High precision Ranging System高精度超声波测距系统
超声波测距技术综述
文献综述题目超声波测距技术综述学生姓名专业班级学号院(系)电气信息工程学院指导教师完成时间2014 年06月01日超声波测距技术综述摘要我们把频率高于20000赫兹的声波称为“超声波”。
超声波具有指向性强,能量消耗缓慢,在介质中传播的距离较远等特点,同时它是一种非接触式的检测方式,不受光线、被测对象颜色等影响,因此经常被用于距离的测量。
超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。
因此,深入研究超声波测距的理论和方法具有重要的实践意义。
关键词超声波超声波测距车辆导航物位测量1 引言1.1 超声波简介一般认为,关于超声的研究最初起始于1876年F1Galton的气哨实验。
当时Galton 在空气中产生的频率达300K Hz,这是人类首次有效产生的高频声。
而科学技术的发展往往与一些偶然的历史事件相联系。
对超声的研究起到极大推动作用的是,1912年豪华客轮Titanic号在首航中碰撞冰山后的沉没,这个当时震惊世界的悲剧促使科学家们提出用声学方法来预测冰山,在随后的第一次世界大战中,对超声的研究得以进一步的促进。
近些年来,随着超声技术研究的不断深入,我们把频率高于20000赫兹的声波称为“超声波”。
再加上其具有的高精度、无损、非接触等优点,超声的应用变得越来越普及。
目前已经广泛的应用在机械制造、电子冶金、航海、航空、宇航、石油化工、交通等工业领域。
此外在材料科学、医学、生物科学等领域中也占据重要地位。
而我国,关于超声波的大规模研究始于1956年。
迄今,在超声的各个领域都开展了研究和应用,其中有少数项目已接近或达到了国际水平。
1.2 超声波测距简介超声测距指的是利用超声波的反射特性进行距离测量,是一种非接触式的检测方式。
与其它方法相比,如电磁的或光学的方法,它不受光线、被测对象颜色等影响。
对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。
基于超声波测距原理的倒车防撞预警器的设计
based on ultrasonic ranging principle
ZH ONG Yuan,YU Hgo
(College ofInformation Science and Technology,NanjingForestry University,Nanjing 210037,China)
近 年 来 ,层 出 不 穷 的 的 限 购 令 传 闻 。接 连 掀 起 家 用 汽 车
购买 的热 潮 。 自 2014年 9月起 ,随 着 “私 家车 免 检 ”新 规 的 的 实施 和 新 能 源 汽 车 的上 市 ,更 增 加 了 民众 购 买 汽 车 的 热 情 , 国 内 汽 车 保 有 量 持 续 增 长 ,交 通 安 全 问题 也 逐 步 走 进 了 人 们
汽 车 倒 车 防 撞 预警 器 是 利 用 超 声 波 测 距 原 理 ,在 单 片 机 的驱 动 下 ,先 由超 声 波 发 射 探 头 发 出 超 声 波 信 号 ,并 同 步 计 时 . 当 接 收 探 头 收 到 反馈 信 号 后 会 发 送 一 个 低 电 平 给 单 片
摘 要 :介 绍 了 以单 片机 STC12C5A60S2为 微 控 制 器 的 低 成 本 、高精 度 、微 型 化 的 汽 车 倒 车 防 撞 预 警 系统 。 文章 分 析 了 倒 车 防 撞 系统 的 设 计 原 理 。较 详 细 的 介 绍 了超 声波 传 感 器测 距 系统 ,结 合 超 声 波 测 距 的 工 作 原 理 和 系统 构成 ,给 出 了 软 件 控 制 流 程 .并在 数 据 处理 中 采 用 了温 度 补 偿 法修 正 测 量 精 度 ,经过 测 试 ,系统 工 作 稳 定 ,测 距 范 围 为 30-500 cm,
高精度超声测距系统设计
Science &Technology 。
图1高精度超声测距系统结构图
2设计实现
2.1渡越时间测量和距离补偿算法
渡越时间是指从超声发射器发出的超声波,经气体介质的传播后,然后反射回到接收器的时间。
渡越时间与空气中的声速相乘,就是声波传输的距离,即:
L =12
vt (1)式中,L 为待测距离,v 为超声波的声速,t 为渡越时间。
若用σL =vσΔt +Δtσv 来表示测量误差,σL 为测距误差,v 为声速,σΔt 为时间测量误差,σv 为声速误差。
则可知提高测量精度的方法有:
(1)由于超声波在媒质中的传播速度和温度关系很大,所以必须要采取温度补偿措施,降低温度变化对测量精度的影响。
采用专用数字温度传感器DS 18B20测温,然后利用下面公式来计算当前声速,从而得到补偿温度导致的影响:
v =331.45
t 273.16
+1√
(m/s)(2)(2)若要求测距误差小于0.01m,取声速v =340m/s 时,忽略声速误差,那么测量时间的误差为:σ≤σL =0.01=0.00003s 。
所以必须利用
单片机软件控制流程图
本系统采用单片机和渡越时间算法及温度测量和距离补偿种距离和不同环境温度下进行测试,其稳定性良好且精度较高部分测试结果如表1所示29度环境下测试结果
9.0198.2499.81985000.0
0.2
. All Rights Reserved.
