+bx +c=0的判别式的值.9.(第20届全苏中学生数学竞赛题)方程x2+ax+1=b的根是自然数,证明a2+b2是合数. 10.(1972年加拿大试题)不用辅助工具解答:(1)证满足的根在(2)同(1)证练习二十一1.(1)(2)(3)3.2.C B A.3.4.x=a+2±由于x为自然数,可知a为完全平方数即a=1,4,9,16,25,36,49.5.略6.3x2-7x+2=0.7.因为方程有实根,所以判别式8.设1986=4k+2(其中k是自然数).令△=b2-4ac=4k+2,这时b2能被2整除,因而b也能被2整除.取b=2t,这时b2=4t2,且4t2-4ac=4k+2.这时等式左边的数能被4整除,而右边的数不能被4整除,得出矛盾,故命题得证.10.由,可得x2-198x+1=0,其根。
三次函数的根的判别式和韦达定理
三次函数,即形如f(x) = ax^3 + bx^2 + cx + d的函数,其中a, b, c, d 为实数,且a不为0。
这种函数在数学中有着重要的应用价值。
对于三次函数,其根的判别式和韦达定理是两个重要的数学工具,用于研究函数的性质。
首先,我们来了解一下根的判别式。
对于一元二次方程,根的判别式是b^2 - 4ac,而对于三次函数,我们可以通过对其进行求导,然后观察导函数的零点来找到极值点。
三次函数的导函数为f'(x) = 3ax^2 + 2bx + c,对其求导后,再求出导函数的零点,即令f'(x) = 0,解出x的值,这些x的值就是三次函数的极值点。
接下来,我们来看看韦达定理。
韦达定理是用于求解一元二次方程的根的一种方法,但对于三次方程,我们可以通过观察其根的分布情况来找到三次函数的极值点。
如果三次方程有三个不同的实根,那么这三个实根就是三次函数的三个极值点。
如果三次方程有两个相同的实根,那么这两个相同的实根就是三次函数的拐点。
在实际应用中,我们可以利用韦达定理来判断三次函数的单调性。
如果三次函数在某个区间内单调递增,那么这个区间内一定存在一个或多个极小值点;反之,如果三次函数在某个区间内单调递减,那么这个区间内一定存在一个或多个极大值点。
此外,我们还可以利用韦达定理来判断三次函数的图像的形状。
如果三次函数的图像是一个连续的曲线,那么这个曲线一定是由多个单调递增或递减的区间段组成的;如果三次函数的图像是一个折线图,那么这个折线图一定是由多个单调递增或递减的区间段组成的。
综上所述,根的判别式和韦达定理是两个重要的数学工具,用于研究三次函数的性质。
利用这两个工具,我们可以更好地理解三次函数的图像和性质,从而更好地解决相关的数学问题。
一元二次方程的判别式、韦达定理应用举例
一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。
判别式的表达式为:D=b²-4ac。
其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。
2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。
举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。
3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。
抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。
数学人教版九年级上册根的判别式与韦达定理
• 例1:已知关于x的方程 • x2-(2k-3)x+k2+1=0. (1)当k为何值时,此方程有实数根; (2)若此方程的两个实数根x1、x2满足 |x1|+|x2|=3,求k的值.
ห้องสมุดไป่ตู้
• 例2:已知关于x的一元二次方程 • x2+(m+3)x+m+1=0. (1)求证:无论m取何值,原方程总有两 个不相等的实数根: (2)若x1,x2是原方程的两根,且 • |x1-x2|=2 ,求m的值,并求出此时方程的 两根.
• 练习1:已知关于x的方程x2-(m-2)x- =0. (1)求证:无论m为何值,方程总有两个 不相等实数根. (2)设方程的两实数根为x1,x2,且满足 |x1|=|x2|+2,求m的值和相应的x1,x2.
• 练习2:已知关于x的一元二次方程(x-3) (x-2)=|m|. (1)求证:对于任意实数m,方程总有两 个不相等的实数根; (2)若方程的一个根是1,求m的值及方程 的另一个根.
