2019年江苏省泰州市姜堰市梁徐初级中学中考数学二模试卷(解析版)

合集下载

2019年江苏省泰州市中考数学二模名师精编试题附解析

2019年江苏省泰州市中考数学二模名师精编试题附解析

2019年江苏省泰州市中考数学二模名师精编试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知OA 垂直于直线l 于点A ,OA =3,⊙O 的半径为2,若将直线l 沿AO 方向平移,使直线l 与⊙O 相切,则平移距离可以是( ) A .1 B .5 C .2D .1或52. 已知函数y =ax 2+bx +c 的图像如图(1)所示,则函数y =ax +b 的图像只可能是图(2)中的( )3.抛物线2321y x x −=−与x 轴的交点坐标是( )A . (13−,0)(1,0) B .(13,0)(-1,0) C .(3,0)(1,0) D .(-3,0)(-1,0)4.数据3,19,35,26,26,97,96的极差为( ) A .94B .77C .9D .无法确定5.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示 的是该位置上立方体的个数,则这个几何体的主视图是( )A .B .C .D .6.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数7. 一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是( )8.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a −−;②256(5)a a a −−−;③265(6)a a a −−−;④25630a a a −−+其中正确的有( ) A .1 个B . 2 个C .3 个D . 4 个9.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x二、填空题10.双曲线y =kx 和一次函数y =ax +b 的图象的两个交点分别是A(-1,-4),B(2,m), 则a +2b =____________.11.如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为_____cm .12.已知等腰梯形的上、下底边长分别是2,10,腰长是5,则这个梯形的面积是 . 13.如图,在正方形ABCD 中,EF ⊥GH ,若∠AFE=30°,则∠GHC= .14.如图,在三角形纸片ABC 中,将么A 沿DE 翻折.使A 落在A ′处.根据图中所标数据, 则∠l+∠2= .15. 32a −中,a 的取值范围是 .16.某批零件的质量如下(单位:千克): 201, 207,199,204,201,191,206, 205,184,214,192,206,199,217, 209,200,213,217,186,214,194, 208,219,226,215.求这批零件的平均质量是 (结果精确到个位).17.某人乘电梯从1楼到5楼,这一运动过程可以看作 变换. 18.观察下表: 通过以上信息,用你发现的规律得出 182008的个位数字是 .19.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯.已知这种地毯每平方米售价30元,主楼梯宽2 m ,其侧面如图所示,则购买地毯至少需要 元.20.下面方程的解法错在 (填解题步骤序号),正确钓结果是x = . 解方程12x 1224x−+=− . 解:去分母,得2(12x}2(1)x −=−+ . ① 去括号,得2421x x −=−− . ② 移项、合并同类项.得31x −=− ③ 解得13x = . ④21.如图,∠AOC=50°,∠BOD=40°,∠AOD=60°.则∠l= ,∠2= ,∠3= .三、解答题22.铁道口的栏杆如图,短臂OD 长1.25 m ,长臂OE 长 16.5 m ,当短臂端点下降0.85m (AD 长) 时,求长臂端点升高多少m (BE 的长)? (不计杆的高度)幂的运算 18 182 183 184 185 186 187 188 … 结果的个位数字84268426…ODA EB23.已知圆锥的全面积为12πcm2,侧面积为8πcm2,试求圆锥的高与母线之间的夹角.24.如图所示,四边形ABCD中,∠B=90°,AB=4,BC=3,CD=12.AD=13,求四边形ABCD的面积.25.已知等腰三角形△ABC中,AB=AC,AC边上的中线BD将它的周长分成9 cm和8 cm两部分,求腰长.26.如图所示的四个图形是不是轴对称图形(不考虑颜色)?如果是,请画出它的对称轴.这四个图形能不能经过旋转与自身重合?如果能,在图中标出旋转中心,并说明分别需要旋转多少度?27.如图,四边形A′B′C′D′是由四边形ABCD旋转得到的,请找出旋转中心,并量出旋转角的度数.28.在第26届国际奥林匹克运动会上,获得金牌前七名的国家的奖牌情况如下:国家金牌银牌铜牌美国443225俄罗斯262116德国201827中国162212法国15715意大利131012澳大利亚9923(1)统计员通过什么方法得到表中的数据?(2)你从这些数据中获得了关于比赛的哪些信息和结论?29.先化简,再求值:3x2+4x-(2x2+x)+(x2-3x-1) 其中x=-3.30.在如图所示的数轴上表示数-3、0、52−、1,并比较它们的大小,将它们按从小到大的顺序用“<”连接.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.A5.A6.B7.A8.D9.D二、填空题10.-2512.1813.120°14.60°15.32a ≤16. 20517.平移18.619.48020.①,53−21.10°,30°,20°三、解答题 22.∵∠DAO=∠EBO=90°,∠AOD=∠BOE ,∴△AOD ∽△BOE. ∴DO AD EO BE =,即1.250.8516.5BE=, ∴BE=11.22.答:长臂端点升高 11.22 m .23.高与母线之间的夹角为30°24.连结AC ,根据勾股定理得∠ACD=90°,S 36ABCD S =四边形6cm或163cm26.轴对称图形:①③④,画图略;①②③④都是能经过旋转与自身重合,旋转中心都是中间一点,旋转角度分别为90°,60°,90°,72°27.略28.(1)统计员通过观察或调查得到表中的数据 (2)例:金牌最多的国家为美国,奖牌数最多的国家为美国,按金牌数的排序前三名依次为美国、俄罗斯、德国29.原式=2x2-1,当x=-3时,原式=1730.在数轴上表示如图所示.各数的大小关系为53012−<−<<。

姜堰初三数学二模试卷答案

姜堰初三数学二模试卷答案

一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x - 1,若f(x) > 0,则x的取值范围是()A. x > 0.5B. x < 0.5C. x > 0D. x < 1答案:A解析:由f(x) > 0得2x - 1 > 0,解得x > 0.5。

2. 下列选项中,不是一次函数图象的是()A. y = 2x + 3B. y = -x + 4C. y = x^2 - 1D. y = 3答案:C解析:一次函数的图象是一条直线,而C选项中的函数是二次函数,其图象是抛物线。

3. 若m + n = 5,m - n = 1,则mn的值为()A. 12B. 10C. 8D. 6答案:A解析:由m + n = 5和m - n = 1,可得m = 3,n = 2,因此mn = 3 × 2 = 6。

4. 在等腰三角形ABC中,AB = AC,AD是底边BC上的高,若∠BAC = 40°,则∠ADB的度数是()A. 40°B. 50°C. 60°D. 70°答案:B解析:在等腰三角形ABC中,∠BAC = ∠ACB = 40°,因为AD是高,所以∠ADB = 90° - ∠BAC = 90° - 40° = 50°。

5. 下列选项中,不是勾股数的是()A. 3, 4, 5B. 5, 12, 13C. 6, 8, 10D. 7, 24, 25答案:C解析:勾股数满足勾股定理a^2 + b^2 = c^2,而6^2 + 8^2 ≠ 10^2,所以C选项不是勾股数。

二、填空题(每题5分,共20分)6. 若x^2 - 3x + 2 = 0,则x的值为______。

答案:1或2解析:因式分解x^2 - 3x + 2 = (x - 1)(x - 2) = 0,解得x = 1或x = 2。

泰州市姜堰区中考二模数学试卷及答案

泰州市姜堰区中考二模数学试卷及答案

2019年中考适应性考试(二)数学试题(考试时间:120分钟 总分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的倒数是 ( ▲ )A .―2B .2C .21D .±2 2. 下列图形中既是中心对称图形,又是轴对称图形的是 ( ▲)A B C D3. 估算7的值 ( ▲ ) A .在2和3之间B .在3和4之间C .在4和5之间D .无法确定4. 下列命题中,其中正确命题的个数为( )个. ( ▲ ) ①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .4 5. 如图,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC = ( ▲ ) A .55°B .110°C .125°D .70°6. 已知过点(1,2)的直线y =ax +b (a ≠0)不经过第四象限,设S =a +2b ,则S 的取值范围为( ▲ )A .2<S <4B .2≤S <4C .2<S ≤4D .2≤S ≤4第5题图第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相....应位置...上) 7. PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表 示为 ▲ .8. 如果代数式3+x 有意义,则实数x 的取值范围是 ▲ . 9. 一组数据1,0,2,1的方差S 2= ▲ . 10. 计算:(-y 2)3÷y 5= ▲ . 11. 分解因式:4a 3- a = ▲ .12. 圆锥的母线长为8cm ,底面圆半径为3cm ,则这个圆锥的侧面积为 ▲ cm 2. 13. 飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数关系式为: s =80t -2 t 2,则飞机着陆后滑行的最远距离是 ▲ m.14. 如图,在Rt △ABC 中,∠C =90°,AB =42,以AB 的中点O 为圆心作圆,圆O 分别与AC 、BC 相切于点D 、E 两点,则弧DE 的长为 ▲ .第14题图E第15题图BC第16题图DC15. 如图,G 为△ABC 的重心,过点G 作DE ∥BC ,交AB 、AC 分别于D 、E 两点, 若△ADE 的面积为2,则△ABC 的面积为 ▲ .16. 已知:直线l 经过等边△ABC 的顶点A ,点B 关于直线l 的对称点为点D ,连接CD 交直线l 于点E ,若∠ACD =20°,则∠EAB = ▲ °.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分) (1)计算:(2+3)0+3tan30°-23-+1)21(- (2)解方程:13+=-x xx x18.(本题满分8分) 先化简,再求值:)69(39222++÷--aa a a a ,其中a 2-4a +3=0.19.(本题满分8分)为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求. 学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题. (1)求m 、n 的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?20.(本题满分8分)一个不透明的口袋中有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,小明将球搅匀后从中摸出一个球是红球的概率是0.25. (1)求口袋中红球的个数;(2)若小明第一次从中摸出一个球,放回搅匀后再摸出一个球,请通过树状图或者列表的方法求出小明两次均摸出红球的概率.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元. (1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.(本题满分10分)如图,在平面直角坐标系中,一次函数y =x +b 的图象经过点A (0,1),与反比例函数xky =(x >0)的图象交于B (m ,2). (1)求k 和b 的值; (2)在双曲线xky =(x>0)上是否存在点C ,使得△ABC 为等腰直角三角形,若存在,求出点C 坐标;若不存在,请说明理由.一游客步行从宾馆C 出发,沿北偏东60°的方向行走到1000米的人民公园A 处,参观后又从A 处沿正南方向行走一段距离到达位于宾馆南偏东45°方向的净业寺B 处,如图所示.(1)求这名游客从人民公园到净业寺的途中到宾馆的最短距离;(2)若这名游客以80米/分的速度从净业寺返回宾馆,那么他能在10分钟内到达宾馆吗?请通过计算说明理由.(假设游客行走的路线均是沿直线行走的)24.(本题满分10分)如图,在Rt △ABC 中,∠ACB =90°,点O 为△ABC 外接圆的圆心,将△ABC 沿AB 翻折后得到△ABD .(1)求证:点D 在⊙O 上;(2)在直径AB 的延长线上取一点E ,使DE 2=BE ·AE .①求证:直线DE 为⊙O 的切线;②过点O 作OF ∥BD 交AD 于点H ,交ED 的延长线 于点F . 若⊙O 的半径为5,cos ∠DBA =53,求FH 的长.第24题图AC如图,在平面直角坐标系中,矩形OABC 的顶点A 在x 轴上,点C 在y 轴上,点B 的坐标为(8,4),动点D 从点O 向点A 以每秒两个单位....的速度运动,动点E 从点C 向点O 以每秒一个单位....的速度运动,设D 、E 两点同时出发,运动时间为t 秒,将△ODE 沿DE 翻折得到△FDE .(1)若四边形ODFE 为正方形,求t 的值; (2)若t =2,试证明A 、F 、C 三点在同一直线上;(3)是否存在实数t ,使△BDE 的面积最小?若存在,求出t 的值;若不存在,请说明理由.x26.(本题满分14分)已知二次函数y 1=ax 2+bx +c (a >0)的图像与x 轴交于A (-1,0)、B (n ,0)两点,一次函数y 2=2x +b 的图像过点A .(1)若a =21, ①求二次函数y 1=ax 2+bx +c (a >0)的函数关系式;②设y 3=y 1-my 2,是否存在正整数m ,当x ≥0时,y 3随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由;(2)若13<a <25,求证:-5<n <-4.2019年中考适应性考试(二)数学参考答案一、选择1-6 C D A C C B 二、填空7. 2.5×10-6 8. x ≥-3 9. 2110. –y 11. a (2 a +1)(2 a -1) 12. 24π 13. 800 14. π 15. 2916. 40°或100°三、解答题17. (1)解:原式=1+3×2)32(33+-- =1+2323++-=321+ (2)解:3222--=x x x 32=-x 23-=x 经检验:23-=x 是原方程的解 18. 解:原式=)3()3)(3(--+a a a a ·962++a a ax 2-4a +3=0=a a 3+·2)3(+a a a 1=1 a 2=3(舍去) =31+a ∴原式=4119. 解:(1)70÷35%=200(人)n=200×30%=60 m=200-70-60-40=40(2)2000×40200=400 (人) 答:略. 20. 解:(1)设红球有x 个,依题意得:0.2521xx=++x =1经检验:x =1是原方程的解 答:略.∴P (红,红)=1621.(1)设商品每件进价x 元,乙商品每件进价y 元,得 ⎩⎨⎧=+=+13022403y x y x解得:⎩⎨⎧==7030y x答:甲商品每件进价30元,乙商品每件进价70元(2)设甲商品进a 件,乙商品(100-a )件,由题意得 a ≥4(100-a ) a ≥80设利润为y 元,则y=10 a +20(100- a ) =-10 a +2000∵y 随a 的增大而减小∴要使利润最大,则a 取最小值 ∴a =80∴y=2000-10×80=1200答:甲商品进80件,乙商品进20件,最大利润是1200元. 22.(1)将A(0,1)代入y =x +b 中 0+b=1 ∴b=1将B(m,2)代入y=x+1中 m+1=2 ∴m=1 ∴B(1,2)将B(1,2)代入xk y =中 k =1×2=2 ∴k =2,b =1 (2)分情况讨论:△ABC 是等腰直角三角形当∠CAB=90°时,C 为(-1,2)或(1,0),均不在x y 2=上 当∠ACB=90°时,C 为(1,1)或(0,2),均不在x y 2=上当∠ABC=90°时,C 为(2,1)或(0,3),代入xy 2=中,C(2,1)满足∴C(2,1)23.(1)过点C 作CH ⊥AB 交AB 于点H 在Rt △ACH 中 ∵∠ACH=30° ∴CH=1000·cos30°=1000×23=5003 答:到宾馆的最短距离为5003米.(2)方法一:在Rt △CHB 中,∠BCH=45°,CH=5003 ∴BC=CH÷cos45°=5003×2=5006∴t=6425806500=>10 ∴不能到达宾馆 方法二:80106500> ∴不能到达宾馆 方法三:=5006>80×10∴不能到达宾馆24.(1)证明:连OD ,∵∠ACB=90°,∴AB 为直径,由翻折可知△ADB ≌△ACB ,∴∠ADB=90° ∵O 为AB 中点,∴OD=21AB ,∴D 在⊙O 上 (2)∵DE 2=BE·AE ,∴AEDEDE BE =,∠E=∠E ,∴△EBD ∽△EDA, ∴∠EDB=∠DAE ∵OD=OB, ∴∠ABD=∠ODB ∵∠ADB=90°, ∠DAB+∠DBA=90°, ∴∠EDB+∠ODB=90°, ∴∠EDO=90° ∴DE 为⊙O 切线(3)在Rt △ADB 中,∵cos ∠DBA=53=AB BD ,AB=10,∴BD=6 ∴AD=22BD AB -=22610-=8,∵∠ADB=90°,OF ∥BD ,∴∠FHD=∠ADB=90° ∵OH ⊥AD ,∴HD=21AD=4,又∵OA=OB ∴OH=21BD=3 ∵∠HOD=∠ODB=∠ABD ,∴cos ∠HOD=53,即53=FO OD ∴FO=325,∴FH=FO-HO=325-3=316 25.(1)∵矩形OABC 中,B(8,4)∴OA=8,OC=4∵四边形ODEF 为正方形,∴OE 平行且等于DF ∵△ODE 沿DE 翻折得到△FDE ,∴OD=DF ∵OD=2t,OE=4-t∴2t=4-t,t=34 (4分) (2)方法一 t=2, ∴OE=4-2=2=21OC OD=2t=4=21OA ∴DE 平行且等于21AC ∵△ODE 沿DE 翻折得△FDE∴OE=EF=2,DF=OD=4∴DE 垂直平分OF连OF 交DE 于H ,∴OH=FH∵S △ODE =21OH·DE=21OE·OD ∴OH=554,OF=558 过F 作FM ⊥OC ,FN ⊥OA ,M 、N 为垂足∴∠MFN=∠EFD=90°,∠MFN=∠DFN ∵∠FME=∠FND=90°,∴△MFB ∽△NFD∴FN FM =FD EF =21,∴FN=2FM ∵FN 2+FM 2=OF 2=564 ∴FM 2=564 ∴FM=58,FN=516 ∴F(58,516) 设直线AC 的解析式为y=kx+b(k≠0)⎩⎨⎧==+408b b k ,k=-21 ∴y=-21x+4 ∵当x=58时,y=-21×58+4=516 ∴点F 在直线AC 上,即A 、C 、F 三点共线 方法二:过O 作OG ⊥AC 交DE 于H∵t=2, ∴OE=BE=2,OD=DE=4,∴DE 平等且等于21AC ∴OG OH =OC OE =21 ∴DE 垂直平分OF∴G 与F 点重合即A 、C 、F 三点在同一条直线(用其它方法证明也行)(3)∵S △BDE = S △ABC -S △BCE -S △ABD -S △ODE =32-21t×8-21×4×(8-2t)- 21×2t(4-t) =32-4t-16+4t-4t+t 2=t 2-4t+16t=2时,S △BDE 有最小值为1226. 解:∵y 1=ax 2+bx+c(a >0)过点A∴a-b+c=0∵y 2=2x+b 的图像过点A∴b=2∴c=2-a(1)①∵a=21 ∴c=2-21=32∴y 1=21x 2+2x+32 ②y 3=21x 2+2x+32-m (2x+2) =21x 2+(2-2m )x+(32-2m ) ∵在x ≥0时,y 3随x 的增大而增大 ∴对称轴22220122m x m -=-=-≤⨯ ∴m ≤1∵m 是正整数∴m=1(2)∵y 1=ax 2+2x+(2-a )的对称轴为212x a a=-=- 又∵13<a <25∴15-3-2a -<< 又∵A(-1,0)、B (n ,0)两点关于对称轴对称 ∴11-1--=--n a a ()∴211(n n a=-+=-或舍) ∴-5<n <-4方法二:用求根公式直接算出B 的坐标为(210n a=-+,) 由a 的范围确定n 的范围.。