多媒体技术将加速舞蹈教学各个方面的进程。
高精度超声波测距系统设计
高精度超声波测距系统设计作者:宋永东周美丽白宗文来源:《现代电子技术》2008年第15期摘要:提出了一种基于AT89S51单片机的超声波测距系统的设计方案。
详细分析了影响测距系统精度的主要因素,设计出了各单元电路和整体电路,重点介绍了提高测量精度的方案和具体实现电路,采用单片机技术进行控制,并给出了控制流程图。
设计出的超声波测距系统精度可达毫米数量级,电路具有结构简单、操作方便、精度高、应用广泛的特点。
关键词:测距系统;AT89S51;误差分析;硬件设计;流程图中图分类号:TP302.1 文献标识码:B 文章编号:1004373X(2008)1513703Design of High Precision Ultrasonic Distance Measurement SystemSONG Yongdong,ZHOU Meili,BAI Zongwen(College of Physics and Electronic Information,Yan′an University,Yan′an,716000,China)Abstract:A plan of ultrasonic distance measurement system based on AT89S51 is derived in this paper, the main factors impact of precision are analyzed in detail and the unit circuit and complete circuit are given.The plan of improving the accuracy and specific circuit is introduced.The system′s accuracy is reached millimeters orders of magnitude.All of the component is controlle by AT89S51,and the control program flow is presented.Circuit have many advantages such as simply structure,easy to use,high accuracy and wide application.Keywords:distance measurement system;AT89S51;error analysis hardware design;program flow1 引言利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差,然后按照下式计算,即可求出距离:S=CΔt/2(1) 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。
基于单片机的超声波测距设计说明介绍模板之欧阳法创编
摘要超声波是频率高于20KHZ的声波具有指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。
利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在液位、井深、管道长度的测量、移动机器人定位和避障等领域得到了广泛的应用。
基于此,本次设计尝试使用AT89S52与HC-SR04模块来实现超声波的测量,结合外围电路模块实现距离显示及报警构成超声波测距系统。
本次超声波测距系统由单片机计时及控制电路、超声波发射接收模块、测量距离显示电路、报警电路等部分组成。
详细介绍了超声波测距模块及AT89S52单片机的测距原理。
以HC-SR04超声波测距模块为核心实现超声波的发射与接收。
显示电路采用数码管以及三极管显示控制,报警电路由蜂鸣器与三极管组成。
整体电路结构简单,成本低廉,工作稳定,测量精度也达到实际应用要求。
关键词:超声波测距单片机 HC-SR04AbstractUltrasound is sound waves with frequency higher than 20KHz, it has strong directivity and consumes energy slowly, at the same time it spreads farther in the same medium. Therefore ultrasound is often used for distance measurement, such as the range finder and level measurement and so on can be achieved by it. Use of ultrasonic detection tends to be quickly, convenient and simple calculation, easy to do real-time control. In the measurement precision it can reach industry practical requirement. So in liquid level, well depth, pipe length measurement, mobile robot localization and obstacle avoidance, etc a wide range of applications.This ultrasonic ranging system consists of the single-chip microcomputer timer and control circuit, ultrasound transmitting and receiving modules, the distance display circuit, alarm circuits and other components. Detailed introduces the ultrasonic ranging module and AT89S52 MCU range finder principle. HC-SR04 is the core of the ultrasonic transmitter and receiver. The result displays with digital tube and controlled by transistor. And the alarm circuit is composed by buzzer and transistor. The whole circuit is simple structure, low cost, stable work and the measurement accuracy reached the application requirements.Key words: ultrasonic wave ranging MCU HC-SR04目录前言1第1章测距仪现状及意义分析01.1国内外现状01.2本课题研究意义11.3主要内容及思路2第2章总体设计22.1总体设计要求22.2总体设计思路3第3章硬件电路43.1单片机及其基本电路43.1.1单片机介绍43.1.2 AT89S52介绍43.1.3单片机基本电路83.2 HC-SR04模块93.2.1 HC-SR04模块使用器件93.2.2超声波发射电路133.2.3超声波接收电路143.2.4 HC-SR04模块工作原理143.3显示电路163.3.1 LED结构与显示方式163.3.2显示模块电路183.3.3显示子程序183.4报警模块193.4.1蜂鸣器及其原理193.4.2报警电路及子程序20第4章程序开发环境及流程图234.1 程序语言及开发环境234.2主程序流程图254.3测距程序流程图27第5章硬件使用说明305.1 硬件电源说明305.2 硬件操作说明31总结32致谢33参考文献34附录一超声波测距仪原理图附录二超声波测距PCB图附录三源程序前言随着经济和科学技术的发展,汽车这项代步工具也走近越来越多的家庭,与此同时交通拥挤的状况也越来越严重。
高精度超声波测距系统
关 ■ 词 :超 声波 ; 距 :单 片机 :显度 朴僧 删 j 中皤 分类 母 : I TP g3 立献 标 识 码 : B
文章 墒号 : 00 —0 0 2 7) 2 0 1 0 1 3 1 7( 00 0 — 0l — 5