根的判别式和韦达定理
• 一、知识平台 • 1、 根的判别式的应用: • △>0 方程有2个不相等的实数解 • △ =0 方程有2个相等的实数解 • △ ≥0 方程有实数解 • △ <0 方程没有实数解
• 2、根与系数的关系 • 定理:如果 一元二次方程的两个根 • 是X1,X2,那么 • X1 +X2= , X1X2=
一元二次方程根的判别式与韦达定理的应用
第三讲 一元二次方程根的判别式与韦达定理的应用一、 内容提要1.一元二次方程的根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系:(1)如果一元二次方程ax 2+bx+c=0(a≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21 (2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=qx 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.x 2-(x 1+x 2)x+x 1x 2=0.二、 热身练习1.已知a 、b 、c 为△ABC 的三边,且关于x 的一元二次方程(c -b )x 2+2(b -a )x +(a -b )=0有两个相等的实根,则这个三角形是( )A. 等边三角形B. 直角三角形 C 等腰三角形 D. 不等边三角形2.关于x 的一元二次方程2(21)(1)10a x a x -+++=的两个根相等,那么a 等于( )A.1-或5- B.1-或5 C.1或5- D.1或5 3.已知方程032=+-m x x 的一个根是1,则它的另一个根是 ,m 的值是 。
4.方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1-1)(x 2-1)=_________。
5.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)= .6.已知一元二次方程)2110x x -=的两根为1x 、2x ,则1211x x +=________. 7.已知一个直角三角形的三边为a 、b 、c ,∠B =90°,判断关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况。
韦达定理,根的判别式携手求最值
韦达定理,根的判别式携手求最值
韦达定理:两根之和等于-b/a,两根之差等于c/a:x1*x2=c/a;x1+x2=-b/a。
韦达定理公式变形:x12+x22=(x1+x2)2-2x1x2,1/x12+1/x22=(x12+x22)/x1x2,
x13+x23=(x1+x2)(x12-x1x2+x22)等。
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。
由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
一元二次方程的根的判别式为:(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。
韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。
无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
根的判别式与韦达定理
一元二次方程根与系数的关系应用例析及训练对于一元二次方程ax?+bx+c = 0(a式0),当判别式心= b?_4ac兰0时,其求根公式为:%、=―' b——4ac;当2ab c.:_0时,设一元二次方程的两根为X「x2,有:x-i x2,x-i x2;根与系数的这种关系又称为韦达定理;它的a ab c逆定理也是成立的,即当x-i x2,x-i x2时,那么为、x2则是方程ax2bx c = 0(a = 0)的两根。
一元二次方程a a的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,除了要求熟记一元二次方程ax2 bx c =0(a =0)根的判别式厶二b2 -4ac存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程ax2 bx 0(^- 0)的两个根为、x2,进而分解因式,即ax2bx • c = a(x-xj(x-x2)。
下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于x的方程(1) X2 -(1-2a)x • a2 -3 =0有两个不相等的实数根,且关于x的方程⑵x2-2x,2a-1=:0没有实数根,问a取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a的取值范围中筛选符合条件的a的整数值。
解:a的取值范围,并依靠熟练的解不等式的基本技说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定能和一定的逻辑推理,从而筛选出a,这是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例2:不解方程,判别方程2x2・3x-7=0两根的符号。
判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中x1 x^:: 0,所以可判定方程的根为一正一负;倘若为x2 0,仍需考虑x1 X2的正负,倘若x1 x2 • 0,则方程有两个正数根;倘若x1 X2:::0,则方程有两个负数根。
初中数学培优:韦达定理与根的判别式
初中数学培优:韦达定理与根的判别式一、利用根的判别式求字母的取值范围【典例】已知方程x2﹣2|x|﹣15=0,则此方程的所有实数根的和为()A.0B.﹣2C.2D.8【解答】解:①当x>0时,方程化为:x2﹣2x﹣15=0,即(x+3)(x﹣5)=0,∴x+3=0,x﹣5=0,解得x1=﹣3(舍去),x2=5,②当x<0时,方程化为:x2+2x﹣15=0,即(x﹣3)(x+5)=0,∴x﹣3=0,x+5=0,解得x3=3(舍去),x4=﹣5,③当x=0时,方程不成立.∴此方程的所有实数根的和为:5+(﹣5)=0.或原方程可化为:(|x|﹣5)(|x|+3)=0,即|x|﹣5=0,|x|+3=0,∴|x|=5,|x|=﹣3(舍去),解得x=5或﹣5,∴此方程的所有实数根的和为:5+(﹣5)=0.故选:A.