2019年江苏省泰州市姜堰区中考数学二模试卷(解析版)

2019年江苏省泰州市姜堰区中考数学二模试卷(解析版)

2019年江苏省泰州市姜堰区中考数学二模试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2的倒数是()A.﹣2B.2C.D.﹣2.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)估算的值()A.在2和3之间B.在3和4之间C.在4和5之间D.无法确定4.(3分)下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.45.(3分)如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A.55°B.110°C.125°D.70°6.(3分)已知过点(1,2)的直线y=ax+b(a≠0)不经过第四象限,设S=a+2b,则S 的取值范围为()A.2<S<4B.2≤S<4C.2<S≤4D.2≤S≤4二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.8.(3分)若代数式有意义,则实数x的取值范围是.9.(3分)一组数据1,0,2,1的方差S2=.10.(3分)计算:(﹣a2)3÷a5=.11.(3分)分解因式:4a3﹣a=.12.(3分)已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.13.(3分)飞机着陆后滑行的距离S(单位:m)与滑行的时间t(单位:s)的函数关系式是S=80t﹣2t2,飞机着陆后滑行的最远距离是m.14.(3分)如图,在Rt△ABC中,∠C=90°,AB=4,以AB的中点O为圆心作圆,圆O分别与AC、BC相切于点D、E两点,则弧DE的长为.15.(3分)如图,G为△ABC的重心,过点G作DE∥BC,交AB、AC分别于D、E两点,若△ADE的面积为2,则△ABC的面积为.16.(3分)已知:直线l经过等边△ABC的顶点A,点B关于直线l的对称点为点D,连接CD交直线l于点E,若∠ACD=20°,则∠EAB=°.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(2+)0+3tan30°﹣+(2)解方程:18.(8分)先化简,再求值:,其中a2﹣4a+3=0.19.(8分)为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题.(1)求m、n的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?20.(8分)一个不透明的口袋中有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,小明将球搅匀后从中摸出一个球是红球的概率是0.25.(1)求口袋中红球的个数;(2)若小明第一次从中摸出一个球,放回搅匀后再摸出一个球,请通过树状图或者列表的方法求出小明两次均摸出红球的概率.21.(10分)五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.(10分)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(0,1),与反比例函数y=(x>0)的图象交于B(m,2).(1)求k和b的值;(2)在双曲线y=(x>0)上是否存在点C,使得△ABC为等腰直角三角形?若存在,求出点C坐标;若不存在,请说明理由.23.(10分)一游客步行从宾馆C出发,沿北偏东60°的方向行走到1000米的人民公园A 处,参观后又从A处沿正南方向行走一段距离到达位于宾馆南偏东45°方向的净业寺B 处,如图所示.(1)求这名游客从人民公园到净业寺的途中到宾馆的最短距离;(2)若这名游客以80米/分的速度从净业寺返回宾馆,那么他能在10分钟内到达宾馆吗?请通过计算说明理由.(假设游客行走的路线均是沿直线行走的)24.(10分)如图,在Rt△ABC中,∠ACB=90°,点O为△ABC外接圆的圆心,将△ABC 沿AB翻折后得到△ABD.(1)求证:点D在⊙O上;(2)在直径AB的延长线上取一点E,使DE2=BE•AE.①求证:直线DE为⊙O的切线;②过点O作OF∥BD交AD于点H,交ED的延长线于点F.若⊙O的半径为5,cos∠DBA=,求FH的长.25.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,点B的坐标为(8,4),动点D从点O向点A以每秒两个单位的速度运动,动点E从点C向点O以每秒一个单位的速度运动,设D、E两点同时出发,运动时间为t秒,将△ODE沿DE翻折得到△FDE.(1)若四边形ODFE为正方形,求t的值;(2)若t=2,试证明A、F、C三点在同一直线上;(3)是否存在实数t,使△BDE的面积最小?若存在,求出t的值;若不存在,请说明理由.26.(14分)已知二次函数y1=ax2+bx+c(a>0)的图象与x轴交于A(﹣1,0)、B(n,0)两点,一次函数y2=2x+b的图象过点A.(1)若a=,①求二次函数y1=ax2+bx+c(a>0)的函数关系式;②设y3=y1﹣my2,是否存在正整数m,当x≥0时,y3随x的增大而增大?若存在,求出正整数m的值;若不存在,请说明理由;(2)若<a<,求证:﹣5<n<﹣4.2019年江苏省泰州市姜堰区中考数学二模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填涂在答题卡相应位置上)1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:2的倒数是,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、是中心对称图形,也是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据的范围,即可得出答案.【解答】解:∵,∴,故在2和3之间.故选:A.【点评】本题考查了估算无理数的大小的应用,解此题的关键是熟练掌握二次根式的性质.4.【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【解答】解:①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.【分析】根据圆周角定理求出∠B,根据圆内接四边形的性质计算即可.【解答】解:由圆周角定理得,∠B=∠AOC=55°,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=180°﹣∠B=125°,故选:C.【点评】本题考查的是圆周角定理、圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.【分析】根据一次函数图象与系数的关系可得a>0,b≥0,将点(1,2)代入y=ax+b,得到a+b=2,即b=2﹣a.由a>0,b≥0得出不等式组,解不等式组求出a 的范围,再根据不等式的性质即可求出S的取值范围.【解答】解:∵过点(1,2)的直线y=ax+b(a≠0)不经过第四象限,∴a>0,b≥0,a+b=2,∴b=2﹣a,∴,解得:0<a≤2,所以S=a+2b=a+2(2﹣a)=4﹣a,∴﹣2≤﹣a<0,∴2≤4﹣a<4,即S的取值范围为:2≤S<4,故选:B.【点评】本题考查的是一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式组,以及不等式的性质.掌握一次函数y=kx+b(k≠0)中,当k>0,b≥0时函数的图象不经过第四象限是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵代数式有意义,∴x+3≥0,即x≥﹣3.故答案为:x≥﹣3.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键9.【分析】利用方差的计算公式计算即可.【解答】解:=(1+0+2+1)=1,则S2=[(1﹣1)2+(0﹣1)2+(2﹣1)2+(1﹣1)2]=0.5,故答案为:0.5.【点评】本题考查的是方差的计算,掌握方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x2]是解题的关键.n﹣)10.【分析】根据同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.【解答】解:原式=﹣a6÷a5=﹣a.故答案为﹣a.【点评】本题考查了同底数幂的乘除法以及积的乘方和幂的乘方,是基础知识要熟练掌握.11.【分析】先提取公因式a,再利用平方差公式继续分解.【解答】解:4a3﹣a,=a(4a2﹣1),=a(2a+1)(2a﹣1).【点评】本题考查了提公因式法与公式法分解因式,分解因式时,有公因式的,先提公因式,再考虑运用何种公式法来分解.12.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×8=24πcm2.故答案为24π.【点评】本题利用了圆的周长公式和扇形面积公式求解.解题的关键是了解圆锥的有关元素与扇形的有关元素的对应.13.【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【解答】解:∵﹣2<0,∴函数有最大值.当t=﹣=20时,s最大值==800(米),即飞机着陆后滑行800米才能停止.故答案为:800.【点评】此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.14.【分析】连接OE,OD,根据切线的性质得到OE⊥BC,OD⊥AC,推出矩形OECD是正方形,得到CE=CD,∠EOD=90°,根据全等三角形的性质得到BE=OD,OE=AD,求得BE=OE=OD=AD,根据等腰直角三角形的性质得到AB=4,求得OE=OD=2,根据弧长公式即可得到结论.【解答】解:连接OE,OD,∵圆O分别与AC、BC相切于点D、E两点,∴OE⊥BC,OD⊥AC,∵∠C=90°,∴四边形OECD是矩形,∵OE=OD,∴矩形OECD是正方形,∴CE=CD,∠EOD=90°,∴∠B+∠BOE=∠BOE+∠AOD=90°,∴∠B=∠AOD,∵∠BEO=∠ADO=90°,OB=OA,∴△BOE≌△OAD(AAS),∴BE=OD,OE=AD,∴BE=OE=OD=AD,∴∠B=∠A=45°,∵AB=4,∴OE=OD=2,∴弧DE的长==π,故答案为:π.【点评】本题考查了切线的性质,正方形的判定和性质,等腰直角三角形的判定和性质,弧长的计算,正确的作出辅助线是解题的关键.15.【分析】延长AG交BC于H,根据三角形的重心的性质得到AG=2GH,根据平行线的性质、相似三角形的性质计算即可.【解答】解:如图,延长AG交BC于H,∵G为△ABC的重心,∴AG=2GH,∵DE∥BC,∴==,∵DE∥BC,∴△ADE∽△ABC,相似比为,∴△ADE与△ABC的面积之比为,∵△ADE的面积为2,∴△ABC的面积为.故答案为.【点评】本题考查的是三角形的重心的概念、相似三角形的判定和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.【分析】分两种情形分别画出图形,利用等腰三角形以及等边三角形的性质求解即可.【解答】解:如图1中,当射线CD在AC的下方时,∵AD=AC,∴∠ACD=∠ADC=20°,∴∠ADC=180°﹣20°﹣20°=140°,∵∠BAC=60°,∴∠DAC=140°﹣60°=80°,由翻折可知:∠EAB=∠EAD=∠DAB=40°.如图2中,当射线CD在AC的上方时,同法可得:∠DAC=140°,∠EAD=∠EAB=(60°+140°)=100°,故答案为40°或100.【点评】本题考查等边三角形的性质,等腰三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1+3×﹣2++2=1+2;(2)去分母得:x2=x2﹣2x﹣3,移项合并得:﹣2x=3,解得:x=﹣1.5,经检验x=﹣1.5是原方程的解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=•=∵a2﹣4a+3=0,∴a 1=1 a 2=3(舍去)∴原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.【分析】(1)根据喜爱篮球的人数÷其所占的百分比得到总人数,再由总人数乘以喜爱排球的人数所占百分比得到n,用总人数﹣喜爱篮球人数﹣喜爱排球的人数﹣喜爱其他人数,即可确定出m的值;(2)求出喜欢踢足球的学生人数所占的百分比,乘以2000即可得到结果.【解答】解:(1)70÷35%=200(人)n=200×30%=60,m=200﹣70﹣60﹣40=40;(2)2000×=400 (人)答:该校喜欢踢足球的学生人数是400人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20.【分析】(1)设红球有x个,根据概率公式列出方程,然后求解即可;(2)根据题意列出图表得出所有等情况数和小明两次均摸出红球的个数,再根据概率公式即可得出答案.【解答】解:(1)设红球有x个,依题意得:=0.25,解得:x=1,经检验:x=1是原方程的解答:口袋中红球有1个.(2)根据题意列表如下:共有16种等情况数,其中两次均摸出红球的有1种,所以小明两次均摸出红球的概率:P(红,红)=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)根据购进甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.【解答】(1)设商品每件进价x元,乙商品每件进价y元,得,解得:,答:甲商品每件进价30元,乙商品每件进价70元;(2)设甲商品进a件,乙商品(100﹣a)件,由题意得,a≥4(100﹣a),a≥80,设利润为y元,则,y=10 a+20(100﹣a)=﹣10 a+2000,∵y随a的增大而减小,∴要使利润最大,则a取最小值,∴a=80,∴y=2000﹣10×80=1200,答:甲商品进80件,乙商品进20件,最大利润是1200元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.【分析】(1)将点A坐标代入直线y=x+b中求出b,进而求出点B坐标,最后代入反比例函数解析式中,求出k;(2)先求出AB的长,再分三种情况,利用等腰直角三角形的性质求出点C的坐标,判断即可得出结论.【解答】解:(1)将A(0,1)代入y=x+b中得,0+b=1∴b=1将B(m,2)代入y=x+1中得,m+1=2∴m=1∴B(1,2)将B(1,2)代入中得,k=1×2=2∴k=2,b=1;(2)∵A(0,1),B(1,2),∴AB=,由(1)知,b=1,∴直线AB的解析式为y=x+1,分情况讨论:△ABC是等腰直角三角形①当∠CAB=90°时,AC=AB,∴直线AC的解析式为y=﹣x+1,设C(c,﹣c+1),∴AC==,∴c=±1,∴C为(﹣1,2)或(1,0),将点C代入中判断出都不在双曲线上,.②当∠ABC=90°时,同①的方法得,C为(2,1)或(0,3),将点C坐标代入中得,判断出点C(2,1)在双曲线上,③当∠ACB=90°时,∵A(0,1),B(1,2),易知,C为(1,1)或(0,2),将点C代入中判断出都不在双曲线上,∴C(2,1).【点评】此题是反比例函数综合题,主要考查了待定系数法,两点间的距离公式,等腰直角三角形的性质,用分类讨论的思想解决问题是解本题的关键.23.【分析】(1)过点C作CH⊥AB交AB于点H,根据三角函数的定义即可得到结论;(2)根据三角函数的定义得到BC=CH÷cos45°=500×=500,求得t=>10,于是得到结论.【解答】解:(1)过点C作CH⊥AB交AB于点H,在Rt△ACH中,∵∠ACH=30°,∴CH=1000•cos30°=1000×=500,答:到宾馆的最短距离为500米;(2)在Rt△CHB中,∠BCH=45°,CH=500,∴BC=CH÷cos45°=500×=500,∴t=>10,∴不能到达宾馆.【点评】本题考查了解直角三角形的应用﹣﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.24.【分析】(1)连接OD,由圆周角定理得出AB为直径,由翻折可知△ADB≌△ACB,得出∠ADB=90°,证出OD=AB即可;(2)①先证明△EBD∽△EDA,得出∠EDB=∠DAE,由等腰三角形的性质得出∠ABD =∠ODB,由∠DAB+∠DBA=90°,得出∠EDB+∠ODB=90°,证出∠EDO=90°,即可得出结论;②由三角函数得出BD=6,由勾股定理得出AD=8,证出HD=AD=4,由三角形中位线定理得出OH=BD=3,由三角函数求出FO=,即可得出结果.【解答】(1)证明:连接OD,如图所示:∵∠ACB=90°,∴AB为直径,由翻折可知△ADB≌△ACB,∴∠ADB=90°,∵O为AB中点,∴OD=AB,∴D在⊙O上;(2)①证明:∵DE2=BE•AE,∴,∠E=∠E,∴△EBD∽△EDA,∴∠EDB=∠DAE,∵OD=OB,∴∠ABD=∠ODB,∵∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠EDB+∠ODB=90°,∴∠EDO=90°,∴DE为⊙O切线;②解:在Rt△ADB中,∵cos∠DBA=,AB=10,∴BD=6,∴AD===8,∵∠ADB=90°,OF∥BD,∴∠FHD=∠ADB=90°,∵OH⊥AD,∴HD=AD=4,又∵OA=OB,∴OH=BD=3,∵∠HOD=∠ODB=∠ABD,∴cos∠HOD=,即,∴FO=,∴FH=FO﹣HO=﹣3=.【点评】本题是圆的综合题目,考查了圆周角定理、翻折变换的性质、相似三角形的判定与性质、三角形中位线定理、勾股定理、三角函数、等腰三角形的性质等知识;本题综合性强,熟练掌握圆周角定理和翻折变换的性质,证明三角形相似是解题的关键.25.【分析】(1)由正方形的性质得出OE∥DF,OE=DF由折叠的性质得出OD=DF,由OD=2t,OE=4﹣t,得出方程2t=4﹣t,解方程即可;(2)连接AC,作OG⊥AC于G,由t=2,得出OE=CE=2,OD=DA=4,由三角形中位线定理得出DE∥AC,且DE=AC,由平行线得出==,得出DE垂直平分OF,得出G与F点重合,即可得出结论;(3)由题意得出S△BDE=S矩形OABC﹣S△BCE﹣S△ABD﹣S△ODE=t2﹣4t+16,由二次函数的性质即可得出结果.【解答】(1)解:∵矩形OABC中,B(8,4),∴OA=8,OC=4,∵四边形ODEF为正方形,∴OE∥DF,OE=DF,∵△ODE沿DE翻折得到△FDE,∴OD=DF,∵OD=2t,OE=4﹣t,∴2t=4﹣t,t=;(2)证明:连接AC,作OG⊥AC于G,如图1所示:∵t=2,∴OE=BE=2,OD=DE=4,∴DE是△OAC的中位线,∴DE∥AC,且DE=AC,∴==,∴DE垂直平分OF,由折叠的性质得:DE垂直平分OF,∴G与F点重合,即A、C、F三点在同一条直线;(3)解:存在,理由如下:如图2所示:∵S△BDE=S△ABC﹣S△BCE﹣S△ABD﹣S△ODE=32﹣t×8﹣×4×(8﹣2t)﹣×2t(4﹣t)=32﹣4t﹣16+4t﹣4t+t2=t2﹣4t+16=(t﹣2)2+12,∴t=2时,S△BDE有最小值为12;即存在实数t,使△BDE的面积最小,t=2秒.【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、正方形的性质、折叠变换的性质、三角形中位线定理、三角形面积的计算、二次函数等知识;本题综合性强,熟练掌握正方形和翻折变换的性质是解题的关键.26.【分析】(1)①a=,c=2﹣=,即可求解;②y3=x2+2x+﹣m(2x+2)=x2+(2﹣2m)x+(﹣2m),即可求解;(2)y1=ax2+2x+(2﹣a)的对称轴为,而<a<,即:,又A(﹣1,0)、B(n,0)两点关于对称轴对称,则:,即可求解.【解答】解:∵y1=ax2+bx+c(a>0)过点A,∴a﹣b+c=0,∵y2=2x+b的图象过点A,∴b=2,∴c=2﹣a;(1)①∵a=∴c=2﹣=,∴y1=x2+2x+,②y3=x2+2x+﹣m(2x+2)=x2+(2﹣2m)x+(﹣2m),∵在x≥0时,y3随x的增大而增大,∴对称轴,∴m≤1,∵m是正整数,∴m=1;(2)∵y1=ax2+2x+(2﹣a)的对称轴为,又∵<a<,∴,又∵A(﹣1,0)、B(n,0)两点关于对称轴对称,∴,∴,∴﹣5<n<﹣4.【点评】本题考查的是二次函数综合运用,涉及到不等式的解法,重点确定对称轴的表达式及其范围.。