oft s esi adopt si l chi ATBgC 2051 hi d gn s ng e— p a8 ai contol The r i m n r cicut
易 检 洲 出 束 具 冉 很 脚 的 分 辨 力 , 因 而 准确 馊 也 较 其 它 法 为 商 : n I J 『r趔 ¨波 传 感 器 H 订 结 构 简 单 、 俸 私l ,俯 址 l 靠 婶特 点 。利 小 l r
川 赳 声 披 榆 删 往 仇 比 较 迅 述 .^ ; 健 汁 ∞ 简 单 .射 j做 到 实 时 控 制 ,
擗 m _ 声 波 揣 问 强 .能 消 , r豳 牦 缓 慢 . = 质 一 传 播 的 距 离 较 介 1 I 远 ,因 1 趔 芦 波 经 常 川 T距 离 的 洲 f } i 黯 , 自 测 仪 和 物 f J 删 屉 仪 掷 酃 I ・ T 通 垃 赳 波 米 线 现 趟 测 l 魁 l ! I i
法 .它 币 受 光 线 被 删 舯 象 舰 也 等 影 响 对 r被 测 物 处 嘴 .仃 肌
加 尔 统 笛 , 呐 币 气 流 旋 笛 等 岜 液 1 1 仃 所 J 坐 的 趟 波 的 频 串 功 率 和 1 波 特 ・ 各 不 丰I , I 耐 用 逡 电 符 } 同 列 棚 ㈨ .朗前 较 为常 用 的 是 J I _ u武 _ I 三
超 声波 发生器 。
i n st a ans ltng cIcul r ei ng I c I 5 1 co e ofl l r m tI r I ec vi c r ui 8n dj pl ng cicul Thi paps exp llS d s ayl r t e atEl 8 r wor ng nB ki pr i pl he ar e ot t nci e of aJ t p l he r i The yst In 日 t J cicu t s em w 『 J”枷 J n c aa ̄B eef I or r l ze Re cont act _ d it ed a f s ance r1 i r en| and t onsi 1eEsur i . o l i c der f l el he f ectw hi s ul y t e f ch I c us 8 a ed by he t dif e nt peed ih he fer s w t I dif entt ter em p r t e T he r e a ur t ans er f speed s r I ectfed ll by m e hod t oft em per ur r at B ede m i o he e ng S t sys em has i r e88 r f h gh , n u em enl eci on- and t pr si I Ch日r  ̄ct i i of si pl er ̄tc m e har wa r d e m akeup. edI e w or ng - s gro T cr hi ki l s e f
一种高精度超声波测距系统设计与实现
【 K e y w o r d s ] D i s t a n c e m e a s u r e m e n t ; C h i p ; C X 2 0 1 0 6 A 0 引 言
( 1 ) 传统的测距方法 传统的测 距方法是使用尺子来测量。包括各 种各样的尺子 , 如米 尺、 卷尺 、 螺旋测微器 、 游标卡尺等等 . 这 些测量工具均需要 通过人 的 肉眼来观察测量的结果 。往往 由于人的个体差异 , 可能相 同的物体所 得到 的测量结果不一样 由于尺子 的长度有限 . 所以测量 的距离也受 到限制 。 基于以上原因, 需要采用一种 自动化的测量方 法 . 来克服上述 测量的缺陷。 ( 2 ) 现代的测距方法 现代测量距离 的方法 有很多种 . 如采 用超声波 、 激 光等不同的物 理量来进行测量 . 然后将测量 的结果转换为距离的间接测量手段越来 越多 。 而且这些测 量方法均较前面 的方法 所测的范 围更 宽 、 测量 的精 度更高 。 超声波以其容 易控制 、并且无危害等特点在测距领域广泛使用 。 下面来介绍超声波的测距方法 ( 3 ) 超声波测距方法介绍 超声波的传输速度为 3 4 0 m / s , 而实际会有些许调整。 使用上 , 通过 发送装置来先发送超声波 , 然后检查 回波 的方法来测量。 通过发送 、 接 收的时 间差可得超声波走过 的距离 . 然后将所得的距离除 以二 即为所 测的距离
De s i g n a nd I mp l e me nt a t i o n o f A Hi g h Pr e c i s i o n Ul t r a s o ni c Ra n g i ng Sy s t e m
YAO We i - pe ng
( Xi ’ n a Ae r o t e c h ic n a l Un i v e r s i t y , De p a r t me n t o f E l e c t r i c a l E n g i n e e r i n g , Xi ’ n a S h a a n x i , 7 1 0 0 7 7 , C h i n a )
基于STM32单片机的高精度超声波测距系统的设计
基于STM32单片机的高精度超声波测距系统的设计苑洁;常太华【期刊名称】《电子设计工程》【年(卷),期】2011(019)015【摘要】提出了一种基于STM32单片机的超声波测距系统的设计方案。
与传统单片机相比,STM32的主频和定时器的频率高达72 MHz,提高了时间测量的分辨率。
在开启定时器计时的同时,启动PWM通道驱动超声波发射器和输入捕获通道捕捉回波信号,提高了测量的精度。
在充分分析超声波测距产生盲区和误差原因的基础上,设计了时间增益补偿电路(TGC)和双比较器整形电路分别测量远、近距离,并通过软件算法对回波信号进行峰值时间检测,简化了电路。
实验研究表明,该系统测量精度达到了1 mm,盲区低至2.5 cm。
%An ultrasonic distance measurement system based on STM32 Microprocessor is pared with the traditional microcontroller,the basic frequency and the Timer frequency of the STM32 microcontroller reach up to 72MHz,which improve the resolution of the measuring time.The superiority is that you can start PWM channels to drive ultrasonic transmitters and input capture channel at the same time.The time gain compensation(TGC) circuit and the double comparator plastic circuit are used to reduce the blind area and error.In addition,using the peak time detecting technique through the software algorithm,the arrival time of ultrasonic echo can be correctly detected.The experiments show that the system measurement accuracy can reach to1mmand the blind area low to 2.5cm.【总页数】4页(P76-78,82)【作者】苑洁;常太华【作者单位】华北电力大学控制与计算机工程学院,北京102206;华北电力大学控制与计算机工程学院,北京102206【正文语种】中文【中图分类】TP216【相关文献】1.基于STM32单片机的高精度超声波测距系统的设计 [J], 刘昕2.STM32单片机的高精度超声波测距系统的设计 [J], 周辉3.基于Arduino+LabVIEW的高精度超声波测距系统设计 [J], 朱志强;张潇宇;王林童;虞楠4.基于STM32单片机的超声波测距系统设计与实现 [J], 张安东5.STM32单片机的高精度超声波测距系统的设计 [J], 周辉因版权原因,仅展示原文概要,查看原文内容请购买。
基于FPGA的测距系统设计