【巩固】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为不大于1的整数,且方程的根为整数,求满足条件的m的值及对应的方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴b2﹣4ac=(2m+1)2﹣4(m2﹣1)=4m+5>0,解得:m>−54,即m的取值范围是m>−54;(2)由(1)知:当m>−54时,方程有两个不相等的实数根,∵m为不大于1的整数,∴m=0,﹣1,1,又m=0时,方程x2+x﹣1=0的根不是整数,当m=﹣1时,则方程为x2﹣x=0,解得:x1=1,x2=0,即当m=﹣1时,方程的解是x1=1,x2=0.当m=1时,则方程为x2+3x=0,解得:x1=﹣3,x2=0,即当m=1时,方程的解是x1=﹣3,x2=0.二、利用根的判别式求最值【典例】满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y)中,的最大值是多少?【解答】解:设y=kx,则直线y=kx与圆(x﹣3)2+(y﹣3)2=6相切时k有最大值和最小值,把y=kx代入(x﹣3)2+(y﹣3)2=6,得(1+k2)x2﹣6(k+1)x+12=0,∴Δ=36(k+1)2﹣4×12×(1+k2)=0,即k2﹣6k+1=0,解此方程得,k=3+22或3﹣22.所以=k的最大值是3+22.【巩固】阅读下面的材料,并解答问题:分式2r8r2(≥0)的最大值是多少?解:2r8r2=2r4+4r2=2(r2)+4r2=2+4r2,因为x≥0,所以x+2的最小值是2,所以4r2的最大值是2,所以2+4r2的最大值是4,即2r8r2(≥0)的最大值是4.根据上述方法,试求分式22+102+2的最大值是.【解答】解:22+102+2=22+4+62+2=2(2+2)+62+2=2+62+2,∵x2≥0,∴x2+2的最小值为2,∴62+2的最大值为3,∴2+62+2的最大值为5,∴分式22+102+2的最大值是5,故答案为:5.三、韦达定理与根的判别式综合【典例】若关于x的一元二次方程(m﹣4)x2+(2m﹣1)x+1=0的两个实数根的倒数和为s,则s的取值范围是.【解答】解:根据题意得m﹣4≠0且Δ=(2m﹣1)2﹣4(m﹣4)≥0,解得m≠4,x1+x2=−2K1K4,x1x2=1K4,s=11+12=1+212=−2m+1,由于m≠4,所以s≠﹣7.故答案为s≠﹣7.【巩固】已知关于x的一元二次方程2x2﹣4mx+2m2+3m﹣2=0有两个实数根.(1)求实数m的取值范围;(2)设x1,x2是原方程的两个实数根,当m为何值时,x12+x22有最小值?并求这个最小值.【解答】解:(1)∵一元二次方程2x2﹣4mx+2m2+3m﹣2=0有两个实数根,∴b2﹣4ac=(﹣4m)2﹣4×2(2m2+3m﹣2)≥0,∴﹣24m+16≥0,∴m≤23,∴实数m的取值范围为≤23;(2)∵x1+x2=2m,x1•x2=12(2m2+3m﹣2),∴x12+x22=(x1+x2)2﹣2x1x2=(2m)2﹣2×12(2m2+3m﹣2)=2m2﹣3m+2=2(m−34)2+78,∵m≤23,23<34,∴当m=23时,x12+x22=2(23−34)2+78=89,∴当m=23时,x12+x22有最小值,最小值是89.巩固练习1.如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1B.34≤m C.34≤m≤1D.34<m≤1【解答】解:∵方程(x﹣1)(x2﹣2x+m)=0有三根,∴x1=1,x2﹣2x+m=0有根,方程x2﹣2x+m=0的Δ=4﹣4m≥0,得m≤1.又∵原方程有三根,且为三角形的三边和长.∴有x2+x3>x1=1,|x2﹣x3|<x1=1,而x2+x3=2>1已成立;当|x2﹣x3|<1时,两边平方得:(x2+x3)2﹣4x2x3<1.即:4﹣4m<1.解得m>34.∴34<m≤1.故选:D.2.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k>14且k≠1B.k≥14且k≠1C.k>14D.k≥14【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴Δ=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥14;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥14,故选:D.3.已知m,n是方程x2−5x+1=0的两个根.记S1=11++11+,S2=11+2+11+2,…,S t=11++ 11+(t为正整数).若S1+S2+…S t=t2﹣56,则t的值为()A.7B.8C.9D.10【解答】解:∵m,n是方程x2−5x+1=0的两个根,∴m+n=5,mn=1,∴S1=11++11+=1+r1+(1+p(1+p=2+(rp==1,S2=11+2+11+2=1+2+1+2(1+2)(1+2)=2+(rp2−2B1+(rp2−2B+(B)2=2+5−21+5−2+1=1,…,∴S t=11++11+=1,∴S1+S2+…S t=t2﹣56,1+1+…+1=t2﹣56,t=t2﹣56,t 2﹣t ﹣56=0,(t ﹣8)(t +7)=0,解得:t =8或t =﹣7(舍去).故选:B .4.若关于x 的一元二次方程12x 2﹣2mx ﹣4m +1=0有两个相等的实数根,则(m ﹣2)2﹣2m (m ﹣1)的值为.【解答】解:由题意可知:Δ=4m 2﹣2(1﹣4m )=4m 2+8m ﹣2=0,∴m 2+2m =12,∴(m ﹣2)2﹣2m (m ﹣1)=﹣m 2﹣2m +4=−12+4=72,故答案为:725.设下列三个一元二次方程:x 2+4ax ﹣4a +3=0;x 2+(a ﹣1)x +1+a 2=0;x 2+2ax ﹣2a +3=0,至少有一个方程有实根,则实数a 的取值范围是.【解答】解:不妨假设三个方程都没有实数根,则有162+16−12<0(−1)2−4(2+1)<042−4(3−2p <0,解得−32<a <12.故答案为:a ≤−32或a ≥12.6.已知关于x 的一元二次方程(1﹣2k )x 2﹣2+3x ﹣1=0有两个不相等的实数根,则k 的取值范围.【解答】解:∵关于x 的一元二次方程(1﹣2k )x 2﹣2+3x ﹣1=0有两个不相等的实数根,∴1−2≠0+3≥0△=(−2+3)2−4(1−2p ×(−1)>0,解得:﹣3≤k <4且k ≠12.故答案为:﹣3≤k <4且k ≠12.7.关于x 的一元二次方程x 2+ax ﹣1=0的两个根分别为m 、n ,则(x +1)2+a (x +1)﹣1=0的根为.【解答】解:∵关于x 的一元二次方程x 2+ax ﹣1=0的两个根分别为m 、n ,∴m 2+am ﹣1=0,n 2+an ﹣1=0,设x+1=m或n,则(x+1)2+a(x+1)﹣1=0,∴(x+1)2+a(x+1)﹣1=0的根为x=m﹣1或n﹣1,故答案为:x=m﹣1或n﹣1.8.已知实数x,y满足(2x+1)2+y2+(y﹣2x)2=13,求x+y的值.