2019年江苏省泰州市姜堰实验初中中考数学模拟试卷解析版

2019年江苏省泰州市姜堰实验初中中考数学模拟试卷解析版

2019年江苏省泰州市姜堰实验初中中考数学模拟试卷一、选择题:(每小题3分,共30分)1.3的相反数是()A.﹣3B.﹣C.D.32.下列计算中正确的是()A.B.C.D.3.已知样本数据1,2,4,3,5,下列说法不正确的是()A.平均数是3B.中位数是4C.极差是4D.方差是24.若3是关于方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣2B.2C.﹣5D.55.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形6.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2B.a<2C.a<2且a≠l D.a<﹣27如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.二、填空题(每小题3分,共30分)9.二次根式在实数范围内有意义,x的取值范围是.10.月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为米.11.一组数据1,1,x,3,4的平均数为3,则x表示的数为.12.已知⊙O1和⊙O2的半径分别为2cm和6cm,两圆的圆心距O1O2=4cm,则⊙O1和⊙O2的位置关系为.13.若正多边形的一个外角为30°,则这个多边形为正边形.14.如图,P A,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=度.15.如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为米.16.已知菱形的两条对角线的长分别是6和8,那么它的边长是.17.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于.18.如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则=.三、解答题(共90分.)19.计算:(1)(2)(π﹣3)0﹣2sin45°﹣.20.先化简,再求值:(﹣)÷,其中x=+1.21.(已知a,b,c满足|a﹣|++(c﹣3)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.22.一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.23.如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.24.(如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D、B、C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:,,,以上结果均保留到小数点后两位)25.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.26.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,AC=6,求⊙O的半径.27.某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?[利润=销售量×(销售单价﹣进价)].(3)一段时间后,发现这种水果每天的销售量均低于225千克,则此时该超市销售这种水果每天获取的利润最大是多少?28如图,抛物线y=x2﹣x﹣12与x轴交于A、C两点,与y轴交于B点.(1)求△AOB的外接圆的面积;(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B 出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值.参考答案一、选择题:(每小题3分,共30分)1.【解答】解:3的相反数是﹣3故选:A.2.【解答】解:A、和不是同类二次根式,不能合并,故A选项错误;B、和不是同类二次根式,不能合并,故B选项错误;C、3和不是同类二次根式,不能合并,故C选项错误;D、=2,所以﹣=2﹣=,故D选项正确;故选:D.3.【解答】解:在已知样本数据1,2,4,3,5中,平均数是3;极差=5﹣1=4;方差=2.所以根据中位数的定义,中位数是3,所以B不正确.故选:B.4.【解答】解:由根与系数的关系,设另一个根为x,则3+x=5,即x=2.故选:B.5.【解答】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.6.【解答】解:△=4﹣4(a﹣1)=8﹣4a>0得:a<2.又a﹣1≠0∴a<2且a≠1.故选:C.7.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.8.【解答】解:由直线y=x+b(b>0),可知∠1=45°,∵∠α=75°,∴∠ABO=180°﹣45°﹣75°=60°,∴OB=OA÷tan∠ABO=.∴点B的坐标为(0,),∴b=.故选:B.二、填空题(每小题3分,共30分)9.【解答】解:依题意有2﹣x≥0,解得x≤2.故答案为:x≤2.10.【解答】解:384000000=3.8×108.故答案为3.8×108.11.【解答】解:∵1,1,x,3,4的平均数为3,∴(1+1+x+3+4)÷5=3,解得:x=6;故答案为:6.12.【解答】解:∵⊙O1与⊙O2的半径分别是2cm和6cm,圆心距是O1O2=4cm,又∵6﹣2=4,∴两圆的位置关系是内切.故答案为:内切.13.【解答】解:正多边形的边数是:360÷30=12.故答案为:12.14.【解答】解:∵P A,PB是⊙O的切线,A,B为切点,∴P A=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵P A=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50.15.【解答】解:由于相邻两树之间的水平距离为5米,坡角为α=30°,则两树在坡面上的距离AB==(米).16.【解答】解:如图,在菱形ABCD中,OA=×8=4,OB=×6=3,AC⊥BD,在Rt△AOB中,AB===5,所以,菱形的边长是5.故答案为:5.17.【解答】解:∵AB所在的直角三角形的两边分别为:2,4,∴AB==2.∴sin∠ABC==.18.【解答】解:设A点坐标为(0,a),(a>0),则x2=a,解得x=,∴点B(,a),=a,则x=,∴点C(,a),∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=()2=3a,∴点D的坐标为(,3a),∵DE∥AC,∴点E的纵坐标为3a,∴=3a,∴x=3,∴点E的坐标为(3,3a),∴DE=3﹣,==3﹣.故答案为:3﹣.三、解答题(共90分.)19.【解答】解:(1)原式=2+4﹣=5;(2)原式=1+3﹣2×﹣8=2﹣7.20.【解答】解:原式=(+)×(x﹣1)=×(x﹣1)=x+2.把x=+1代入得,原式=+3.21.【解答】解:(1)根据题意得,a﹣=0,b﹣5=0,c﹣3=0,解得a=2,b=5,c=3;(2)∵2+3>5,即a+c>b,∴能构成三角形,∴C△ABC=2+3+5=5+5.22.【解答】解:(1)如图所示:则共有16种等可能的结果;(2)由树形图可以看出两次字母相同的概率为=.23.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,2),B(2,0)代入得:,解得:,故直线AB解析式为y=﹣x+2,将D(﹣1,a)代入直线AB解析式得:a=+2=3,则D(﹣1,3),将D坐标代入y=中,得:m=﹣3,则反比例解析式为y=﹣;(2)联立两函数解析式得:,解得:或,则C坐标为(3,﹣),过点C作CH⊥x轴于点H,在Rt△OHC中,CH=,OH=3,tan∠COH==,∠COH=30°,在Rt△AOB中,tan∠ABO===,∠ABO=60°,∠ACO=∠ABO﹣∠COH=30°.24.【解答】解:(1)在Rt△ABC中,AC=AB•sin45°=4×=2.∵∠ABC=45°,∴AC=BC=2.在Rt△ADC中,AD===4,AD﹣AB=4﹣4≈1.66.∴改善后滑板会加长1.66米;(2)这样改造能行,理由如下:∵CD===2≈4.898,(或CD====2)BD=CD﹣BC=2﹣2≈4.898﹣2.828≈2.07.∵6﹣2.07≈3.93>3,∴这样改造能行.25.【解答】解:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.26.【解答】(1)证明:连接OM,则∠OMB=∠OBM=∠MBE又∵AB=AC,AE是角平分线,∴AE⊥BC,∴∠OMB+∠BME=∠MBE+∠BME=90°,∴∠AMO=90°,∴AE与⊙O相切.(2)解:由AE与⊙O相切,AE⊥BC∴OM∥BC∴△AOM∽△ABE∴∵BC=4∴BE=2,AB=6,即,.27.【解答】解:(1)当销售单价为13元/千克时,销售量为:=150千克设y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:,解得,故y与x的函数关系式为:y=﹣50x+800(x>0)(2)设每天水果的利润w元,∵利润=销售量×(销售单价﹣进价)∴W=(﹣50x+800)(x﹣8)=6000=﹣50(x﹣12)2+200解得:x1=10,x2=14.∴当销售单价为10或14元时,每天可获得的利润是600元.(3)W=(﹣50x+800)(x﹣8)=﹣50x2+1200x﹣6400=﹣50(x﹣12)2+800又∵水果每天的销售量均低于225kg,水果的进价为8元/千克,∴﹣50x+800≤225,∴x≥11.5,∴当x=12时,W最大=800(元).答:此时该超市销售这种水果每天获取的利润最大是800元.28.【解答】解:(1)∵y=x2﹣x﹣12,∴当y=0时,x2﹣x﹣12=0,解得x=9或﹣3,∴A(9,0),C(﹣3,0);当x=0时,y=﹣12,∴B(0,﹣12),∴OA=9,OB=12,∴AB=15,∴S=π•()2=π;(2)∵AP=2t,BQ=t,∴AQ=15﹣t,∵A(9,0),C(﹣3,0),∴AC=12,∴0≤t≤6.以A、P、Q为顶点的三角形与△OAB相似时,分两种情况:①若△APQ∽△AOB,则=,即=,解得t=;②若△AQP∽△AOB,则=,即=,解得t=>6(舍去),∴当t=时,以A、P、Q为顶点的三角形与△OAB相似;(3)设直线AB的解析式为y=kx+b,∵A(9,0),B(0,﹣12),∴,解得,∴直线AB的函数关系式为y=x﹣12.设点M的横坐标为x,则M(x,x﹣12),N(x,x2﹣x﹣12).①若四边形OMNB为平行四边形,则MN=OB=12,即(x﹣12)﹣(x2﹣x﹣12)=12,整理,得x2﹣9x+27=0,∵△=81﹣101<0,∴此方程无实数根,∴不存在这样的点M,使得四边形OMNB恰为平行四边形;②∵S四边形CBNA=S△ACB+S△ABN=×12×12+S△ABN=72+S△ABN,∵S△AOB=×12×9=54,S△OBN=×12•x=6x,S△OAN=×9×(﹣x2+x+12)=﹣2x2+12x+54,∴S△ABN=S△OBN+S△OAN﹣S△AOB=6x+(﹣2x2+12x+54)﹣54=﹣2x2+18x=﹣2(x﹣)2+,∴当x=时,S△ABN有最大值,此时M(,﹣6),四边形CBAN面积的最大值为:72+=.。