西安邮电大学毕业设计(论文)题目:基于FPGA的测距系统设计学院:电子工程学院专业:电子科学与技术班级:科技1201班学生姓名:伍金霄导师姓名:姚英职称:工程师起止时间:2016年3月14日至2016年6月17日毕业设计(论文)承诺书本人承诺:本人所提交的毕业论文《》是本人在指导教师指导下独立研究、写作的成果,论文中所引用他人的文献、数据、图件、资料均已明确标注;对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式注明并表示感谢。
本人深知本承诺书的法律责任,违规后果由本人承担。
学生(签字):时间:年月日指导教师(签字):时间:年月日西安邮电大学本科毕业设计(论文)选题审批表西安邮电大学本科毕业设计(论文)开题报告西安邮电大学毕业设计 (论文)成绩评定表目录摘要 -------------------------------------------------------------------------------------------------------------------------- IABSTRACT --------------------------------------------------------------------------------------------------------------- II 引言 -------------------------------------------------------------------------------------------------------------------------- 1 1基于FPGA的测距系统设计的课题意义 ------------------------------------------------------------------------ 21.1研究背景-------------------------------------------------------------------------------------------------------------- 2 1.2国内外研究现状----------------------------------------------------------------------------------------------------- 2 1.3本文工作及论文结构 ---------------------------------------------------------------------------------------------- 22基于FPGA测距系统硬件结构平台 ------------------------------------------------------------------------------ 42.1FAPG核心板结构 -------------------------------------------------------------------------------------------------- 4 2.2红外开关距离传感器 ---------------------------------------------------------------------------------------------- 6 2.3超声波测距传感器-------------------------------------------------------------------------------------------------- 73红外距离开关测距系统软件设计 -------------------------------------------------------------------------------- 103.1程序流程设计------------------------------------------------------------------------------------------------------- 10 3.2程序设计流程图---------------------------------------------------------------------------------------------------- 11 3.3运行结果及小结---------------------------------------------------------------------------------------------------- 114超声波测距系统设计 ----------------------------------------------------------------------------------------------- 124.1程序整体框架设计------------------------------------------------------------------------------------------------- 12 4.2PLL倍频------------------------------------------------------------------------------------------------------------- 13 4.3测距模块程序设计------------------------------------------------------------------------------------------------- 14 4.4显示模块程序设计------------------------------------------------------------------------------------------------- 16 4.5仿真电路图及运行结果 ------------------------------------------------------------------------------------------ 18 4.6软硬件误差分析---------------------------------------------------------------------------------------------------- 205总结与展望----------------------------------------------------------------------------------------------------------- 235.1本文内容总结------------------------------------------------------------------------------------------------------- 23 5.2工作展望------------------------------------------------------------------------------------------------------------- 24致谢 ------------------------------------------------------------------------------------------------------------------------ 25 参考文献 ------------------------------------------------------------------------------------------------------------------ 26摘要测距系统目前在多个领域都有着极其重要且不可或缺的作用,不管是在现实生活中还是在航空航天以及军工方面都有着重要的应用。
高频相位激光测距系统的高精度鉴相
第 31 卷第 15 期2023 年 8 月Vol.31 No.15Aug. 2023光学精密工程Optics and Precision Engineering高频相位激光测距系统的高精度鉴相孟语璇1,2,董登峰1,2*,周维虎1,2,纪荣祎1,2,朱志忠1,2(1.中国科学院微电子研究所,北京 100029;2.中国科学院大学,北京 101408)摘要:相位测距是一种非常重要的绝对测距手段,是大尺寸精密测量的重要保障。