【解答】解:由(2x+1)2+y2+(y﹣2x)2=13,得(3x+1)2+3(x﹣y)2=0,则3+1=0−=0,解得=−13=−13,故x+y=−13−13=−23.9.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴Δ=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.10.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2−92ac=0;我们记“K=b2−92ac”即K=0时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:(1)方程①x2﹣x﹣2=0;方程②x2﹣6x+8=0这两个方程中,是倍根方程的是(填序号即可);(2)若(x﹣2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;(3)关于x的一元二次方程x2−B+23n=0(m≥0)是倍根方程,且点A(m,n)在一次函数y=3x﹣8的图象上,求此倍根方程的表达式.【解答】解:(1)在方程①x2﹣x﹣2=0中,K=(﹣1)2−92×1×(﹣2)=10≠0;在方程②x2﹣6x+8=0中,K=(﹣6)2−92×1×8=0.∴是倍根方程的是②x2﹣6x+8=0.故答案为:②.(2)整理(x﹣2)(mx+n)=0得:mx2+(n﹣2m)x﹣2n=0,∵(x﹣2)(mx+n)=0是倍根方程,∴K=(n﹣2m)2−92m•(﹣2n)=0,∴4m2+5mn+n2=0.(3)∵2−B+23=0是倍根方程,∴=(−p2−92×23=0,整理得:m=3n.∵A(m,n)在一次函数y=3x﹣8的图象上,∴n=3m﹣8,∴n=1,m=3,∴此方程的表达式为2−3+23=0.11.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求B121−1+B221−2的最大值.【解答】解:∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m <1.(1)∵x 12+x 22=(x 1+x 2)2﹣2x 1x 2=4(m ﹣2)2﹣2(m 2﹣3m +3)=2m 2﹣10m +10=6∴=∵﹣1≤m <1,∴=(2)B 121−1+B 221−2=n 12+22−12(1+2)](1−1)(1−2)=o23−82+8K2)2−=2oK1)(2−3r1)oK1)=2(2−3+1)=2(−32)2−52(﹣1≤m <1).∵对称轴m =32,2>0,∴当m =﹣1时,式子取最大值为10.12.如果方程x 2+px +q =0的两个根是x 1,x 2,那么x 1+x 2=﹣p ,x 1•x 2=q ,请根据以上结论,解决下列问题:(1)若p =﹣4,q =3,求方程x 2+px +q =0的两根.(2)已知实数a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,求+的值;(3)已知关于x 的方程x 2+mx +n =0,(n ≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【解答】解:(1)当p =﹣4,q =3,则方程为x 2﹣4x +3=0,解得:x 1=3,x 2=1.(2)∵a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,∴a 、b 是x 2﹣15x ﹣5=0的解,当a ≠b 时,a +b =15,ab =﹣5,+=2+2B=(rp 2−2BB=152−2×(−5)−5=−47;当a =b 时,原式=2.(3)设方程x 2+mx +n =0,(n ≠0),的两个根分别是x 1,x 2,则11+12=1+212=−,11•12=112=1,则方程x 2+x +1=0的两个根分别是已知方程两根的倒数.。
第14讲根的判别式与韦达定理(word版)
第14讲根的判别式与韦达定理模块一一元二次方程根的判别式知识导航式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母“△”来表示,即△=b2-4ac.当△>0时,方程ax2+bx+c=0(a≠0)有两个不等的实数根;当△=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根;当△<0时,方程ax2+bx+c=0(a≠0)无实数根.计算判别式的值,可以判断一元二次方程根的情况;反之,若一元二次方程有两个不等实数根,则△>0;若一元二次方程有两个相等实数根,则△=0;若一元二次方程无实数根,则△<0.注意:①当△=0时,方程有两个相等的实根,不能说方程只有一个根②当△≥0时,方程有两个实根(一元二次方程有实根).例1(1)已知关于x的一元二次方程x2-2x+m=0有解,求m的范围.-1x-m=0有两个不相等实数根,求m的取值范围.(2)己知关于x的一元二次方程x2-m(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围(5) (2016武汉元月调考第9题)关于x的方程(m-2)x2+2x+1=0有实数根,求m的取值范围.拓展己知关于x的方程(n-1)x2+mx+1=0有两个相等的实数根,试说明关于y的方程m2y2—2my-m2—2n2+3=0的根的情况【总结】1、在处理【例1】和【练1】这类问题时,一定要注意先判断方程类型,若方程类型不确定,则需要分类讨论2、关于方程类型,题目在设问方面会有下列说法:(1)“关于x的一元二次方程有解”则方程一定为一元二次方程.(2)“关于x的方程有两实根”则方程一定为一元二次方程.(3)“关于x的方程有解”则方程类型不确定,需要分类讨论例2(1) 己知a、b、c是三角形三边,求证:关于x的方程(a+b)x2+2cx+(a+b)=0无实根.(2) 己知:a、b、c分别是△ABC的三边长,求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.练习己知△ABC三边a,b,c,关于x的方程(a+c)x2 +2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.模块二 一元二次方程根与系数关系知识导航:由因式分解法可知,方程(x -x 1)(x -x 2)=0(x 1,x 2为已知数)的两根为x 1和x 2,将方程化为x 2+px +q =0的形式,即x 2一(x 1+x 2)x + x 1x 2=0,则二次项系数为1,一次项系数为p =-(x 1+x 2),q = x 1x 2. 于是,上述方程两个根的和、积与系数的关系分别有如下关系:x 1+x 2=-p , x 1x 2=q对于一般地一元二次方程ax 2+bx +c =0,二次项系数a 未必是1.