江苏省泰州市2019-2020学年中考数学二模试卷含解析

江苏省泰州市2019-2020学年中考数学二模试卷含解析

江苏省泰州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC V ≌DEF V 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC2.如果t>0,那么a+t 与a 的大小关系是( )A .a+t>aB .a+t<aC .a+t≥aD .不能确定3.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解4.如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB ,点P 从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能表示y 与x 函数关系的是( )A .①B .③C .②或④D .①或③5.下列运算中,正确的是( )A .(a 3)2=a 5B .(﹣x )2÷x=﹣xC .a 3(﹣a )2=﹣a 5D .(﹣2x 2)3=﹣8x 66.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h7.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为( )A .B .C .D . 8.2-的相反数是( )A .2-B .2C .12D .12- 9.若一次函数=y ax b +的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .0a b +< B .0a b -> C .0ab > D .0b a< 10.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )A .4B .6C .16πD .8 11.如图,不等式组1010x x +⎧⎨-≤⎩f 的解集在数轴上表示正确的是( ) A .B .C .D .12.下列各式中计算正确的是( )A .x 3•x 3=2x 6B .(xy 2)3=xy 6C .(a 3)2=a 5D .t 10÷t 9=t二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为______.14.若分式方程x a 2x 4x 4=+--的解为正数,则a 的取值范围是______________. 15.在ABC V 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 16.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.17.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.18.有一组数据:2,3,5,5,x ,它们的平均数是10,则这组数据的众数是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=43,∠BAD=60°,且AB>43.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.20.(6分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?21.(6分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=kx(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=kx(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=92时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.22.(8分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.23.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程s A、s B;(2)在A出发后几小时,两人相距15km?24.(10分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:2EF=4BP•QP.25.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A 1,A 2两名男生,B 1,B 2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.26.(12分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.27.(12分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.(2)求至少有一辆汽车向左转的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【详解】A.添加E ABC ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故A 选项不符合题意.B.添加DE AB =与原条件满足SSA ,不能证明ABC V ≌DEF V ,故B 选项符合题意;C.添加AB//DE ,可得E ABC ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故C 选项不符合题意;D.添加DF//AC ,可得DFE ACB ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故D 选项不符合题意, 故选B .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.A【解析】试题分析:根据不等式的基本性质即可得到结果.t >0,∴a +t >a ,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.3.C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .4.D【解析】【分析】分两种情形讨论当点P 顺时针旋转时,图象是③,当点P 逆时针旋转时,图象是①,由此即可解决问题.【详解】分两种情况讨论:①当点P 顺时针旋转时,BP 的长从2增加到2,再降到02,图象③符合;②当点P 逆时针旋转时,BP 2降到0,再增加到22,图象①符合.故答案为①或③.故选D .【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.5.D【解析】【分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.6.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.7.C【解析】【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【详解】∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.8.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.9.D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,b<0,故D正确.a故选D.10.A【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长. 11.B【解析】【分析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x >-1;解第二个不等式得:x≤1, 在数轴上表示, 故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.12.D【解析】试题解析:A 、336x x x ⋅=,原式计算错误,故本选项错误; B 、()3236xy x y =, 原式计算错误,故本选项错误; C 、()236a a =,原式计算错误,故本选项错误; D 、109t t t ÷=, 原式计算正确,故本选项正确;故选D .点睛:同底数幂相除,底数不变,指数相减.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.105000300034000x y x y +=⎧⎨+=⎩【解析】试题解析:根据题意得:105000300034000.x y x y +=⎧⎨+=⎩故答案为105000300034000.x y x y +=⎧⎨+=⎩14.a <8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8- a,根据题意得:8- a>2,8- a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.15.2.1【解析】【分析】先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【详解】解:根据题意,设∠A、∠B、∠C为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=12AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=12BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.16.3 8【解析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是3 8 .故答案是:3 8 .17.(﹣1,﹣1)【解析】【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【详解】x=-422⨯=-1,把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【点睛】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.18.1【解析】根据平均数为10求出x的值,再由众数的定义可得出答案.解:由题意得,(2+3+1+1+x)=10,解得:x=31,这组数据中1出现的次数最多,则这组数据的众数为1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)∠EPF=120°;(2)AE+AF=3.【解析】试题分析: (1)过点P作PG⊥EF于G,解直角三角形即可得到结论;(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,R t△PME≌Rt△PNF,问题即可得证.试题解析:(1)如图1,过点P作PG⊥EF于G,∵PE=PF,∴FG=EG=123FPG=∠EPG=12∠EPF,在△FPG中,sin∠FPG=233 FGPF==,∴∠FPG=60°,∴∠EPF=2∠FPG=120°;(2)如图2,过点P 作PM ⊥AB 于M ,PN ⊥AD 于N ,∵四边形ABCD 是菱形,∴AD=AB ,DC=BC ,∴∠DAC=∠BAC ,∴PM=PN ,在Rt △PME 于Rt △PNF 中,PM PN PE PF ⎧⎨⎩═= , ∴R t △PME ≌R t △PNF ,∴FN=EM ,在Rt △PMA 中,∠PMA=90°,∠PAM=12∠DAB=30°, ∴3,同理3,∴AE+AF=(AM-EM )+(AN+NF )3.【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.20.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.【解析】【分析】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50﹣m )筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.【详解】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,依题意,得:x-y=152x+3y=255⎧⎨⎩, 解得:x=60y=45⎧⎨⎩. 答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50﹣m )筒,依题意,得:60m+45(50﹣m )≤2550,解得:m≤1.答:最多可以购进1筒甲种羽毛球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(1)y=9x (x >0);(2)S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3);当S=92时,对应的t 值为32或6;(3)当t=32或2或3时,使△FBO 为等腰三角形. 【解析】【分析】(1)由正方形OABC 的面积为9,可得点B 的坐标为:(3,3),继而可求得该反比例函数的解析式.(2)由题意得P (t ,9t ),然后分别从当点P 1在点B 的左侧时,S=t•(9t-3)=-3t+9与当点P 2在点B 的右侧时,则S=(t-3)•9t =9-27t 去分析求解即可求得答案; (3)分别从OB=BF ,OB=OF ,OF=BF 去分析求解即可求得答案.【详解】解:(1)∵正方形OABC 的面积为9,∴点B 的坐标为:(3,3),∵点B 在反比例函数y=k x (k >0,x >0)的图象上, ∴3=3k , 即k=9, ∴该反比例函数的解析式为:y= y=9x (x >0); (2)根据题意得:P (t ,9t), 分两种情况:①当点P 1在点B 的左侧时,S=t•(9t ﹣3)=﹣3t+9(0≤t≤3);若S=92, 则﹣3t+9=92, 解得:t=32; ②当点P 2在点B 的右侧时,则S=(t ﹣3)•9t =9﹣27t ; 若S=9t ,则9﹣27t =92, 解得:t=6; ∴S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3); 当S=9t 时,对应的t 值为32或6; (3)存在.若CF=BC=3,∴OF=6,∴6=9t, 解得:t=32;若,则9t ,解得:t=2; 若BF=OF ,此时点F 与C 重合,t=3;∴当t=323时,使△FBO 为等腰三角形. 【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.22.(1)C (﹣3,2);(2)y 1=6x , y 2=﹣13x+3; (3)3<x <1. 【解析】分析:(1)过点C 作CN ⊥x 轴于点N ,由已知条件证Rt △CAN ≌Rt △AOB 即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C 在第二象限即可得到点C 的坐标;(2)设△ABC 向右平移了c 个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c ,2)、(c ,1),再设反比例函数的解析式为y 1=k x,将点C′,B′的坐标代入所设解析式即可求得c 的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵32 61m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt △CAN 和Rt △AOB ;(2)利用平移的性质结合点B 、C 的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C ′和B′的坐标,从而使问题得到解决.23.(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解析】【分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【详解】解:(1)设s A 与t 的函数关系式为s A =kt+b , +0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t|=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.24.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到2PA=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=12EF,等量代换即可得到结论.试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴PA PQBP PA,∴2PA=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=12 EF,∴2EF=4BP•QP.考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.25.(1)50,360;(2)23.【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率26.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.27.(1)49;(2)59.【解析】【分析】(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为49;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=59.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.。

2019年江苏省泰州市姜堰区中考数学二模试卷 (含答案解析)

2019年江苏省泰州市姜堰区中考数学二模试卷 (含答案解析)

2019年江苏省泰州市姜堰区中考数学二模试卷一、选择题(本大题共6小题,共18.0分)1.5的倒数为()A. 15B. 5 C. −15D. −52.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.估算√45−2的值在()A. 在5和6之间B. 在4和5之间C. 在3和4之间D. 在2和3之间4.下列命题中的真命题是()A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 三角形的一个外角大于它的内角D. 数据2,3,1,2的方差是0.55.如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A. 55°B. 110°C. 125°D. 70°6.直线y=2x−1不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共10小题,共30.0分)7.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为__________.8.代数式√9−x有意义时,实数x的取值范围是______.9.一组数据2018,2018,2018,2018,2018,2018的方差是________.10.计算:(−a2)3÷a5=____.11.分解因式:4a−a3=______.12.已知圆锥的底面圆半径是3,母线长是5,则它的侧面展开图的面积是______.13.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x−1.5x2,该型号飞机着陆后滑行________m才能停下来.14.如图,已知直线PA与PB与圆O分别相切于点A,B,若PB=√3,∠APB=90°,则劣弧AB的长为______.15.如图,G为△ABC的重心,DE过点G,且DE//BC,交AB、AC,分别于D、E两点,若△ADE的面积为5,则四边形BDEC的面积为_______.16.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=______.三、计算题(本大题共1小题,共12.0分)17.(1)计算:(−12019)−1+√48−2cos30°+(7−√7)0−|5−3√3|(2)解方程32x−4+x2−x=1四、解答题(本大题共9小题,共90.0分)18.先化简,再求值:2xx+1−2x+4x2−1÷x+2x2−2x+1,其中x=8.19.某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.(1)m=______,n=______;(2)请补全图中的条形图;(3)扇形统计图中,足球部分的圆心角是______度;(4)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球.20.一个不透明的口袋中装有4个球,分别是红球和白球,这些球除颜色外都相同,将球搅匀,先从中任意摸出一个球,恰好摸到红球的概率等于1.2(1)求口袋中有几个红球?(2)先从中任意摸出一个球,从余下的球中再摸出一个球,请用列表法或树状图法求两次摸到的球中一个是红球和一个是白球的概率.21.某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元;购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.(k≠0)相交于A(1,2)和B(−2,m)两点,与y轴交于22.如图,直线y=ax+b(a≠0)与双曲线y=kx点C,与x轴交于点D.(1)求m、a、b的值;(2)在x轴上是否存在一点P,使△APD∽△OCD?若存在,请求出点P的坐标;若不存在,请说明理由.23.如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)24.如图,AB是⊙O的直径,在⊙O上取一点C,连接AC、BC,将△ABC沿直线AB翻折得到△ABD.(1)点D在⊙O上吗?请说明理由.(2)延长BD到点E,使AB2=BC⋅BE,连接AE,求证:AE是⊙O的切线.25.如图,在长方形ABCD中,AB=4,BC=8,点N,M分别为线段AB,BC上的动点,点N从点B出发,沿BA方向,以每秒1个单位长度的速度向点A运动,点M从点C出发,沿CB方向,以每秒2个单位长度的速度向点B运动,点M与点N同时出发,设运动时间为t秒,连接DM,DN,MN.(Ⅰ)当BM=BN时,请求出t的值;(Ⅱ)试判断四边形BMDN的面积是否发生变化?若不变化,请求出其值;若变化,请说明理由;(Ⅲ)请探究∠DNM,∠ADN,∠BMN之间的数量关系,并说明理由.26.已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限。

2019年泰州市中考数学模拟试卷(解析版)

2019年泰州市中考数学模拟试卷(解析版)