提高激光调制频率并采用高性能器件实现高频采样分析是提升相位激光测距精度最有效的方式之一。
针对高性能器件的最大采样频率总是受限,难以满足高调制频率采样的难题,分析验证了欠采样方法用于相位测距的可行性,同时仿真分析了全相位傅里叶频谱分析法(all-phase Fast Fourier Transform,apFFT)提高鉴相精度的优势。
在此基础上,提出“欠采样+ apFFT”的方法,并构建了激光相位测距的鉴相系统。
当调制频率为201 MHz,欠采样频率为100 MHz时,系统鉴相精度高于±0.04°,对应的测距精度为±0.08 mm。
实验结果表明,基于“欠采样+apFFT”的相位测距方法具有高精度、抗干扰能力强等优势,在科学研究与工程应用中具有重要价值。
关键词:相位测距;欠采样;全相位频谱分析法;高精度;鉴相系统中图分类号:TN249;TH711 文献标识码:A doi:10.37188/OPE.20233115.2193High-precision phase discrimination for high-frequency phaselaser ranging systemMENG Yuxuan1,2,DONG Dengfeng1,2*,ZHOU Weihu1,2,JI Rongyi1,2,ZHU Zhizhong1,2(1.Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;2.University of Chinese Academy of Sciences, Beijing 101408, China)* Corresponding author, E-mail: dongdengfeng@Abstract:Phase laser ranging is an important means of absolute ranging and an important guarantee for large-scale precision measurement. One of the most effective ways to improve the precision of phase laser ranging is to increase the laser modulation frequency and use high-performance devices to achieve high-fre⁃quency sampling analysis. However, the maximum sampling frequency of high-performance devices is lim⁃ited. To solve the problem that existing devices have difficulty in the sampling of high modulation frequen⁃cies, the feasibility of an undersampling method for phase ranging was analyzed and verified. The advan⁃tages of all-phase fast Fourier transform (apFFT) analysis was examined to improve the precision of phase laser detection. Based on this idea, the method of undersampling and apFFT was developed, and a phase detection system for laser phase ranging was constructed. When the modulation frequency is 201 MHz and the undersampling frequency is 100 MHz,the system phase discrimination accuracy is higher than 文章编号1004-924X(2023)15-2193-10收稿日期:2023-02-13;修订日期:2023-03-13.基金项目:国家重点研发计划资助项目(No.2020YFB1710500,No.2019YFB2006100);国家高质量发展专项(No.TC220H05T)第 31 卷光学精密工程±0.04°, and the corresponding ranging accuracy is approximately ±0.08 mm. The experimental results show that the phase ranging method based on undersampling and apFFT has the comprehensive advantag⁃es of high accuracy and strong anti-interference ability, making it valuable for scientific research and engi⁃neering applications.Key words: phase ranging;under-sampling;all-phase fast fourier transform;high precision;phase dis⁃crimination system1 引言相位式激光测距技术具有响应快、量程大、抗干扰能力强、精度高等优点,被广泛应用于航空、航天、船舶和机器人等大型装备制造领域[1-6]。
5G NR高精度室内定位系统设计
5G NR高精度室内定位系统设计作者:刘铭李听听陈刘伟程博来源:《中国新通信》2021年第15期【摘要】卫星定位受限于卫星信号室内覆盖能力弱,一般在室内环境下无法工作。
而基于运营商移动通信网络基站的定位技术以及基于WiFi的无线定位技术精度一般较低,通常为3-10米。
这样的定位精度对于一些室内应用如5G赋能工业物联网等应用场景还远不够,需将室内无线定位精准度提升至分米级、厘米级。
本文分析和对比了现有室内定位方案,提出5G NR高精度定位系统设计方案。
基于人工智能实现室内复杂时变环境下实时无线信道估计,为实时定位提供基础支撑,利用5G NR OFDM波形特征降低室内多径对定位精度的干扰,最后,采用时间反演理论完成时空聚焦,可支持室内多目标厘米级高精度室内实时定位。
【关键词】室内定位 5G NR 高精度人工智能时间反演Design of the 5G NR high precision indoor positioning systemLiu Ming,Li Tingting, Chen Liuwei*(The 7th Research Institute of China Electronics Technology Group Corporation, GuangZhou 510310, China)Abstract:Subjected to the weak coverage ability, Satellite positioning is not available indoors. The positioning technology based on base station of operators and WiFi has low accuracy, which is 3-10m. Such positioning accuracy is not enough for some indoor applications such as 5G enabled industrial Internet of things and other application scenarios, and it needs to be further improved to centimeter level. This paper analyzes and compares the existing indoor positioning schemes, and puts forward the design scheme of the 5G NR high-precision positioning system. Based on artificial intelligence, real-time wireless channel estimation in indoor complex time-varying environment is realized to provide basic support for real-time positioning. The characteristics of the 5G NR OFDM waveform is used to reduce the interference of indoor multipath on positioning accuracy. Finally,time inversion theory is used to complete space-time focusing, which can support indoor multi-target centimeter level high-precision real-time indoor positioning.Key words:Indoor positioning; 5G NR; high-precision; artificial intelligence; time reversal.