根据求根公式,x 1=a ac b b 24-2-+, x 2=aac b b 24-2-- 由此可知,x 1+x 2=-a b , x 1x 2=ac 这表明任何一个一元二次方程的根与系数的关系为:两根之和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.例3(1)若x 1,x 2是一元二次方程x 2—5x +6=0的两个根,则x 1+x 2的值是____(2)一元二次方程x 2—4x -c =0的一个根是3,则另一个根是____,c =___________(3)若方程x 2-3x 一1=0的两根为x 1、x 2,则11x +21x 的值为____ (4)关于x 的一元二次方程x 2一mx +2m -1=0的两个实数根分别是x 1、x 2,且x 12+x 22=7, 则(x 1-x 2)2的值是_____________练习(1)方程x 2—2x -1=0的两个实数根分别为x 1、x 2,(x 1-l )( x 2-1)=______________cz ,设x 1、x 2是方程2x 2—6x +l =o 的两个实数根,则(x 1-21x )( x 2-11x )的值为__________ 【总结】1、用韦达定理,常见的恒等变形有:11x +21x =2121x x x x +,x 12+x 22=(x 1+x 2)2-2x 1x 2,(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 21x x -=212214)(x x x x -+x 13 +x 23=(x 1 +x 2)(x 12+x 22-x 1x 2)=(x 1+x 2)3-3x 1x 2(x 1+x 2)2、韦达定理只有在两根存在的情况下才成立,故使用韦达定理的前提条件是b 2—4ac ≥0例4已知x 1,x 2是方程x 2—3x +l =0的两个实数根,则x 12+x 22=________________(x 1-2)(x 2-2)=______________;x 12+x 1·x 2+x 22=_____________,12x x +21x x =_________ x 1-x 2=__________, x 12-x 22=________;11x -21x =__________;12x x -21x x =___________练习已知x 1,x 2是方程2x 2—3x -5 =0的两个根,求下列代数式的值:x 12+x 22=__________,12x x +21x x =_________; 21x x -=___________ x 12-x 22=________;12x x -21x x =___________,x 12+3x 22-3x 2=_________________例5已知关于x 的方程x 2—2(k -l )x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围.(2) 若x l +x 2 =1-x 1x 2,求k 的值.练习关于x 的方程x 2+2(a -l )x +a 2 -7a -4=0的两根为x 1. x 2,且x 1x 2 -3x l -3x 2 +2=0,求a 的值例6关于一元二次方程x 2 +2x +k +l =0的实数解是x l 和x 2.(1)求k 的取值范围;(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值.练习己知关于x 的方程x 2 +2(m +2)x +m 2 -5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.例7己知△ABC 的两边AB 、AC 的长是关于x 的一元二次方程x 2 -(2k +3)x +k 2 +3k +2=0的两个实数根,第三边BC 的长是5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形;(2)k 为何值时,△ABC 是等腰三角形,并求△ABC 的周长.练习在等腰△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x 2+mx +2-21m =0的两个实数根,求△ABC 的周长. 课后作业A 基础巩固1.已知x =l 是方程x 2+bx -2=0的一个根,则方程的另一个根是( )A .1B .2C .-2D .-12. 已知一元二次方程x 2—4x +3=0两根为x 1,x 2,则x 1·x 2=( )A .4B .3C .-4D .-3 3. 己知关于x 的一元二次方程(1-2k )x 2—21+k x -1=0有两个不相等的实数根,则k 的取值范围是____.4. 关于x 的方程kx 2 +(l -k )x -l =0有两个不等实根,则k 的取值范围是____________.5. 关于x 的方程kx 2+(l -k )x -l =0有实根,则k 的取值范围是_______________6. 求证:不论m 为何值时,关于x 的方程x 2一2mx -2m -4=0总有两个不相等的实根.7. 如果一直角三角形的三边长分别为a ,b ,c ,b 为斜边,求证:关于x 的方程a (x 2 -1)一2cx +b (x 2 +1)=0有两个相等的实数根8. 己知x 1,x 2是方程x 2-5x +2=0的两个实数根,则x 12+x 22=________________(x 1-2)(x 2-2)=______________;x 12+x 1·x 2+x 22=_____________,12x x +21x x =_________ x 1-x 2=__________, x 12-x 22=________;11x -21x =__________;12x x -21x x =___________B 综合训练 9. (2015年汉阳区九上期中)己知关于x 的方程x 2—2(k -l )x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2) 若x 1+x 2=1- x 1x 2,求k 的值.10.已知关于x 的一元二次方程mx 2—2x +l =0.(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且x 1x 2一x 1一x 2=21,求m 的值 111.己知,关于x 的方程x 2一kx +k -1=0(1)求证:无论k 取何值,方程总有两实数根(2)若等腰△ABC 的一边长为2,另两边为这个方程的两个根,求△ABC 的周长数学故事“石头剪刀布”或能揭示演化策略“石头剪刀布”是游戏中解决争端的常用方式,每人各出剪刀、石头、布中的一种,通过石头砸剪刀、剪刀剪布、布包住石头的规则,可以在两人甚至多人中决出胜负.