2019年江苏省泰州市中考数学模拟试卷一、选择题(共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.﹣2的倒数是()A.2 B.C.﹣D.﹣22.下列运算正确的是()A.3﹣2=1 B.+1=C.﹣=D.6+=73.以下几家银行行标中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.一个简单空间几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱2计算,总分变化情况是()A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定6.设二次函数y=ax2+bx+c(a≠0),当x=2时,函数值y=0,则方程ax2+bx+c=0的判别式△=b2﹣4ac必定是()A.△=0 B.△<0 C.△>0 D.△≥0二、填空题(共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上)7.25的平方根等于.8.今年2月份,泰州市6个省级经济开发区共完成出口316000000美元,将这个数据用科学记数法表示,应为美元.9.连续抛掷一枚均匀的硬币两次,结果出现一正一反的概率等于.10.一组数据6,8,10的方差等于.11.如果两个相似三角形的相似比是2:3,较小三角形的面积为4cm2,那么较大三角形的面积为cm2.12.圆心角为120°的扇形,其面积等于12πcm2,则这个扇形的半径等于cm.13.如图,直线l1∥l2,∠2=40°,则∠1+∠3+∠4=°.14.如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,则∠D=°.15.如图,等腰直角三角形的斜边长AB=8,一直线l绕顶点B任意旋转,过A向l作垂线,垂足为H,则线段CH长的取值范围是.16.如图,Rt△ABC的直角边BC在x轴上,斜边AC上的中线BD交y轴于点E,双曲线的y=(k>0)图象经过点A,若△BEC的面积为4,则k=.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(1)﹣2sin60°+()﹣1﹣|1﹣|;(2)÷(x+2﹣).18.袋中有1个红球和2个黑球,这些球除颜色外都相同,搅匀后从中任意摸除1个球,记录颜色后放回、搅匀,再从中任意摸出1球,像这样有放回地先后摸球2次.摸出红球得2分,摸出黑球得1分.(1)第一次摸得黑球的概率是多少?(2)两次摸球所得总分是4分的概率是多少?19.已知y1=x2﹣2x+3,y2=3x﹣k.(1)当x=1时,求出使等式y1=y2成立的实数k;(2)若关于x的方程y1+k=y2有实数根,求k的取值范围.20.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为%,该扇形圆心角的度数为;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?21.小明用12元买软面笔记本,小丽用21元买硬面笔记本.已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?22.如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=9米,求塔CD的高度.(结果保留根号)23.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.24.如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为上一点,连结AE、BE,BE交AC于点F,且∠AFE=∠EAB.(1)试说明E为的中点;(2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径.25.已知两个一次函数y1=x+2﹣a和y2=﹣x+2+.(1)点(2,2)是否在这两个一次函数的图象上?为什么?(2)当a=2时,求这两个一次函数图象与x轴所围成的三角形的面积;(3)当a满足0<a<2时,求这两个一次函数图象与两坐标轴所围成的四边形面积的最小值.26.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?2019年江苏省泰州市中考数学模拟试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.﹣2的倒数是()A.2 B.C.﹣D.﹣2【考点】倒数.【分析】根据倒数定义可知,﹣2的倒数是﹣.【解答】解:﹣2的倒数是﹣.故选:C.2.下列运算正确的是()A.3﹣2=1 B.+1=C.﹣=D.6+=7【考点】二次根式的加减法.【分析】直接利用合并同类项法则计算,进而化简求出答案.【解答】解:A、3﹣2=,故此选项错误;B、+1,无法计算,故此选项错误;C、﹣,无法计算,故此选项错误;D、6+=7,正确.故选:D.3.以下几家银行行标中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形以及轴对称图形的定义和各图形的特点即可求解.【解答】解:A、既是中心对称图形,也是轴对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项错误D、是中心对称图形,不是轴对称图形,故本选项错误.故选A.4.一个简单空间几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱【考点】由三视图判断几何体.【分析】先根据主视图和左视图可得这个几何体是锥体,再根据俯视图即可得出这个几何体是四棱锥.【解答】解:根据主视图和左视图可得:这个几何体是锥体;根据俯视图可得:这个几何体是四棱锥;故选B.2计算,总分变化情况是()A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定【考点】加权平均数.【分析】根据题意可以分别求出按3:5:2计算时小亮和小丽的成绩以及按5:3:2计算时小亮和小丽的成绩,从而可以得到他们的成绩的变化情况,本题得以解决.【解答】解:当写作能力、普通话水平、计算机水平这三项的总分按3:5:2计算时,小亮的成绩是:=74.7,小丽的成绩是:=74.4,当写作能力、普通话水平、计算机水平这三项的总分按5:3:2计算时,小亮的成绩是:=77.7,小丽的成绩是:=69.6,故写作能力、普通话水平、计算机水平这三项的总分由原先按3:5:2计算,变成按5:3:2计算,小亮的成绩变化是77.7﹣74.7=3,小丽的成绩变化是69.6﹣74.4=﹣4.8,故小亮成绩增加的多,故选B.6.设二次函数y=ax2+bx+c(a≠0),当x=2时,函数值y=0,则方程ax2+bx+c=0的判别式△=b2﹣4ac必定是()A.△=0 B.△<0 C.△>0 D.△≥0【考点】抛物线与x轴的交点.【分析】当二次函数与x轴只有一个交点时,△=0,当二次函数与x轴有两个交点时,△>0,当二次函数与x轴没有交点时,△<0,根据以上知识点判断即可.【解答】解:∵x=2时,函数值y=0,∴二次函数y=ax2+bx+c(a≠0)和x轴的一个交点的坐标为(2,0),当函数和x轴还交于一点时,△>0,当函数和x轴再没有交点时,△=0,即方程ax2+bx+c=0的判别式△=b2﹣4ac必定是△≥0,故选D.二、填空题(共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上)7.25的平方根等于±5.【考点】平方根.【分析】利用平方根定义计算即可得到结果.【解答】解:25的平方根等于±5,故答案为:±58.今年2月份,泰州市6个省级经济开发区共完成出口316000000美元,将这个数据用科学记数法表示,应为 3.16×108美元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:316000000=3.16×108.故答案为:3.16×108.9.连续抛掷一枚均匀的硬币两次,结果出现一正一反的概率等于.【考点】列表法与树状图法.【分析】举出所有情况,看一正一反的情况数占总情况数的多少即可.【解答】解:如图,共4种情况,一正一反的情况数有2种,所以概率是.故答案为:10.一组数据6,8,10的方差等于.【考点】方差.【分析】先求出这组数据的平均数,然后代入方差计算公式求出即可.【解答】解:平均数为:(6+8+10)÷3=8,S2=[(6﹣8)2+(8﹣8)2+(10﹣8)2]=[(4+0+4)=,故答案为:.11.如果两个相似三角形的相似比是2:3,较小三角形的面积为4cm2,那么较大三角形的面积为9cm2.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出面积比,根据题意计算即可.【解答】解:∵两个相似三角形的相似比是2:3,∴两个相似三角形的面积比是4:9,又较小三角形的面积为4cm2,那么较大三角形的面积为9cm2,故答案为:9.12.圆心角为120°的扇形,其面积等于12πcm2,则这个扇形的半径等于6cm.【考点】扇形面积的计算.【分析】设该扇形的半径是rcm,再根据扇形的面积公式即可得出结论.【解答】解:设该扇形的半径是rcm,则12π=,解得r=6.故答案是:6.13.如图,直线l1∥l2,∠2=40°,则∠1+∠3+∠4=220°.【考点】平行线的性质.【分析】根据平行线的性质得到∠ABE=∠1,∠EBC=∠BCF,∠FCD+∠4=180°,等量代换得到结论.【解答】解:如图,过B作BE∥l1,CF∥l1,∵直线l1∥l2,∴BE∥CF∥l1∥l2,∴∠ABE=∠1,∠EBC=∠BCF,∠FCD+∠4=180°,∴∠1+∠3+∠4=∠2+180°=220°,故答案为:220.14.如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,则∠D=110°.【考点】圆周角定理.【分析】连接BD,根据圆周角定理求出∠ADB及∠BDC的度数,进而可得出结论.【解答】解:连接BD,∵AB是半圆的直径,∴∠ADB=90°.∵∠BAC=20°,∴∠BDC=20°,∴∠D=∠ADB+∠BDC=90°+20°=110°.故答案为:110.15.如图,等腰直角三角形的斜边长AB=8,一直线l绕顶点B任意旋转,过A向l作垂线,垂足为H,则线段CH长的取值范围是0≤CH≤8.【考点】旋转的性质;等腰直角三角形.【分析】首先证明A、C、H、B四点共圆,再根据CH是弦即可确定其范围.【解答】解:如图,∵∠ACB=∠AHB=90°,∴A、C、H、B四点共圆,∵AB是直径,CH是弦,∴CH的最小值是0(此时C与H重合),CH的最大值是直径,∴0≤CH≤8.故答案为0≤CH≤8.16.如图,Rt△ABC的直角边BC在x轴上,斜边AC上的中线BD交y轴于点E,双曲线的y=(k>0)图象经过点A,若△BEC的面积为4,则k=8.【考点】反比例函数系数k的几何意义.【分析】由BD为Rt△ABC斜边AC上的中线,可得出BD=CD=AD,进而得出∠DCB=∠DBC,再由EO⊥BC得出∠BOE=CBA,从而得出△BOE∽△CBA,由相似三角形的性质可得出,再结合△BEC的面积为4以及反比例函数系数k的几何意义即可得出结论.【解答】解:∵BD为Rt△ABC斜边AC上的中线,∴BD=CD=AD,∴∠DCB=∠DBC,又∵EO⊥BC,∴∠BOE=CBA=90°,∴△BOE∽△CBA,∴,即BC•OE=OB•BA.又∵S△BCE=BC•OE=4,∴OB•BA=|k|=8,∴k=±8,∵k>0,∴k=8.故答案为8.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(1)﹣2sin60°+()﹣1﹣|1﹣|;(2)÷(x+2﹣).【考点】实数的运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.【分析】(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2﹣2×+2﹣+1=3;(2)原式=÷=•=.18.袋中有1个红球和2个黑球,这些球除颜色外都相同,搅匀后从中任意摸除1个球,记录颜色后放回、搅匀,再从中任意摸出1球,像这样有放回地先后摸球2次.摸出红球得2分,摸出黑球得1分.(1)第一次摸得黑球的概率是多少?(2)两次摸球所得总分是4分的概率是多少?【考点】列表法与树状图法.【分析】(1)根据题意作出树状图,然后根据概率公式解答;(2)根据得分,写出两次都摸出红球的概率即可.【解答】解:(1)由题意画出树状图如下:第一次摸得黑球的概率是;(2)一共有9种情况,两次摸得红球的情况只有一次,所以,所得总分是4分的情况只有一种,所以,P(所得总分是4分)=.19.已知y1=x2﹣2x+3,y2=3x﹣k.(1)当x=1时,求出使等式y1=y2成立的实数k;(2)若关于x的方程y1+k=y2有实数根,求k的取值范围.【考点】根与系数的关系;根的判别式.【分析】(1)把x=1代入y1=y2即x2﹣2x+3=3x﹣k,得关于k的方程,解方程可得k的值;(2)由方程y1+k=y2即x2﹣2x+3+k=3x﹣k有实数根,可得△≥0,解不等式可得k的范围.【解答】解:(1)当x=1时,y1=2,y2=3﹣k,根据题意,得:2=3﹣k,解得:k=1;(2)由题意,x2﹣2x+3+k=3x﹣k,即x2﹣5x+3+2k=0有实数根,∴△=(﹣5)2﹣4(3+2k)≥0,解得:k≤.20.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为25%,该扇形圆心角的度数为90°;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)先求出参加社会实践活动的总人数,再乘以参加社会实践活动为6天的所占的百分比,求出参加社会实践活动为6天的人数,从而补全统计图;(3)用总人数乘以活动时间不少于5天的人数所占的百分比即可求出答案.【解答】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣5%﹣15%=25%,该扇形所对圆心角的度数为360°×25%=90°;故答案为:25,90°;(2)参加社会实践活动的总人数是:=200(人),则参加社会实践活动为6天的人数是:200×25%=50(人),补图如下:(3)该市初一学生第一学期社会实践活动时间不少于5天的人数约是:20000×(30%+25%+20%)=15000(人).21.小明用12元买软面笔记本,小丽用21元买硬面笔记本.已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?【考点】分式方程的应用.【分析】假设能买到相同数量的软面本和硬面本,设软面本每本x元,则硬面本(x+1.2)元,根据题意可得方程:=,解分式方程后可以算出答案.,【解答】解:假设能买到相同数量的软面本和硬面本,设软面本每本x元,则硬面本(x+1.2)元,根据题意可得方程:=,解得:x=1.6,经检验:x=1.6是原分式方程的解,12÷1.6=7.5,∵7.5不是整数.∴不能买到相同的两种笔记本.22.如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=9米,求塔CD的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.【解答】解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=9米,在Rt△PEH中,∵tanβ==,即=,∴BF=8,∴PG=BD=BF+FD=8+9,在Rt△PCG中,∵tanβ=,∴CG=(8+9)•=8+3,∴CD=(9+3)米.答:塔CD的高度为(9+3)米.23.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据线段中点的定义可得BE=CE,再根据正方形的四条边都相等可得BC=CD,BE=BF,然后求出BF=CE,再利用“边角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得DE=CF;(2)设CE=x,根据∠CDE的正切值表示出CD,然后求出BE,从而得到∠BCF的正切值,再根据两直线平行,内错角相等可得∠BCF=∠GFH,然后根据等角的正切值相等解答即可.【解答】(1)证明:∵E是BC的中点,∴BE=CE,在正方形ABCD和正方形BFGE中,BC=CD,BE=BF,∴BF=CE,在△BCF和△CDE中,,∴△BCF≌△CDE(SAS),∴DE=CF;(2)解:设CE=x,∵∠CDE=30°,∴tan∠CDE==,∴CD=x,∵正方形ABCD的边BC=CD,∴BE=BC﹣CE=x﹣x,∵正方形BFGE的边长BF=BE,∴tan∠BCF===,∵正方形BGFE对边BC∥GF,∴∠BCF=∠GFH,∵tan∠GFH=,∴=.24.如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为上一点,连结AE、BE,BE交AC于点F,且∠AFE=∠EAB.(1)试说明E为的中点;(2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径.【考点】切线的性质.【分析】(1)只要证明∠EAD=∠ABE,根据∠EFA=∠EAB,∠EFA=∠FAB+∠FBA,∠EAB=∠EAF+∠FAB即可证明.(2)首先证明∠C=∠AOM,设半径为r,根据cos∠AOM==路程方程即可解决问题.【解答】解:(1)∵∠EFA=∠EAB,∠EFA=∠FAB+∠FBA,∠EAB=∠EAF+∠FAB,∴∠EAF=∠ABE,∴=,∴点E是中点.(2)如图,连接EO,交AD于M,∵=,∴OE⊥AD,AM=DM,设半径为r,∵∠C+∠CAB=90°,∠CAB+∠AOM=90°,∴∠C=∠AOM,∴cos∠AOM=cos∠C=,∵cos∠AOM=,EM=1,OM=r﹣1,AO=r,∴=,∴r=.∴⊙O半径为.25.已知两个一次函数y1=x+2﹣a和y2=﹣x+2+.(1)点(2,2)是否在这两个一次函数的图象上?为什么?(2)当a=2时,求这两个一次函数图象与x轴所围成的三角形的面积;(3)当a满足0<a<2时,求这两个一次函数图象与两坐标轴所围成的四边形面积的最小值.【考点】两条直线相交或平行问题.【分析】(1)将x=2代入两个函数解析式求出y的值,看是否等于2,即可判断.(2)求出两个函数图象与x轴的交点坐标,以及两个函数图象的交点即可解决问题.(3)画出图形,用分割法求面积,利用二次函数的性质解决这种问题.【解答】解:(1)点(2,2)在这两个一次函数的图象上.理由:∵x=2时,y1=×2+2﹣a=2,y2=﹣×2+2+=2,∴点(2,2)在这两个一次函数的图象上.(2)a=2,y1=x由x轴交于点(0,0),y2=﹣x+3与x轴交于点(6,0).∵(2,2,)是这两个一次函数的图象的交点,∴这两个一次函数图象与x轴所围成的三角形的面积为:×6×2=6.(3)如图所示,∵A(2,2),B(a2+2,0),C(0,2﹣a),∴这两个一次函数图象与两坐标轴所围成的四边形面积S=S△AOC+S△AOB=×(2﹣a)×2+×(a2+2)×2=a2﹣a+4=(a﹣)2+,∴a=时,S最小值=.26.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【考点】二次函数综合题.【分析】(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得k的值;(2)因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.如答图2,按照以上两种情况进行分类讨论,分别计算;(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.如答图3,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.∴抛物线的函数表达式为:y=(x+2)(x﹣4).(2)方法一:由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.与①同理,可求得:k=.综上所述,k=或k=.方法二:∵点P在第一象限内的抛物线上,∴∠ABP为钝角,①若△ABC∽△APB,则有∠BAC=∠PAB,∴K AP+K AC=0,∵C(0,﹣k),A(﹣2,0),∴K AC=﹣,∴K AP=,∵A(﹣2,0),∴l AP:y=x+k,∵抛物线:y=(x+2)(x﹣4),∴x2﹣6x﹣16=0,解得:x=8或x=2(舍)∴P(8,5k),∵△ABC∽△APB,∴,∴,∴k=,②若△ABC∽△APB,则有∠ABC=∠PAB,同理可得:k=;(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.=AH,AH与直线BD的交点,即为所求之F点.过点A作AH⊥DK于点H,则t最小∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∥AB,AH⊥DK,AH交直线BD于点F,∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=,∵l BD:y=﹣x+,∴F X=A X=﹣2,∴F(﹣2,).。

姜堰初中二模数学试卷答案

姜堰初中二模数学试卷答案

一、选择题1. 下列数中,既是质数又是偶数的是()A. 2B. 4C. 6D. 8答案:A2. 一个长方形的长是10cm,宽是5cm,它的周长是()A. 20cmB. 25cmC. 30cmD. 40cm答案:C3. 如果a+b=5,a-b=3,那么a的值是()A. 4B. 3C. 2D. 1答案:A4. 下列函数中,自变量x的取值范围是全体实数的是()A. y=x^2B. y=1/xC. y=√xD. y=x^3答案:D5. 一个等腰三角形的底边长为8cm,腰长为10cm,它的面积是()A. 32cm^2B. 40cm^2C. 48cm^2D. 64cm^2答案:B二、填空题6. 一个数的平方根是±2,那么这个数是()答案:47. 如果a=2,b=-3,那么a^2+b^2的值是()答案:138. 一个等边三角形的边长为6cm,它的周长是()答案:18cm9. 下列数中,能被3整除的是()答案:910. 一个数的倒数是1/4,那么这个数是()答案:4三、解答题11. 解方程:3x-5=14解答:3x=14+5,3x=19,x=19/3答案:x=19/312. 计算下列表达式的值:(-2)^3 + 3×(-4) - 5解答:-8 + (-12) - 5 = -25答案:-2513. 一个正方形的对角线长为10cm,求它的面积。

解答:设正方形的边长为a,根据勾股定理,a^2 + a^2 = 10^2,2a^2 = 100,a^2 = 50,所以正方形的面积是50cm^2。

答案:50cm^214. 一个长方体的长、宽、高分别为5cm、3cm、4cm,求它的体积。

解答:长方体的体积公式为V=长×宽×高,所以V=5×3×4=60cm^3。

答案:60cm^315. 解不等式:2(x-3) > 8解答:2x - 6 > 8,2x > 14,x > 7答案:x > 7四、应用题16. 小明骑自行车去图书馆,已知图书馆距离小明家8km,他每小时骑行速度为10km/h,求小明骑行到图书馆需要的时间。