引言:5G時代带来的万物互联需求对室内定位的市场需求将起到极大的推动作用,5G时代将是以室内定位技术为基础的位置服务物联网在市场挑战下取得突破的重要机遇。
基于FPGA的高精度超声波测距仪设计
基于FPGA的高精度超声波测距仪设计杨秀增;杨仁桓【期刊名称】《现代电子技术》【年(卷),期】2017(040)001【摘要】In order to improve the measurement accuracy,a high?precision ultrasonic range finder was designed based on field programmable gate array(FPGA)technology. The hardware system platform based on SoPC was designed on a high?density FPGA by using QuartusⅡ software. The NiosⅡ EDS development software is used to develop the software system of the range finder. The hardware resource inside FPGA is adopted to design the high?speed ultrasonic controller. The temperature sensor DS18B20 is employed to measure the environment temperature. The temperature is used to correct the ultrasonic propagation ve?locity. The test results show that the ultrasonic range finder has high range measuring precision,and a certain practical promo?tion value.%为了提高超声波的测量精度,利用FPGA 技术设计一款高精度超声波测距仪。
一种高精度超声波测距系统的设计
一种高精度超声波测距系统的设计张禾;李俊兰;葛亮;胡泽【摘要】Along with the thorough going research on control technology, the functional requirements of distance measurement are much higher. In order to implement real-time monitoring the measurement of the distance of the object, the high precision ultrasonic distance measuring system has been designed with the C8051F as the core. Considering the impact of temperature on the ultrasonic velocity, the system processes the sound velocity in accordance with the temperature changes, and makes correction on the final test results. In addition, the frequency of ultrasonic is adjusted automatically based on the distance. By using LabVIEW, the functions of real-time data display, data storage, alarm and printout, as well as the communication between MCU and host computer are implemented. The system features ease detection, real-time data acquisition and transmission, low cost and high accuracy.%随着控制技术研究的不断深入,人们对距离的测量要求越来越高.为了实现对测量对象距离的实时监测,设计了一种高精度超声波测距系统.该设计主要以C8051F为核心,通过温度变化对声速作相应的处理,对最终测试结果进行校正,并根据距离自动调整超声波频率.同时,通过LabVIEW,实现了数据实时显示、存储、报警和打印等功能,并完成了单片机系统与计算机之间的通信.该系统具有检测方便、实时数据采集传输、费用低廉和测量精度高等优点.【期刊名称】《自动化仪表》【年(卷),期】2012(033)002【总页数】3页(P62-64)【关键词】测距;超声波;单片机;LabVIEW;高精度【作者】张禾;李俊兰;葛亮;胡泽【作者单位】西南石油大学电气信息学院,四川成都610500;中国石油集团工程设计有限责任公司西南分公司,四川成都610041;西南石油大学电气信息学院,四川成都610500;西南石油大学电气信息学院,四川成都610500【正文语种】中文【中图分类】TP230 引言超声波在传输过程中具有不易受干扰、能量消耗缓慢、在介质中传播的距离较远等优点,因而超声波经常用于距离的测量[1]。
高精度超声波测量距离系统的设计与实现
高精度超声波测量距离系统的设计与实现
引言
在工程实践中,超声波由于指向性强、能量消耗缓慢且在介质中传播的距离较远,因而经常用于距离的测量。
它主要应用于倒车雷达、测距仪、物位测量仪、移动机器人的研制、建筑施工工地以及一些工业现场等,例如:距离、液位、井深、管道长度、流速等场合。
利用超声波检测往往比较迅速、方便,且计算简单、易于做到实时控制,在测量精度方面也能达到工业实用的要求,因此得到了广泛的应用。
超声波测距的基本原理
超声波发生器在某一时刻发出超声波信号,遇到被测物体后反射回来,被超声波接收器接收到。
只要计算出超声波信号从发射到接收到回波信号的时间,知道在介质中的传播速度,就可以计算出距被测物体的距离:
d=s/2=(vt)/2 (1)
其中d 为被测物到测距仪之间的距离,s 为超声波往返通过的路程,v 为超声波在介质中的传播速度,t 为超声波从发射到接收所用的时间。
为了提高
精度,需要考虑不同温度下超声波在空气中传播速度随温度变化的关系:v=331.4+0.61T (2)
式中,T 为实际温度(℃),v 的单位为m/s。
压电式超声波传感器的原理
目前,超声波传感器大致可以分为两类:一类是用电气方式产生的超声波,一类是用机械方式产生的超声波。
电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。
它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。
在工程中,目前较为常。
高精度超声测距系统设计
高精度超声测距系统设计
黄丽
【期刊名称】《科技视界》
【年(卷),期】2014(000)024
【摘要】本文以89C55单片机实现渡越时间测量算法,采取温度补偿措施并结合软件编程的算法科学合理的补偿测量误差,完成高精度测距系统设计.