不过,科学家发现,大自然也用自己的方式玩着类似“石头剪刀布”这样的游戏,数学家和生物学家利用这种方式研究了从人类社会到培养皿中的细菌的各种现象.如今,研究者又发现,当玩家不断改变策略时,三种武器的使用频率会轮流上升与下降,呈现出一种固定的模式.这一发现或许可以帮助我们理解生物在生存之争中是如何维持竞争策略的.一旦应用到生物中来,石头剪刀布就不仅仅是两个小孩子的游戏,而变成多玩家之间的复杂关系了.比方说,某些蜥蜴用来赢得伴侣的策略就有三种:侵略、合作与欺骗,这三种策略就和石头剪刀布一样,有着环状的胜负关系(侵略战胜合作,欺骗战胜侵略,合作战胜欺骗),而对于蜥蜴来说,成功繁衍后代就意味着赢得游戏,在生物的“石头剪刀布”游戏中,通常是大的种群中随机产生一对玩家开始比拼,每个玩家通常都保持一种固定的策略一一即对每一个对手都出同样的姿势(石头、剪刀或者布).每次对决之后,赢家就增加一个(对应着繁衍后代),使用同样的策略,而输家则消失.对这种模型进行仔细的数学研究以后发现,出石头、剪刀和布的玩家会随着时间波动.随着初始情况中每种策略所占比例不同,整个群体的情况会分别演变成不同的长期行为,比如用石头、剪刀、布的个体各占三分之一,或者一种策略大幅减少另两种上升,过一段时间又反过来,呈现剧烈的周期波动.受到计算机模拟的启发,康奈尔大学的两位数学家Steven Strogatz 和Danielle Toupo 决定研究一下如果玩家中途改变策略会发生什么.“我觉得这个想法很吸引人,就想找到一种最简洁的数学模型来描述它,”Strogatz 说.他们试图回到最基础的原理,寻找纯粹的公式,而非复杂的计算机模拟.Strogatz 和Toupo 修正了“石头剪刀布”方程,允许一些“突变子女”存在,它们所采用的策略和亲代不同.此前的研究者也研究了突变,但一直假设突变是对称的,即每种策略变成其他策略的几率相同,但Strogatz 和To upo 考虑到了其他的模式,比如出石头的玩家可能会生下出布的子女,但反过来则不尽然.每种突变最终都会导致一种循环,即出石头、剪刀和布的玩家数都各自不停地上下波动,循环不息.而更令人惊讶的是,他们还证明哪怕突变率极低甚至接近于0,整个游戏还是会进入这种循环模式,论文发表于本月的《物理评论E 》(Physical ReviewE )中,只是增加了一点点突变的因素,游戏结果就不再是三种各占三分之一的稳定态或是剧烈波动态了, “我认为该研究最吸引入的一点是,这种‘游戏’在自然界中真的存在,”加州大学圣克鲁兹分校的生态学家BarrySinervo 说,他没有参与这项工作,“哪怕你不是数学家,也会欣赏这一研究.”Sinervo-直在研究加州一种侧斑鬣蜥,该蜥蜴的种群行为也会进入像“石头剪刀布”一样的振荡状态.Sinervo和同事通过野外的长期观察发现,采取侵略、合作和欺骗三种策略的蜥蜴数目有一个6年的变化周期,每一代新的蜥蜴诞生时,主导策略都会变化.Strogatz和Toupo的新研究为Sinervo的工作提供了数学模型,来解释了这种变化周期,“对我来说,这篇论文的有趣之处就在这里.”Sinervo说,由于数学方面的限制,康奈尔大学的研究者还不能证明他们的发现适用于所有的突变模式,但Strogatz说他们预测会如此.研究更广泛的突变模式也可以更进一步地提供数学基础,帮助我们解释自然界这个大剧场里物种策略的兴衰变迁.。
根的判别式与韦达定理
一元二次方程根与系数的关系应用例析及训练对于一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,其求根公式为:aacb b x 24221-±-=、;当0≥∆时,设一元二次方程的两根为21x x 、,有:a b x x -=+21,acx x =⋅21;根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当a b x x -=+21,ac x x =⋅21时,那么21x x 、则是方程)0(02≠=++a c bx ax 的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,除了要求熟记一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程)0(02≠=++a c bx ax 的两个根21x x 、,进而分解因式,即))((212x x x x a c bx ax --=++。
下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a 的取值范围中筛选符合条件的a 的整数值。
解: ?说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定a 的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出a ,这是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例2:不解方程,判别方程07322=-+x x 两根的符号 。
判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中021<⋅x x ,所以可判定方程的根为一正一负;倘若021>⋅x x ,仍需考虑21x x +的正负,倘若021>+x x ,则方程有两个正数根;倘若021<+x x ,则方程有两个负数根。
第六课 根的判别式与韦达定理
第六课 根的判别式与韦达定理一、知识点1.一元二次方程ax 2+bx +c =0〔a ≠0〕根的判别式:2.韦达定理:如果一元二次方程ax 2+bx +c =0〔a ≠0〕的两个根是12,x x ,那么有: 12x x +=_________ 12x x =_________ 二、例题例1 解关于x 的方程:〔1〕x 2-3x +3=0 〔2〕x 2-2x +a =0 〔3〕2210mx x ++=例2 方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.例3 关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.例4 12,x x 是方程2520x x --=两个实数根,求以下式子的值:①1211x x +;②2212x x +;③3312x x +;④()()1211x x --;⑤12x x -例5 两个数的和为4,积为-12,求这两个数.例6 求作一个方程,使它的根是方程2780x x -+=的两根的平方的负倒数.例7 假设关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.三、练习: 1.填空题:〔1〕假设关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,那么实数m 的取值范围是 .