江苏省泰州市2019-2020学年中考第二次质量检测数学试题含解析

江苏省泰州市2019-2020学年中考第二次质量检测数学试题含解析

江苏省泰州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC V 的面积为( )A .40B .46C .48D .502.关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,则q 的取值范围是( )A .q<16B .q>16C .q≤4D .q≥43.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°4.下列实数中是无理数的是( )A .227B .2﹣2C .5.15&&D .sin45°5.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.6.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为( )A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩7.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是()A .B .C .D .8.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19809.下列各数是不等式组32123xx+⎧⎨--⎩fp的解是()A.0 B.1-C.2 D.310.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF11.下列各式属于最简二次根式的有()A8B.21x+C3y D 1 212.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)14.如图,在菱形ABCD 中,AB=3,∠B=120°,点E 是AD 边上的一个动点(不与A ,D 重合),EF ∥AB 交BC 于点F ,点G 在CD 上,DG=DE .若△EFG 是等腰三角形,则DE 的长为_____.15.四边形ABCD 中,向量AB BC CD ++=u u u r u u u r u u u r _____________.16.如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么⊙O 2的半径等于________.17.若正六边形的边长为2,则此正六边形的边心距为______.18.如图,直线y 1=kx+n (k≠0)与抛物线y 2=ax 2+bx+c (a≠0)分别交于A (﹣1,0),B (2,﹣3)两点,那么当y 1>y 2时,x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()A 2,3-,B ()4,n 两点. (1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.20.(6分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.21.(6分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.22.(8分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)(1)判断点M是否在直线y=﹣x+4上,并说明理由;(2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;(3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.23.(8分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).24.(10分)如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆; (3)计算'''A B C ∆的面积S .25.(10分)校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.26.(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.27.(12分)试探究:小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE=;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.拓展延伸:小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:(1)求证:△ACF∽△FCE;(2)求∠A的度数;(3)求cos∠A的值;应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=12×BF×AC=12×12×8=48,故选C.2.A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.3.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.4.D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.5.C【分析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.6.A【解析】【分析】根据图形,结合题目所给的运算法则列出方程组.【详解】图2所示的算筹图我们可以表述为:211 4327x yx y+=⎧⎨+=⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.7.A【解析】【分析】根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.【详解】解:∵一次函数y=kx+b的图象可知k>1,b<1,∴-b>1,∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A.本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <1;函数值y 随x 的增大而增大⇔k >1;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >1,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <1,一次函数y=kx+b 图象过原点⇔b=1.8.D【解析】【分析】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,∴全班共送:(x ﹣1)x=1980,故选D .【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x ﹣1)张相片,有x 个人是解决问题的关键.9.D【解析】【分析】求出不等式组的解集,判断即可.【详解】32123x x ①②+>⎧⎨-<-⎩, 由①得:x >-1,由②得:x >2,则不等式组的解集为x >2,即3是不等式组的解,故选D .【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE 的关系,根据三角形外角的性质,可得答案.【详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.11.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.12.B【解析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②③⑤【解析】【分析】根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥【详解】由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=1 , 2∴abc >0,4ac <b 2,当12x <时,y 随x 的增大而减小.故①②⑤正确, ∵11,22b x a =-=< ∴2a+b >0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c <0,故⑥错误故答案为:①②③⑤【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.14.1 【解析】【分析】由四边形ABCD 是菱形,得到BC ∥AD ,由于EF ∥AB ,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF ∥AB ,于是得到△EFG 为等腰三角形时,①时,于是得到DE=DG=12AD÷2=1,②GE=GF 时,根据勾股定理得到DE=3. 【详解】 解:∵四边形ABCD 是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC ∥AD ,∵EF ∥AB ,∴四边形ABFE 是平行四边形,∴EF ∥AB ,∴DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG ,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,当EF=EG 时,如图1,过点D 作DH ⊥EG 于H ,∴EH=12EG=32, 在Rt △DEH 中,DE=0cos30HE =1, GE=GF 时,如图2,过点G 作GQ ⊥EF ,∴EQ=123Rt △EQG 中,∠QEG=30°, ∴EG=1,过点D 作DP ⊥EG 于P ,∴PE=12EG=12, 同①的方法得,DE=33, 当EF=FG 时,由∠EFG=180°-2×30°=120°=∠CFE ,此时,点C 和点G 重合,点F 和点B 重合,不符合题意,故答案为1或3 【点睛】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.15.AD u u u r【解析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得:AB BC CD u u u v u u u v u u u v ++=AC CD u u u v u u u v +=AD uuu v .故答案为AD uuu v .点睛:理解向量运算的三角形法则是正确解答本题的关键.16.3【解析】【分析】由题意得出△ABP 为等边三角形,在Rt △ACO 2中,AO 2=AC sin 60︒即可. 【详解】由题意易知:PO 1⊥AB ,∵∠APB=60°∴△ABP 为等边三角形,AC=BC=3 ∴圆心角∠AO 2O 1=60° ∴在Rt △ACO 2中,AO 2=AC sin 60︒3. 故答案为3.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.173【解析】【分析】连接OA 、OB ,根据正六边形的性质求出∠AOB ,得出等边三角形OAB ,求出OA 、AM 的长,根据勾股定理求出即可.【详解】连接OA 、OB 、OC 、OD 、OE 、OF ,∵正六边形ABCDEF ,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF ,∴∠AOB=60°,OA=OB ,∴△AOB 是等边三角形,∴OA=OB=AB=2,∵AB ⊥OM ,∴AM=BM=1,在△OAM 中,由勾股定理得:318.﹣1<x <2【解析】【分析】根据图象得出取值范围即可.【详解】解:因为直线y 1=kx+n (k≠0)与抛物线y 2=ax 2+bx+c (a≠0)分别交于A (﹣1,0),B (2,﹣3)两点,所以当y 1>y 2时,﹣1<x <2,故答案为﹣1<x <2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)6y x =-;3342y x =-+;(2)2x <-或04x <<; 【解析】【分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (4,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A ,B 两点的坐标即可写出一次函数的值大于反比例函数时自变量x 的取值范围.【详解】(1)m y x=Q 过点()2,3A -, 6m ∴=-, ∴反比例函数的解析式为6y x =-; Q 点()4,B n 在6y x=- 上,32n ∴=-, 3(4,2B ∴- ), Q 一次函数y kx b =+过点()2,3A -,3(4,2B - ) 23342k b k b -+=⎧⎪∴⎨+=-⎪⎩, 解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴一次函数解析式为3342y x =-+; (2)由图可知,当2x <-或04x <<时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.(1)90°;(1)AE 1+EB 1=AC 1,证明见解析.【解析】【分析】(1)根据题意得到DE 是线段BC 的垂直平分线,根据线段垂直平分线的性质得到EB =EC ,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D 是BC 边的中点,DE ⊥BC ,∴DE 是线段BC 的垂直平分线,∴EB =EC ,∴∠ECB =∠B =45°,∴∠AEC =∠ECB+∠B =90°;(1)AE 1+EB 1=AC 1.∵∠AEC =90°,∴AE 1+EC 1=AC 1,∵EB =EC ,∴AE 1+EB 1=AC 1.【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解. 试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y+=⎧⎨=⎩ 解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m+30(20-m )≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴m 只能取8、9、2.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.22.(1)点M (1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n <1.【解析】【分析】(1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M (1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y 轴平移后的解析式为y=-x+4+b .分两种情况进行讨论:①点M (1,2)关于x 轴的对称点为点M 1(1,-2);②点M (1,2)关于y 轴的对称点为点M 2(-1,2).分别求出b 的值,得到平移的距离;(1)由直线y=kx+b 经过点M (1,2),得到b=2-1k .由直线y=kx+b 与直线y=-x+4交点的横坐标为n ,得出y=kn+b=-n+4,k=23n n -+-.根据y=kx+b 随x 的增大而增大,得到k >0,即23n n -+->0,那么①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,分别解不等式组即可求出n的取值范围.【详解】(1)点M不在直线y=﹣x+4上,理由如下:∵当x=1时,y=﹣1+4=1≠2,∴点M(1,2)不在直线y=﹣x+4上;(2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.①点M(1,2)关于x轴的对称点为点M1(1,﹣2),∵点M1(1,﹣2)在直线y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距离为1;②点M(1,2)关于y轴的对称点为点M2(﹣1,2),∵点M2(﹣1,2)在直线y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距离为2.综上所述,平移的距离为1或2;(1)∵直线y=kx+b经过点M(1,2),∴2=1k+b,b=2﹣1k.∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=23nn-+-.∵y=kx+b随x的增大而增大,∴k>0,即23nn-+->0,∴①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,不等式组①无解,不等式组②的解集为2<n<1.∴n的取值范围是2<n<1.故答案为2<n<1.【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.23.(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(+2)π;②【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°, ∴AB =833, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA =2162x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭解得x =4(负根已经舍弃),∴AB =42∴⊙O 的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG=212﹣98,AF=22AEEF+=158,AH=22AE EH+=302,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CGAF AH=,∴2192815308-=,∴CG=270﹣330,∴30CG+9=421.故答案为421.【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.24.(1)作图见解析;(2,1)B.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:△A'B'C'即为所求;(3)S△A'B'C'=12×4×8=1.点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.25.(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,再根据矩形面积公式列方程求解即可得到答案.(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,根据题意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,根据题意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.26.(1)100,108°;(2)答案见解析;(3)600人.【解析】【分析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:303 10010,∴QQ 的扇形圆心角的度数为:360°×310=108°. (2)喜欢用短信的人数为:100×5%=5人 喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:40100×100%=40%. ∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.27.(1)小张的发现正确;(2)详见解析;(3)∠A =36°;(451【解析】【分析】尝试探究:根据勾股定理计算即可;拓展延伸:(1)由AE 2=AC•EC ,推出=AC AE AE EC ,又AE =FC ,推出=AC FC FC EC,即可解问题; (2)利用相似三角形的性质即可解决问题; (3)如图,过点F 作FM ⊥AC 交AC 于点M ,根据cos ∠A =AM AF ,求出AM 、AF 即可; 应用迁移:利用(3)中结论即可解决问题;【详解】51;∵∠ACB =90°,BC =1,AC =2,∴AB 5∴AD =AE 51,∵AE 251)2=6﹣5AC•EC =2×[2﹣(51)]=6﹣5,∴AE 2=AC•EC ,∴小张的发现正确;拓展延伸:(1)∵AE 2=AC•EC , ∴=AC AE AE EC∵AE =FC , ∴=AC FC FC EC , 又∵∠C =∠C ,∴△ACF ∽△FCE ;(2)∵△ACF ∽△FCE ,∴∠AFC =∠CEF ,又∵EF =FC , ∴∠C =∠CEF ,∴∠AFC =∠C ,∴AC =AF ,∵AE =EF ,∴∠A =∠AFE ,∴∠FEC =2∠A ,∵EF =FC ,∴∠C =2∠A ,∵∠AFC =∠C =2∠A ,∵∠AFC+∠C+∠A =180°,∴∠A =36°;(3)如图,过点F 作FM ⊥AC 交AC 于点M ,由尝试探究可知AE 51 ,EC =35∵EF =FC ,由(2)得:AC =AF =2,∴ME =352-,∴AM =512,∴cos ∠A =14=AM AF ; 应用迁移: ∵正十边形的中心角等于36010︒=36°,且是半径为2的圆内接正十边形, ∴如图,当点A 是圆内接正十边形的圆心,AC 和AF 都是圆的半径,FC 是正十边形的边长时, 设AF =AC =2,FC =EF =AE =x ,∵△ACF ∽△FCE , ∴AF FC EF EC= , ∴22=-EF EF EF ,∴1=EF ,∴半径为21.【点睛】本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.。

2019年最新江苏省中考数学第二次模拟试卷2及答案解析

2019年最新江苏省中考数学第二次模拟试卷2及答案解析

江苏省中考数学二模试卷一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.132.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)3.下列图形中不是中心对称图形的是()A.B.C.D.4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×1065.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,76.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.187.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=58.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.9.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.110.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A. B.C.D.2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|= .12.计算:3a3•a2﹣2a7÷a2= .13.若使二次根式有意义,则x的取值范围是.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD的两条对角线的长,则菱形ABCD的面积为.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是(填序号)三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.20.解不等式组:.21.先化简,再求值:,其中.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n的值.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x 轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD 相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.13【考点】有理数的加法.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(4+9)=﹣13,故选A.2.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)【考点】因式分解﹣提公因式法.【分析】原式提取公因式得到结果,即可做出判断.【解答】解:原式=a(a﹣2),故选A.3.下列图形中不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8310000用科学记数法表示为8.31×106,故选:B.5.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,7【考点】极差;众数.【分析】根据众数的定义和极差的计算方法分别进行解答即可.【解答】解:4出现了2次,出现的次数最多,则众数是4;极差是:10﹣3=7;故选C.6.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.18【考点】一次函数图象上点的坐标特征.【分析】先根据直线解析式求得直线y=2x+6与坐标轴交点坐标,再计算围成的三角形面积即可.【解答】解:在直线y=2x+6中,当x=0时,y=6;当y=0时,x=﹣3;∴直线y=2x+6与坐标轴交于(0,6),(﹣3,0)两点,∴直线y=2x+6与两坐标轴围成的三角形面积=×6×3=9.故选(C)7.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=5【考点】抛物线与x轴的交点.【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【考点】弧长的计算;圆周角定理;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.9.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.1【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入所求不等式计算确定出m的范围,即可确定出m的正整数值.【解答】解:,①+②得:3(x+y)=﹣3m+6,解得:x+y=﹣m+2,代入得:﹣m+2>,解得:m<,则满足条件的m的所有正整数值是1,故选D10.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A. B.C.D.2【考点】切线的性质;坐标与图形性质.【分析】利用点C的坐标可判断点C在直线y=﹣x上,在确定AB的中点D的坐标为(4,﹣2)过D点作DC垂直直线y=﹣x于点C,利用两点之间线段最短得到此时CD为过点C的圆的最小半径,再求出直线CD的解析式为y=x﹣6,通过解方程组得C点坐标为(3,﹣3),然后利用两点的距离公式计算CD 的长即可.【解答】解:∵C(a,﹣a),∴点C在直线y=﹣x上,设AB的中点D,则D(4,﹣2)过D点作DC垂直直线y=﹣x于点C,此时CD为过点C的圆的最小半径,∵CD⊥直线y=﹣x,∴直线CD的解析式可设为y=x+b,把D(4,﹣2)代入得4+b=﹣2,解得b=﹣6,∴直线CD的解析式为y=x﹣6,解方程组得,此时C点坐标为(3,﹣3),∴CD==,即这个圆的半径的最小值为.故选B.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|= 5 .【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.计算:3a3•a2﹣2a7÷a2= a5.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3•a2﹣2a7÷a2的值是多少.【解答】解:3a3•a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.13.若使二次根式有意义,则x的取值范围是x≥2 .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵二次根式有意义,∴2x﹣4≥0,解得x≥2.故答案为:x≥2.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD的两条对角线的长,则菱形ABCD的面积为 4.5 .【考点】菱形的性质;一元二次方程的解;根与系数的关系.【分析】首先利用一元二次方程的解得出m的值,再利用根与系数的关系得出方程的两根之积,再结合菱形面积公式求出答案.【解答】解:∵3是关于x的方程x2﹣2mx+3m=0的一个根,∴32﹣6m+3m=0,解得:m=3,∴原方程为:x2﹣6x+9=0,∴方程的两根之积为:9,∴菱形ABCD的面积为:4.5.故答案为:4.5.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.【考点】列表法与树状图法.【分析】先画树状图展示所有12种等可能的结果数,再找出两个转盘停止后指针所指区域内的数字之和小于6的结果数,然后根据概率公式计算即可.【解答】解:画树状图为:共有12种等可能的结果数,两个转盘停止后指针所指区域内的数字之和小于6的结果数为6,所以两个转盘停止后指针所指区域内的数字之和小于6的概率==.故答案为.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是③④(填序号)【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y乙=100t﹣100,令y甲=y乙,可得:60t=100t﹣100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知不正确是:③④,故答案为:③④.三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.【考点】实数的运算.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=9+2﹣4=11﹣4=720.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了,确定不等式组的解集.【解答】解:解不等式2(x+2)>x+7,得:x>3,解不等式3x﹣1<5,得:x<2,故不等式组无解.21.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先算括号里面的,再算乘法,最后把m的值代入进行计算即可.【解答】解:原式=•=•(﹣)=,当m=+1时,原式==﹣.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?【考点】分式方程的应用.【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解:设每个小组有x名学生.﹣=4,解得x=10,经检验x=10是原方程的解.答:每个小组有10名学生.23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)由得10分的人数除以占的百分比求出乙校参赛的总人数,即可得出8分的人数;由于两校参赛人数相等,根据总人数减去其他人数求出甲校得9分的人数;(2)根据平均数求法得出甲的平均;把分数从小到大排列,利用中位数的定义解答.【解答】解:(1)5÷=20(人),20×=3(人),20﹣11﹣8=1(人),填表如下:如下尚不完整的统计图表.(2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,故中位数=(7+7)=7(分);由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.故答案为:1.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.【考点】平行四边形的性质;全等三角形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由四边形ABCD是平行四边形,可得AB=CD,AD=BC,∠B=∠CDM,又由M、N分别是AD,BC的中点,即可利用SAS证得△ABN≌△CDM;(2)易求得∠MND=∠CND=∠2=30°,然后由含30°的直角三角形的性质求解即可求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,∵在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∠END+∠CNP+∠2=180°﹣∠CEN=90°又∵∠END=∠CNP=∠2∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==2,∵∠MNC=60°,CN=MN=MD,∴△CNM是等边三角形,∵△ABN≌△CDM,∴AN=CM=2.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n的值.【考点】反比例函数图象上点的坐标特征;翻折变换(折叠问题).【分析】(1)先根据AO:BC=3:2,BC=2得出OA的长,再根据点B、C的横坐标都是3可知BC∥AO,故可得出B点坐标,再根据点B在反比例函数y=(x>0)的图象上可求出k的值,由AC∥x轴可设点D(t,3)代入反比例函数的解析式即可得出t的值,进而得出D点坐标;(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OAA1,根据AC∥x轴可知∠A1ED=∠A1FO=90°,由相似三角形的判定定理得出△DEA1∽△A1FO,设A1(m,n),可得出=,再根据勾股定理可得出m2+n2=9,于是得到结论.【解答】解:(1)∵AO:BC=3:2,BC=2,∴OA=3,∵点B、C的横坐标都是3,∴BC∥AO,∴B(3,1),∵点B在反比例函数y=(x>0)的图象上,∴1=,解得k=3,∵AC∥x轴,∴设点D(t,3),∴3t=3,解得t=1,∴D(1,3);(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OA1,∵AC∥x轴,∴∠A1ED=∠A1FO=90°,∵∠OA1D=90°,∴∠A1DE=∠OA1F,∴△DEA1∽△A1FO,∵A1(m,n),∴=,∴m2+n2=m+3n,∵m2+n2=OA12=OA2=9,∴m+3n=9.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)由∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,推出∠CDE=∠ABC,由∠EDF=∠ADB=∠ACB,以及AB=AC,推出∠ABC=∠ACB,即可推出∠EDF=∠CDE解决问题.(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出DE的值.【解答】(1)证明:∵∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,∴∠CDE=∠ABC,∵∠EDF=∠ADB=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠EDF=∠CDE,∴DE平分∠CDF.(2)解:∵∠ADB=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB∴=,∵AB=AC=3,AD=2∴AE==,∴DE=﹣2=(cm).27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?【考点】四边形综合题.【分析】(1)过D点作DF⊥BC于F,得出四边形ABFD是矩形,那么DF=AB=8,BF=AD=12,CF=BC﹣BF=6,然后在直角△CDF中利用勾股定理即可求出DC;(2)由于AD∥BC,所以当PQ∥CD时,四边形PDCQ是平行四边形,根据平行四边形的对边相等得出PD=QC,依此列出关于t的方程,求解即可;(3)因为∠C<90°,所以△PQC为直角三角形时,分两种情况:①∠PQC=90°;②∠CPQ=90°;分别求解即可.【解答】解:(1)过D点作DF⊥BC于F,∵AD∥BC,∠B=90°,∴四边形ABFD是矩形,∴DF=AB=8,BF=AD=12,∴CF=BC﹣BF=18﹣12=6,∴DC===10(cm);(2)当PQ∥CD时,四边形PDCQ是平行四边形,此时PD=QC,∴12﹣2t=t﹣1,∴t=4.∴当t=4时,四边形PQDC是平行四边形;(3)△PQC为直角三角形时,因为∠C<90°,分两种情况:①当∠PQC=90°时,则AP=BQ,即2t=18﹣(t﹣1),解得t=6,不合题意舍去;②当∠CPQ=90°,此时P一定在DC上,∵CP=10+12﹣2t=22﹣2t,CQ=t﹣1,易知,△CDF∽△CQP,∴=,即=,解得:t=8,符合题意;综上所述,当t=8秒时,△PQC是直角三角形.28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x 轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD 相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【考点】二次函数综合题.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).。