【总页数】2页(P241,250)
【作者】黄丽
【作者单位】武汉铁路职业技术学院,湖北武汉430023
【正文语种】中文
【相关文献】
1.超低功耗高精度超声测距报警系统研究 [J], 毛俊;马骏;苗津铨
2.高精度多频脉冲超声测距法研究 [J], 吴军;沈梦婷
3.基于LTC1609的高精度超声测距系统设计 [J], 琚晓涛;谷立臣;闫小乐
4.一种高精度的超声测距系统实现方法 [J], 古叶;孙海信;齐洁;成垦;卢晓莹;周小平
5.一种高精度超声测距系统设计 [J], 彭映成;钱海;曹龙;鲁辉
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
High-precision Ultrasonic Ranging SystemZhang Ping, Guo HuiSchool of Mechatronics Engineering, University of Electronic Science and Technology of ChinaChengdu, 611731, ChinaEmail: zhangping3344521@Abstra ct – The ultrasound is easy to transmit and has good reflection. Its speed is far less than the speed of flight. So this paper designs an ultrasonic ranging system based on STC89C52RC. This system can be effective in the range of about 372 cm. After repeated test, the measurement error can be less than 1 cm. So this system can be applied to intelligent avoidance and vehicle transportation and other systems.Keywords – SCM; ultrasound; send; receive; ranging, temperature compensation.I.INTRODUCTIONAt present, the main methods of ultrasonic ranging include pulse-echo method, phase modulation, frequency modulation and FFT-based approach. In these methods, the pulse-echo method has good adaptability; this method not only can be used for manual testing, but also combined with the automated systems. So it is most widely used at home and aboard.Nowadays, the theori e s of microwave and laser ranging have been applied to the ultrasonic ranging system. It can be a very good research. On the other hand, the filtering and analysis of the echo can also draw more and more attention of many experts and scholars. With the enhanced understanding of the ultrasonic theory, we know how to improve the precision and the anti-jamming capabilities will be the most the important performance indicators.In this paper, the pulse-echo theory is used to design the entire system. The following content is mainly divided into three parts. The first section describes the hardware architecture of the system. The second part describes the software processing of the system. The third section describes the techniques of data processing. In such a case, the reader can have a comprehensive understanding of the system.II.THE PRINCIPLE OF ULTRASONIC RANGINGSYSTEMConsidering the requirement of the actual project, we choose the ultrasound, the frequency of which is 40 kHz. Ultrasonic sensor is this kind device which can converse the sound and the electrical power, also known as ultrasonic transducer or ultrasonic probe. In certain frequency range, it can convert the electrical signal to the external ultrasonic signal or change the external ultrasonic signal to the electrical signal. In this paper, we choose the T/R40-12 piezoelectric ultrasonic transducer. It works at the frequency of 40 kHz. Its external diameter is 12cm. Ultrasonic generator sends the ultrasonic signal at a certain time. After the ultrasonic signal reflected from the measured object, the ultrasonic receiver can receive the signal. As long as we record the time between the sending time and the receiving time, we can calculate the distance from the ultrasonic sender to the measured object. The formula for calculating the distance is:D = S/2 = V ×T /2 (1)D is the distance between the ranging device and the measured object. S is the distance which the ultrasound transports. V is the speed of the ultrasound. T is the time which the ultrasound transports. Because ultrasound is also a kind of sound wave, the speed can be affected by the temperature. So in this paper, it uses the method of temperature compensation to improve the accuracy of the system.III.HARDWARE OF THE SYSTEM The system block diagram of ultrasonic ranging system is fig. 1. The hardware mainly includes the SCM system, the display circuit, the temperature compensationcircuit and the circuit of sending and receiving ultrasound.Fig.1 The block diagram of this systemA.The circuit of sending ultrasoundThe schematic of sending ultrasound is the figure 2. The sending circuit mainly includes the inverter and the ultrasonic transducer. At first the port P1.0 of SCM is inverted, connected to one pole of the ultrasonic transducer, and then inverted again, connected to another pole of the ultrasonic transducer. By means of this push-pull method, we can improve the emission intensity of the ultrasound. Paralleling the inverter; we can increase the driving capability of outputting. The pull-up resistor R1 and R2 not only increases the driving capability of outputting the high level, but also increases the damping___________________________________ 978-1-4244-8160-6/11/$26.00 ©2011 IEEEeffect of the ultrasonic transducer and shorten the time ofits free oscillations.Fig.2 The circuit of sending ultrasoundB. The circuit of receiving ultrasoundThe schematic of receiving ultrasound is the fig. 3.ASIC CX20106 is used for detecting infrared. Considering the carrying frequency of CX20106 is 38kz which is very close to the frequency of the ultrasound, we design the receiving circuit by making use of CX20106.Fig.3 The circuit of receiving ultrasoundC. SCM system and the display circuitSCM STC89C52RC is the core of this ranging system, by using the 12MHz crystal oscillator to obtain a morestable clock frequency and reduce the errors. The port P1.0 of the SCM output the 40 KHz square wave that is required by the ultrasonic transducer. The external interrupt 0 is used to monitor the returning signal. The simple and practical four bit common anode LED is used for the display circuit. The segment code is driven by 74LS245, and the bit code is driven by the transistor 9012. It is shown in fig. 4.D. The circuit of temperature compensationIn the ultrasonic ranging system, a good many factors can affect the speed, such as the environmental interference, the frequency of the base pulse, etc. But the environmental