〔2〕方程kx 2+4x -1=0的两根之和为-2,那么k = .〔3〕关于x 的方程x 2-ax -3a =0的一个根是-2,那么它的另一个根是 .〔4〕如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 . 〔5〕一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,那么这个直角三角形的斜边长等于 .2.关于x 的方程x 2-kx -2=0.〔1〕求证:方程有两个不相等的实数根;〔2〕设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.3.一元二次方程22450x x --=的两个根分别是12,x x ,求以下式子的值:〔1〕12(2)(2)x x ++ 〔2〕3312x x + 〔3〕12x x -4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.5.假设关于x 的方程x 2+x +a =0的一个根大于1,另一根小于1,求实数a 的取值范围.。
一元二次方程之判别式法与韦达定理
一元二次方程之判别式法与韦达定理一知识点梳理一元二次方程ax2+bx+c=0a 、b 、c 属于R,a≠0根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程组,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用;韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用;1、一元二次方程根的判别式:ac b 42-=∆ 1当Δ>0时⇔方程有两个不相等的实数根; 2当Δ=0时⇔方程有两个相等的实数根; 3当Δ< 0时⇔方程没有实数根,无解; 4当Δ≥0时⇔方程有两个实数根5根的判别式△=b 2-4ac 的意义,在于不解方程可以判别根的情况,还可以根据根的情况确定未知系数的取值范围;2、一元二次方程根与系数的关系韦达定理:1若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 2以两个数21,x x 为根的一元二次方程二次项系数为1是:0)(21212=++-x x x x x x 3、一元二次方程的两根和与两根积和系数的关系在以下几个方面有着广泛的应用: 1已知方程的一根,求另一个根和待定系数的值; 2不解方程,求某些代数式的值;3已知两个数,求作以这两个数为根的一元二次方程; 4已知两数和与积,求这两个数; 5二次三项式的因式分解;注意:在应用根与系数的关系时,不要忽略隐含条件。
∆≥≠⎧⎨⎩00a例题讲解例1、当k 为何值时,关于x 的方程()222123x k x k k --=-++:⑴ 两个不相等的实数根; ⑵有两个相等的实数根; ⑶没有实数根;例2、m x mx mx m 为何值时,关于的方程有两个相等的实数根?并2350-++=求出这时方程的根;例3、已知方程的两实数根为、,不解方程求下列各式的值。
二元一次方程判别式与韦达定理专题
二元一次方程判别式与韦达定理专题知识小结:1、对于一个一元二次方程ax 2+bx +c =0(a ≠0).我们把把b 2-4ac 叫做一元二次方程ax 2+bx +c =0的根的判别式,通常用符号“△”表示. 当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根;当△<0时,没有实数根. 反之亦然.2、韦达定理:如果方程ax 2+bx+c=0(a ≠0)的两个根是X 1 , X 2 ,那么acx x a b x x =•-=+2121,(能用韦达定理的前提条件为△≥0 )巩固练习: 一、填空题1.已知2-240x x c -+=的一个根,则方程的另一个根是 . 2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2= 。
3.已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35 ,则m= ,这时方程的两个根为 . 4.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m = 。
5.方程2x(mx -4)=x 2-6没有实数根,则最小的整数m= ;6.已知方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,则m= ;7.设关于x 的方程x 2-6x+k=0的两根是m 和n ,且3m+2n=20,则k 值为 ; 三、解答题8.已知方程012=--x x 的两个实数根为21,x x ,求:(1) (2) (3)x 12+ x 1x 2+2 x 110.关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围。
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由11.已知关于x 的一元二次方程x 2+(m -1)x -2m 2+m=0(m 为实数)有两个实数根1x 、2x .(1)当m 为何值时,12x x ≠;(2)若22122x x += ,求m 的值.12.已知12,x x 是方程220x x a -+=的两个实数根,且1223x x +=(1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.13.已知关于x 的方程222(1)230x m x m m -++--=的两个不相等的实数根中有一个根为0,是否存在实数k ,使关于x 的方程22()520x k m x k m m ----+-=的两个实数根1x 、2x 之差的绝对值为1?若存在,求出k 的值;若不存在,请说明理由。
从韦达定理反推一元二次方程判别式
从韦达定理反推一元二次方程判别式
学夫子
一元二次方程的重要性显而易见,我也不多废话。
初中生都知道,一元二次方程ax2+bx+c=0的解的个数由其判别式
△=b2-4ac决议。
这个详细内容我也不废话,应该都知道。
明天我们来小小地发散思想,应用韦达定理反推判别式。
如今设方程ax2+bx+c=0的两个解为m和n,那么依据韦达定理有:
m+n=-b/a,mn=c/a
依据我们所学的不等式的内容,我们有下面的不等式成立:(m+n)≥4mn
如今将韦达定理的内容带入该式有:
b2/a2≥4c/a
两边同时乘以a2:
b2≥4ac
所以,假设原方程有两个实数根,必需要满足b2≥4ac,也就是我们的△≥0,当且仅当m=n时,b2=4ac。
原来,二次方程的判别式的来源,竟是一个我们熟知的不等式!虽然推理进程很复杂,不过,这外面融合了韦达定理,二次方程判别式,不等式,岂不快斋?