姜堰二模试卷初中数学答案

姜堰二模试卷初中数学答案

一、选择题1. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.5答案:C2. 若m+n=5,mn=4,则m²+n²的值为()A. 21B. 25C. 19D. 16答案:A3. 下列图形中,对称轴最多的是()A. 正方形B. 等腰三角形C. 长方形D. 圆答案:D4. 已知一次函数y=kx+b的图象经过点(1,2)和(-1,-2),则k和b的值分别为()A. k=1,b=1B. k=1,b=0C. k=-1,b=0D. k=-1,b=1答案:C5. 若等腰三角形的底边长为8cm,腰长为10cm,则其面积为()A. 40cm²B. 50cm²C. 60cm²D. 80cm²答案:C二、填空题6. 若a=2,b=-3,则a²-b²的值为______。

答案:257. 若等腰三角形的底角为40°,则顶角为______。

答案:100°8. 已知一次函数y=2x-3,当x=2时,y的值为______。

答案:19. 若等边三角形的边长为6cm,则其面积为______。

答案:18cm²10. 若一个数是3的倍数,那么这个数加上1后一定是______。

答案:2的倍数三、解答题11. 已知等腰三角形ABC中,AB=AC,∠B=50°,求∠A的度数。

解:由于AB=AC,所以∠B=∠C,又∠B=50°,所以∠C=50°。

由三角形内角和定理得∠A=180°-∠B-∠C=180°-50°-50°=80°。

答案:∠A的度数为80°。

12. 已知一次函数y=kx+b的图象经过点(-1,2)和(2,-1),求k和b的值。

解:将点(-1,2)和(2,-1)代入一次函数y=kx+b中,得到两个方程:2=k(-1)+b-1=2k+b解得:k=-1,b=1。

江苏省泰州市2019-2020学年中考第二次模拟数学试题含解析

江苏省泰州市2019-2020学年中考第二次模拟数学试题含解析

江苏省泰州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.sin45°的值等于( ) A .2B .1C .32D .222.如图,在矩形ABCD 中AB =2,BC =1,将矩形ABCD 绕顶点B 旋转得到矩形A'BC'D ,点A 恰好落在矩形ABCD 的边CD 上,则AD 扫过的部分(即阴影部分)面积为( )A .8π B .222π-C .23π-D .6π 3.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )A .25本B .20本C .15本D .10本4.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C.D.5.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.6.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.0.4×108B.4×108C.4×10﹣8D.﹣4×1087.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°8.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游9.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.610.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )A .B .C .D .11.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .12.计算12-+的值( ) A .1B .1-C .3D .3-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,要使△ABC ∽△ACD ,需补充的条件是_____.(只要写出一种)14.如图,反比例函数3y x=(x >0)的图象与矩形OABC 的边长AB 、BC 分别交于点E 、F 且AE=BE ,则△OEF 的面积的值为 .15.点G 是三角形ABC 的重心,AB a =u u u r r ,AC b =u u u r r ,那么BG u u u r=_____.16.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.如图,直线m ∥n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若∠1=30°,则∠2=_____.18.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示. (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?20.(6分)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f . (1)求证:PC 是⊙O 的切线; (2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d+f 的取值范围.21.(6分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)22.(8分)如图,∠BAC 的平分线交△ABC 的外接圆于点D ,交BC 于点F ,∠ABC 的平分线交AD 于点E .(1)求证:DE =DB :(2)若∠BAC =90°,BD =4,求△ABC 外接圆的半径; (3)若BD =6,DF =4,求AD 的长23.(8分)如图所示,小王在校园上的A 处正面观测一座教学楼墙上的大型标牌,测得标牌下端D 处的仰角为30°,然后他正对大楼方向前进5m 到达B 处,又测得该标牌上端C 处的仰角为45°.若该楼高为16.65m ,小王的眼睛离地面1.65m ,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m ).24.(10分)如图,直线4y x =+与双曲线0ky k x=≠()相交于1A a -(,)、B 两点.(1)a =,点B 坐标为 .(2)在x 轴上找一点P ,在y 轴上找一点Q ,使BP PQ QA ++的值最小,求出点P Q 、两点坐标25.(10分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表: 月份 销售额 人员 第1月第2月第3月第4月第5月甲 6 9 10 8 8 乙 5 7 8 9 9 丙5910511(1)根据上表中的数据,将下表补充完整: 统计值 数值 人员 平均数(万元)众数(万元)中位数(万元)方差甲 8 8 1.76 乙 7.6 8 2.24 丙85(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.26.(12分)如图,在△ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且AD 2=DE•DF . (1)求证:△BFD ∽△CAD ; (2)求证:BF•DE=AB•AD .27.(12分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;(2)画出将△ABC向右平移6个单位后得到的△A2B2C2;(3)在(1)中,求在旋转过程中△ABC扫过的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据特殊角的三角函数值得出即可.【详解】解:sin45°2,故选:D.【点睛】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.2.A【解析】【分析】本题首先利用A 点恰好落在边CD 上,可以求出A´C =BC´=1,又因为A´B△A´BC 为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´ 【详解】先连接BD,首先求得正方形ABCD1,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为245118024=ππ⨯⨯,扇形BDD´的面积为2451318028ππ⨯⨯=,面积ADA´=面积ABCD -面积A´BC -扇形面积ABA´11112424ππ⨯⨯--;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=)3113111182282ππ⨯⨯--=-,阴影部分面积=面积DA´D´+面积ADA´=8π【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键. 3.C 【解析】 【分析】设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可. 【详解】解:设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意,得:()()1254033006813xy xy x y =⎧⎨+-+=-+⎩,解得:2515x y =⎧⎨=⎩,答:甲种笔记本买了25本,乙种笔记本买了15本. 故选C . 【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x 、y 的二元二次方程组是解答此题的关键. 4.C 【解析】 分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.5.C【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】0.000 000 04=4×10-8,故选C【点睛】此题考查科学记数法,难度不大7.D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.考点:圆锥的计算.8.C【解析】【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;C选项:两个班的最高分无法判断出现在哪个班,错误;D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选C.【点睛】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.9.A【解析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=12AB=12×8=1.在Rt△AOC中,OA=5,∴OC=2222543OA AC-=-=,即圆心O到AB的距离为2.故选A.10.C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.11.A【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.12.A【解析】【分析】根据有理数的加法法则进行计算即可.【详解】12=1-+故选:A.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解析】试题分析:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.故答案为∠ACD=∠B 或∠ADC=∠ACB或AD:AC=AC:AB.考点:1.相似三角形的判定;2.开放型.14.9 4【解析】试题分析:如图,连接OB.∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=32×1=32.∵AE=BE,∴S△BOE=S△AOE=32,S△BOC=S△AOB=1.∴S △BOF =S △BOC ﹣S △COF =1﹣32=32.∴F 是BC 的中点. ∴S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF =6﹣32﹣32﹣32×32=. 15.1233b a -r r . 【解析】【分析】根据题意画出图形,由AB a =u u u v v ,AC b =u u u v v ,根据三角形法则,即可求得BD u u u v 的长,又由点G 是△ABC 的重心,根据重心的性质,即可求得.【详解】如图:BD 是△ABC 的中线,∵AC b =u u u v v, ∴AD u u u v =12b v , ∵AB a =u u u v v ,∴BD u u u v =12b v ﹣a v , ∵点G 是△ABC 的重心,∴BG u u u v =23BD u u u v =13b v ﹣23a v , 故答案为:13b v ﹣23a v .【点睛】本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.16.12.1【解析】【分析】依据分式方程11x k k x x +-+-=1的解为负整数,即可得到k >12,k≠1,再根据不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解,即可得到0≤k <4,进而得出k 的值,从而可得符合题意的所有k 的和.【详解】解分式方程11x k k x x +-+-=1,可得x=1-2k , ∵分式方程11x k k x x +-+-=1的解为负整数, ∴1-2k <0,∴k >12, 又∵x≠-1,∴1-2k≠-1,∴k≠1,解不等式组322144x x x k +≥-⎧⎨-≤⎩,可得344x k x ≥-⎧⎪⎨+≤⎪⎩, ∵不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解, ∴1≤44k +<2, 解得0≤k <4, ∴12<k <4且k≠1, ∴k 的值为1.1或2或2.1或3或3.1,∴符合题意的所有k 的和为12.1,故答案为12.1.【点睛】本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.17.75°【解析】试题解析:∵直线l 1∥l 2,∴130.A ∠=∠=o,AB AC Q =75.ACB B ∴∠=∠=o 2180175.ACB ∴∠=-∠-∠=o o 故答案为75.o 18.1.【解析】【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=12(180°-∠D)=51°,又∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案为:1°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解析】【分析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1).(2)根据题意,得:∵∴当时,随x的增大而增大∵∴当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.20.(1)详见解析;(2)3sin OPC∠=;(3)915m≤≤【解析】【分析】(1)连接OC ,根据等腰三角形的性质得到∠A=∠OCA ,由平行线的性质得到∠A=∠BOP ,∠ACO=∠COP ,等量代换得到∠COP=∠BOP ,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O 作OD ⊥AC 于D ,根据相似三角形的性质得到CD•OP=OC 2,根据已知条件得到3OC OP =,由三角函数的定义即可得到结论;(3)连接BC ,根据勾股定理得到BC=2?2AB AC -=12,当M 与A 重合时,得到d+f=12,当M 与B重合时,得到d+f=9,于是得到结论.【详解】(1)连接OC ,∵OA=OC ,∴∠A=∠OCA ,∵AC ∥OP ,∴∠A=∠BOP ,∠ACO=∠COP ,∴∠COP=∠BOP ,∵PB 是⊙O 的切线,AB 是⊙O 的直径,∴∠OBP=90°,在△POC 与△POB 中,OC OB COP BOP OP OP ⎧⎪∠∠⎨⎪⎩===,∴△COP ≌△BOP ,∴∠OCP=∠OBP=90°,∴PC 是⊙O 的切线;(2)过O 作OD ⊥AC 于D ,∴∠ODC=∠OCP=90°,CD=12AC , ∵∠DCO=∠COP ,∴△ODC∽△PCO,∴CD OC OC PO=,∴CD•OP=OC2,∵OP=32 AC,∴AC=23 OP,∴CD=13 OP,∴13OP•OP=OC2∴OC OP=∴sin∠CPO=OC OP=(3)连接BC,∵AB是⊙O的直径,∴AC⊥BC,∵AC=9,AB=1,∴,当CM⊥AB时,d=AM,f=BM,∴d+f=AM+BM=1,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤1.【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.21.凉亭P到公路l的距离为273.2m.【解析】【分析】分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【详解】详解:作PD⊥AB于D.设BD=x,则AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD,即DB=PD=tan331+x),解得:x≈273.2,∴PD=273.2.答:凉亭P到公路l的距离为273.2m.【点睛】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.22.(1)见解析;(2)2(3)1【解析】【分析】(1)通过证明∠BED=∠DBE得到DB=DE;(2)连接CD,如图,证明△DBC为等腰直角三角形得到22,从而得到△ABC外接圆的半径;(3)证明△DBF∽△ADB,然后利用相似比求AD的长.【详解】(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=10°,∴BC为直径,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.23.大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE 的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD 的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE =3tan 3020o AE ⋅=⨯=11.54, ∴CD=CE ﹣DE=15﹣11.54≈3.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m .24. (1)3a =,()31B -,;(1)()20P -,,()02Q ,. 【解析】【分析】(1)由点A 在一次函数图象上,将A (-1,a )代入y=x+4,求出a 的值,得到点A 的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B 坐标;(1)作点A 关于y 轴的对称点A′,作点B 作关于x 轴的对称点B′,连接A′B′,交x 轴于点P ,交y 轴于点Q ,连接PB 、QA .利用待定系数法求出直线A′B′的解析式,进而求出P 、Q 两点坐标.【详解】解:(1)把点A (-1,a )代入一次函数y=x+4,得:a=-1+4,解得:a=3,∴点A 的坐标为(-1,3).把点A (-1,3)代入反比例函数y=k x , 得:k=-3,∴反比例函数的表达式y=-3x. 联立两个函数关系式成方程组得:43y x y x ==+⎧⎪⎨-⎪⎩解得:13x y -⎧⎨⎩== 或31x y -⎧⎨⎩== ∴点B 的坐标为(-3,1).故答案为3,(-3,1);(1)作点A 关于y 轴的对称点A′,作点B 作关于x 轴的对称点B′,连接A′B′,交x 轴于点P ,交y 轴于点Q ,连接PB 、QA ,如图所示.∵点B 、B′关于x 轴对称,点B 的坐标为(-3,1),∴点B′的坐标为(-3,-1),PB=PB′,∵点A 、A′关于y 轴对称,点A 的坐标为(-1,3),∴点A′的坐标为(1,3),QA=QA′,∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.设直线A′B′的解析式为y=mx+n ,把A′,B′两点代入得:331m n m n ==+⎧⎨-+-⎩解得:12m n ⎧⎨⎩=,=∴直线A′B′的解析式为y=x+1.令y=0,则x+1=0,解得:x=-1,点P 的坐标为(-1,0),令x=0,则y=1,点Q 的坐标为(0,1).