这个中央要说明的是,虽然在中学课本里,我们推导韦达定
理是运用求根公式,但是实践上我们有不用其求根公式的证明方法,所以,这样的反推没有循环论证。
况且,就算是有循环论证,作为一个课外的融合,作为一种串联各个知识点的方法,也未尝不可。
〔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理
【学习目标】 1、掌握一元二次方程根与系数的符号关系
2、利用韦达定理并结合判别式,求参数的值
【学习重点】一元二次方程根与系数的符号关系
【学习难点】利用韦达定理并结合判别式,求参数的值
【学习过程】
学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________
△>0⇔__________△=0 ⇔_____________△<0 ⇔__________
(2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2
x 1+x 2=____________, x 1x 2=_____________
解读教材:由根的判别式及韦达定理可得如下结论:
(1)若a 、c 异号 ⇒ ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根;
(2)有一个根为1 ⇔ a+b+c=0 ;
(3) 有一个根为—1 ⇔ a —b+c=0;
(4)有一个根为0 ⇔ c=0
(5)有两个正根 ⇔⎪⎩⎪⎨⎧+≥0210210>>△x x x x (6)有两个负根 ⇔
⎪⎩
⎪⎨⎧+≥0210210><△x x x x (7) 有一正根一负根 ⇔⎩⎨⎧0021<△>x x (8)两根同号 ⇔⎩⎨⎧≥002
1>△x x (9)两根互为相反数⇔⎩⎨⎧=⇒=+0
0021b x x △> (10)两根互为倒数⇔⎩⎨⎧=≥102
1x x △ (11)一根为正,一根为0 ⇔⎪⎩⎪⎨⎧=⇒=+00002
121c x x x x >△>
(12)一根为负,一根为0 ⇔⎪⎩⎪⎨⎧=⇒=+00002
121c x x x x <△>
(13)两根均为0⇔b=c=0
(14) 一根比a 大,一根比a 小⇔⎩⎨⎧--0
))(021<(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。
思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不
等式组即可求出k 的值。
解:由题意得:⎪⎩⎪⎨⎧+≥0210210>>△x x x x ⎪⎩⎪⎨⎧⇒ ⎪⎩
⎪⎨⎧⇒ ⇒
即时练习:
K 为何值时,方程4x 2—(k —1)x+k —7=0 的两个根具有下列关系:
(1)两根互为相反数 (2)两根互为倒数 (3)有一根为0
挖掘教材:
应用韦达定理的前提条件是一元二次方程有实数根,即应首先满足△≥0这一条件。
例2、已知方程x 2+kx+k=0有两个实数根,且两根的平方和为3,求k 的值。
解:由题意得:⎪⎪⎩⎪⎪⎨⎧=+=-=+≥302221
2121x x k
x x k x x △⇒=-+⇒32)(21221x x x x =⇒1k _______,=2k ______
当K1=_____时,△______;当K2=_____时,△______
故K 的值为______
归纳小结:二次项系数a ≠0和△≥0是实系数一元二次方程根与系数关系的前提。
因此,
在做题时,应优先考虑这两点。
即二次项系数与△优先的原则。
即时练习:
若方程2x 2-mx-4=0的两个实数根x 1,x 2满足11x +2
1x =2,求m 的值。
例2、已知关于x 的方程x 2-(2k-3)+k 2+1=0的两个实数根x1、x2满足:321=+x x ,求k 的值。
解:∵原方程有两个实数根,则△≥0
即[-(2k-3)]2-4(k 2+1)≥0 解之得:k______ ①
又∵x 1x 2=k 2+1>0,∴x 1与x 2同号;由:321=+x x 可得:x1+x2=±3 即 2k-3=±3 ,解之得:k1=_____,k2=______ ②
由①②可得:K=________
即时练习:
已知方程x 2-4x+6k=0两个实数根的平方差为8,求k 的值。
反思拓展:
1、 韦达定理:充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。
2、应用韦达定理的前提条件是这个方程是一元二次方程且有两个实数根,即应用韦达定理解题时,须首先满足二次项系数a ≠0和判别式△≥0这两个条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性。
3、应用韦达定理求根的代数式的值,一般是关于x 1,x 2的对称式,这类问题可通过变形X 1+x 2和x 1x 2表示求解,而非对称式的求值常用到以下技巧:
(1)恰当组合 (2)根据根的定义降次 (3)构造对称式
【达标检测】
1、(广州)关于x 的一元二次方程x 2-x+a(1-a)=0有两个不相等的正根,则a 可取的值为____ (只要填写一个可能的值即可)
2、(2005年.淮安)已知关于x 的一元二次方程x 2+4x+a=0有两个实数根,且2x 1-x 2=7,则a=____
3、(2005年.荆州)若α、β是方程x 2+2x-2005=0的两个实数根,则α2+3α+β的值为_____
4、在等腰三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知a=3,b 和c 是关于x 的方程x 2+mx+2-2
1m=0的两个实数根,求△ABC 的周长。
5、(盐城) 已知关于x 的方程x 2+2(2-m )x+3-6m=0
(1) 求证:无论m 取什么实数,方程总有实数根。
(2)如果方程的两实数根分别为x 1、x 2,满足x 1=3x 2,求实数m 的值。
6、(2005年.南通)已知关于x 的方程x 2-kx+k 2+n=0有两个不相等的实数根x 1、x 2,且 (2x 1+x 2)2-8 (2x 1+x 2)+15=0 求证:(1)n<0 (2)试用k 的代数式表示x 1
(3)当n= - 3 时,求k 的值。
7、(2005年.天津))已知关于x 的方程x 2+2px+1=0的两个实数根一个小于1,另一个大于1,求实数p 的取值范围。