【点睛】本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P 、Q 的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.25.(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.【解析】【分析】(1)利用平均数、众数、中位数的定义和方差的计算公式求解;(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.【详解】(1)甲的平均数()16910888.25=++++=; 乙的众数为9;丙的中位数为9, 丙的方差()()()()()222221589810858118 6.45⎡⎤=-+-+-+-+-=⎣⎦;故答案为8.2;9;9;6.4;(2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.26.见解析【解析】试题分析:(1)2AD DE DF =⋅,ADF EDA ∠∠= ,可得ΔADF ∽ΔEDA ,从而得F DAE ∠∠=,再根据∠BDF=∠CDA 即可证; (2)由ΔBFD ∽ΔCAD ,可得BF DF AC AD =,从而可得BF AD AC DE=,再由ΔBFD ∽ΔCAD ,可得B C ∠∠=从而得AB AC =,继而可得BF AD AB DE= ,得到BF DE AB AD ⋅=⋅. 试题解析:(1)∵2AD DE DF =⋅,∴AD DF DE AD =, ∵ADF EDA ∠=∠ ,∴ADF ∆∽EDA ∆ ,∴F DAE ∠=∠,又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF ,即∠BDF=∠CDA ,∴BFD ∆∽CAD ∆;(2)∵BFD ∆∽CAD ∆ ,∴BF DF AC AD =, ∵AD DF DE AD = ,∴BF AD AC DE=, ∵BFD ∆∽CAD ∆,∴B C ∠=∠,∴AB AC =, ∴BF AD AB DE = , ∴BF DE AB AD ⋅=⋅. 【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.27.(1)(1)如图所示见解析;(3)4π+1.【解析】【分析】(1)根据旋转的性质得出对应点位置,即可画出图形;(1)利用平移的性质得出对应点位置,进而得出图形;(3)根据△ABC 扫过的面积等于扇形BCC 1的面积与△A 1BC 1的面积和,列式进行计算即可.【详解】(1)如图所示,△A 1BC 1即为所求;(1)如图所示,△A1B1C1即为所求;(3)由题可得,△ABC扫过的面积=29041413602π⨯⨯+⨯⨯=4π+1.【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省泰州市姜堰市梁徐初级中学中考数学二模试卷一.选择题(共6小题,每小题3分,满分18分)1.﹣2的负倒数是()A.﹣2B.2C.﹣D.2.下列运算中,正确的是()A.﹣(m+n)=n﹣m B.(m3n2)3=m6n5C.m3•m2=m5D.n3÷n3=n3.如图,几何体的左视图是()A.B.C.D.4.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104B.25.9×105C.2.59×106D.0.259×1075.选拔一名选手参加区中学生男子百米比赛,我校四名中学生参加了训练,他们成绩的平均数及其方差s2如表所示:要选拔一名成绩好且发挥稳定的同学,最合适的是()A.甲B.乙C.丙D.丁6.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为()A .B .C .D .二.填空题(共10小题,每小题3分,满分30分)7.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =,如3※2==,那么6※3= .8.若a ,b 都是实数,b =+﹣2,则a b 的值为 .9.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有 个. 10.因式分解:2a 2﹣2= .11.若x 2﹣2x =1,则2x 2﹣4x +3= .12.如图,直线l 1∥l 2,等腰直角△ABC 的两个顶点AB 分别落在直线l 1、l 2上,∠ACB =90°,若∠1=15°,则∠2的度数是 .13.抛物线y =2x 2﹣2x 与x 轴的交点坐标为 .14.扇形的半径为8cm ,圆心角为120°,用该扇形围成一个圆锥的侧面,则这个圆锥底面圆的直径是 cm .15.如图,点G 为△ABC 的重心,若S △BGD =2cm 2,则S △ABC = cm 2.16.如图,AB 为⊙O 的直径,AB =3,弧AC 的度数是60°,P 为弧BC 上一动点,延长AP 到点Q ,使AP •AQ =AB 2.若点P 由B 运动到C ,则点Q 运动的路径长为 .三.解答题(共10小题,满分102分)17.(12分)先化简,再求值:,其中m=tan60°﹣.18.(8分)为积极响应嘉兴市垃圾分类工作的号召,大力提倡低碳生活,保护我们的生存环境,某校按抽样规则抽取了部分学生进行垃圾分类的问卷调查(问卷内容如图1),答题情况如图2所示.(1)参与本次问卷调查的学生共有多少人?(2)若该校共有800名学生,则估计该校全体学生中对垃圾分类非常清楚(即“全对”)的人数有多少?(3)为进一步提高学生对垃圾分类的认识,学校加大了宣传,一个月后按同样的抽样规则抽取与第一次样本容量相等的学生进行第二次垃圾分类的问卷调查,答题情况如图3所示,求前后两次调查中答“全对”人数的增长率.19.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.20.(8分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?21.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为8,∠ABC=60°,求AE的长.22.(10分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与x轴交于点A(﹣2,0),与反比例函数y=(m≠0)的图象交于点B(2,n),连接BO,若S=4.△AOB(1)求反比例函数和一次函数的表达式;(2)若直线AB与y轴的交点为C,求△OCB的面积.(3)根据图象,直接写出当x>0时,不等式>kx+b的解集.23.(10分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A 的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)24.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?25.(12分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A 的坐标;若不存在,请说明理由.26.如图,在直角△ABC中,∠C=90°,AC=15,BC=20,点D为AB边上一动点,若AD的长度为m,且m的范围为0<m<9,在AC与BC边上分别取两点E、F,满足ED⊥AB,FE⊥ED.(1)求DE的长度;(用含m的代数式表示)(2)求EF的长度;(用含m的代数式表示)(3)请根据m的不同取值,探索过D、E、F三点的圆与△ABC三边交点的个数.2019年江苏省泰州市姜堰市梁徐初级中学中考数学二模试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【分析】根据负倒数的定义进行求解即可.【解答】解:﹣2的倒数是﹣,所以﹣2的负倒数为.故选:D.【点评】本题考查了负倒数的定义:若两个数的乘积是﹣1,我们就称这两个数互为负倒数.注意0没有倒数,也没有负倒数.2.【分析】根据同底数幂的除法,底数不变指数相减;去括号,括号前面是负号,括号里的每一项都变号;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为﹣(m+n)=﹣n﹣m,故本选项错误;B、应为(m3n2)3=m9n6,故本选项错误;C、m3•m2=m5,故本选项正确;D、应为n3÷n3=1,故本选项错误.故选:C.【点评】本题考查同底数幂的除法,去括号的法则,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2590000用科学记数法表示为:2.59×106.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,所以选择乙;故选:B.【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=∠CDF,设CD=a,CF=x,则CA=CB=2a,再根据勾股定理即可求解.【解答】解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=a,CF=x,则CA=CB=2a,∴DF=FA=2a﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+a2=(2a﹣x)2,解得x=a,∴DF=2a﹣x=a∴sin∠BED=sin∠CDF==,故选:B.【点评】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.二.填空题(共10小题,满分30分,每小题3分)7.【分析】根据※的运算方法列式算式,再根据算术平方根的定义解答.【解答】解:6※3==1.故答案为:1.【点评】本题考查了算术平方根的定义,读懂题目信息,理解※的运算方法是解题的关键.8.【分析】直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.【解答】解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.【点评】此题主要考查了二次根式有意义的条件以及负指数幂的性质,正确得出a的值是解题关键.9.【分析】根据若从中任摸一个球,恰好是黑球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.10.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.11.【分析】将x2﹣2x=1代入原式=2(x2﹣2x)+3计算可得.【解答】解:当x2﹣2x=1时,原式=2(x2﹣2x)+3=2×1+3=5,故答案为:5.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.【分析】根据平行线的性质可得出∠2=∠3,根据等腰直角三角形的性质可得出∠1+∠3=45°,即∠1+∠2=45°,再代入∠1=15°即可求出∠2的度数.【解答】解:∵l1∥l2,∴∠2=∠3.∵△ABC为等腰直角三角形,∴∠1+∠3=45°,∴∠1+∠2=45°.又∵∠1=15°,∴∠2=45°﹣15°=30°.故答案为:30°.【点评】本题考查了等腰直角三角形以及平行线的性质,根据等腰直角三角形的性质结合平行线的性质找出∠1+∠2=45°是解题的关键.13.【分析】通过解方程2x2﹣2x=0得到抛物线与x轴的交点坐标.【解答】解:当y=0时,2x2﹣2x=0,解得x1=0,x2=1,所以抛物线与x轴的交点坐标为(0,0),(1,0).故答案为(0,0),(1,0).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.14.【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得.【解答】解:设此圆锥的底面半径为r ,由题意,得2πr =,解得r =cm .所以直径为cm ,故答案为:. 【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.15.【分析】由点G 为△ABC 的重心,推出AG =2DG ,可得S △ABG =2S △BDG =4cm 2,推出S △ABD =6cm 2,由BD =DC ,推出S △ABC =2S △ABD 即可解决问题;【解答】解:∵点G 为△ABC 的重心,∴AG =2DG ,∴S △ABG =2S △BDG =4cm 2,∴S △ABD =6cm 2,∵BD =DC ,∴S △ABC =2S △ABD =12cm 2.故答案为12.【点评】本题考查三角形的重心,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【分析】连接BQ ,如图,根据圆周角定理得到∠APB =90°,再证明△ABP ∽△AQB 得到∠ABQ =∠APB =90°,则可判定BQ 为⊙O 的切线,点Q 运动的路径长为切线长,然后计算P 点在C 点时BQ 的长即可.【解答】解:连接BQ ,如图,∵AB 为⊙O 的直径,∴∠APB =90°,∵AP •AQ =AB 2.即=,而∠BAP =∠QAB ,∴△ABP∽△AQB,∴∠ABQ=∠APB=90°,∴BQ为⊙O的切线,点Q运动的路径长为切线长,∵弧AC的度数是60°,∴∠AOC=60°,∴∠OAC=60°,当点P在C点时,∠BAQ=60°,∴BQ=AB=3,即点P由B运动到C,则点Q运动的路径长为3.故答案为3.【点评】本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了解直角三角形的运用.三.解答题(共10小题,满分102分)17.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角三角函数值和负整数指数幂得出m的值,代入计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,当m=tan60°﹣=﹣2时,原式=﹣=﹣=﹣.【点评】本题主要考查分式的混合运算﹣化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.【分析】(1)由图2,将所有数据相加即可得;(2)总人数乘以全对人数所占比例即可得;(3)先求出第二次全对的人数,再根据增长率的定义求解可得.【解答】解:(1)参与本次问卷调查的学生共有14+27+7+2=50人;(2)估计该校全体学生中对垃圾分类非常清楚(即“全对”)的人数有800×=224人;(3)第二次答对的人数为50×(1﹣8%﹣6%﹣2%)=42人,则前后两次调查中答“全对”人数的增长率为×100%=200%. 【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中图表中的数据是解本题的关键.19.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是“厨余垃圾”的概率; (2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.20.【分析】(1)设A 、B 两种型号的空调的销售单价分别为x 元,y 元,根据总价=单价×数量结合该超市近两周的销售情况表中的数据,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设采购A种型号的净水器a台,则采购B种型号的净水器(30﹣a)台,根据总价=单价×数量结合采购金额不多于54000元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.21.【分析】(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD =90°,证明OCED是矩形,可得OE=CD;(2)根据菱形的性质以及勾股定理,得出AC与CE的长,再根据勾股定理得出AE的长度即可.【解答】解:(1)在菱形ABCD中,OC=AC,AC⊥BD.又∵DE=AC,∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵∠COD=90°,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=8,AO=4.∴在矩形OCED中,CE=OD==4.又∵矩形DOCE中,∠OCE=90°,∴在Rt△ACE中,AE===4.【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,熟记矩形的判定方法与菱形的性质是解题的关键.22.【分析】(1)根据△AOB的面积,求出点B的坐标,将点B的坐标代入反比例函数,即可求出反比例函数的解析式;将A、B的坐标分别代入一次函数解析式即可得解;(2)根据一次函数的解析式求出点C的坐标,在利用三角形的面积公式求出△OCB的面积即可;(3)观察图象,直接写出反比例函数的图象在一次函数图象的上面时所对的x的取值范围即可.【解答】解:(1)由A(﹣2,0),得OA=2,=4,∵点B(2,n)在第一象限,S△AOB∴OA•n=4,解得:n=4;∴点B的坐标是(2,4),将点B的坐标(2,4)带入反比例函数y=,得:4=,解得:m=8,将点A(﹣2,0),B(2,4)的坐标分别代入y=kx+b,得:,解得:,∴一次函数的表达式:y=x+2.(2)在y=x+2中,令x=0,得:y=2,∴点C的坐标是(0,2),∴OC=2,=×2×2=2;∴S△OCB(3)由于点B的坐标为(2,4),可知不等式>kx+b的解集为:0<x<2.【点评】本题主要考查反比例函数与一次函数的交点问题,解决此类问题中,三角形面积的问题时,尽可能选择与坐标轴平行的边为底边,有利于问题的解决.23.【分析】(1)根据题意作出合适的辅助线,然后根据题意和锐角三角函数可以求得城门大楼的高度;(2)根据(1)中的结果和锐角三角函数可以求得A,B之间所挂彩旗的长度.【解答】解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.24.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x 的函数关系式=70,得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.25.【分析】(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为﹣c,纵坐标为c.【解答】解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∵y=﹣(x+2)2+8,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠OBC,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(﹣c,c),∴顶点横坐标=﹣c,b=﹣c,顶点D纵坐标是点A纵坐标的2倍,为2c,顶点D的坐标为(﹣c,2c)∵将D点代入可得2c=﹣(﹣c)2+c•c+c,解得:c=2或者0,当c为0时四边形AOBD不是矩形,舍去,故c=2;∴A点坐标为(﹣2,2).【点评】本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.26.【分析】(1)证△ADE∽△ACB得=,据此知=,解之可得;(2)先由△ADE∽△ACB知=,据此求得AE=,再证△ADE∽△ECF得=,将有关线段的长代入求解可得;(3)先分别求出⊙O与AC相切和⊙O与BC相切时m的值,再分0<m<、m=、<m<、m=和<m<9这五种情况分别求解可得.【解答】解:(1)∵ED⊥AB,∴∠EDA=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ADE∽△ACB,∴=,∴=,∴DE=;(2)∵△ADE∽△ACB,∴=,∴=,∴AE=,∵ED⊥AB,FE⊥ED∴∠EDA=∠DEF=90°,∴EF∥AB,∴∠A=∠CEF,又∵∠EDA=∠C,∴△ADE∽△ECF,∴=,∴m:(15﹣)=:EF,∴EF=25﹣.(3)当ED:EF=3:4,⊙O与AC相切于点E,:(25﹣)=3:4,m=;当ED:EF=4:3,⊙O与BC相切于点F,:(25﹣)=4:3,m=;①当0<m<时,⊙O与△ABC有六个交点;②当m=时,⊙O与△ABC有五个交点;③当<m<时,⊙O与△ABC有六个交点;④当m=时,⊙O与△ABC有五个交点;⑤当<m<9时,⊙O与△ABC有六个交点.【点评】本题是圆的综合问题,解题的关键是熟练掌握相似三角形的判定与性质,圆的切线的判定和性质及分类讨论思想的运用.。

相关文档
最新文档