temperature can be the main factor. According to the formula (2), we can see that the temperature varies from 0ć to 40ć, the speed of ultrasound varies from 331.4m/s to 354.85m/s. Take the room temperature 20ć as the base, the speed is 343.32m/s and the rate of change is 6.83%. So the temperature factor can not be ignored. In the summer, the temperature is often more than 40ć. So in the ultrasonic ranging system, it is necessary to have the temperature compensation in order to reduce the error. Nowadays most of the temperature monitoring system takes the method of temperature sensor. First of all, we convert the temperature signal to the electric signal, secondly amplify the electric signal, and thirdly convert the analog signal to the digital signal by the A/D converter. This kind of circuit is very complex and can be easily affected by the parameters of the components. For these reasons, this paper uses the temperature sensor DS18B20 and SCM to design this precision temperature measurement system. It can increase the accuracy of the measurement to some extent. The port DQ of the DS18B20 can directly be connected to the port P3.7 of the SCM. The circuit isshown in fig. 5.Fig.4 SCM system and the display circuitFig.5 The circuit of temperature compensationDS18B20 is the latest digital temperature sensor from America. It is different from the traditional thermistor temperature sensors. We can directly read the measured temperature values. According to the actual requirements, we can realize the 9 or 10 bit A/D conversion through simple programming. As a result, DS18B20 can make the system has a simpler structure and higher reliability.After measuring temperature, we correct the speed of the ultrasound by the following formula:V (T) = (331.05+0.607T) (m/s) (2)In the above formula, T is the Celsius temperature of the environment (ć).IV. SYSTEM PROGRAMMINGThe programming of the ultrasonic ranging system mainly include the main program, sending subroutine, receiving subroutine, temperature compensation subroutine and display subroutine. On one hand, the assembly language is efficient and easy. On the other hand, the ranging program not only need complex calculation,but also requires a highly accurate result. So we chooseassembly language to design this system. A. The main programThe main program firstly initialize the system environment, set the T0 timer for the 16-bit timer mode, Secondly set the general interrupt enable bit EA, then initialize the display port P0 and P2. After measuring the temperature value by making use of the DS18B20, the temperature compensation subroutine modifies the sound speed. At this time, it begins to call the sending subroutine. In order to avoid the direct transmission from the transmitter to the receiver, It need a delay of about 0.1ms (this is the reason for the minimum distance can be measured), then enable the external interrupt 0 to receive the return signal. As a result of using the 12MHz crystal oscillator, the timer increase one, the interval is 1us, when the main program detects that the flag is successful, it start to calculate the distance according to the timer T0, the result will be sent for LED display. Then just repeat this processing. The main program flow chart is shown in fig.6.Fig.6 The flow chart of the main programB. Sending subroutine and receiving subroutineThe sending subroutine is the role of sending about 2 ultrasonic pulses through port P1.0 (about 40kHz square wave), the pulse width is about 12us. At the same time, the timer T0 starts timing. This system makes use of the external interrupt 0 to detect the echo. Once received the echo (the pin INT0 appears a low level), it immediately access to the interrupt program, then stop the timer T0 andset the successful flag. If the echo has not been detected when the timeroverflow, the timer T0 overflow interrupt will close the external interrupt 0. At the same time, it clears the successful flag. It means that this ranging processing is unsuccessful. C. Temperature compensation subroutine and displaysubroutineAccording to the real-time temperature detected, it calculates the speed of sound by substituting the formula (2).Display program shows the distance in the way of look-up table.V. DATA PROCESSINGNot only the processing that the circuit deal with the signal will produce a fixed delay t, but also the processing that SCM collect the signal will produce a fixed delay t. Both the above process certainly lead to some measurement errors, But this system modify the delay to reduce the ranging error.Suppose that S1 and S2 are two fixed distance. t1 and t2 are corresponding to the two fixed distance respectively(including the t factor). So S1 and S2 are actually corresponding to the time t1- t and t2- t. That is S1=0.5V(t1- t),S2=0.5V(t2- t),it can be calculated:211221t S t S t S S'(3)After several measurements, we can calculate the system delay t. According to the formula (1), we can determine the distance measured. This processing can reduce the system error to some extent.VI. ACTUAL MEASUREMENT AND ANALYSIS The measurement data is shown in table 7.Table 7.The actual measurement data (unit: cm)Actual distance 5 10 15 20 25 30 35 Display distance 25 25 25 25 26 31 35 Actual distance 350 355 360365 372 380385Display distance351 356 361366 374 25 25The experimental data show that: the blind spot of theultrasonic ranging system (the least distance that the ultrasonic sensors can detect) is 25cm. The largest distance is 372cm. While designing the program, to avoid the direct transmission of the ultrasound from the transmitter to the receiver, the program has a delay about 1.4ms, so the ultrasonic ranging system has a least ranging distance. Because the propagation of the ultrasound may cause a certain decay and the transmit power is limited, it is difficult to detect the long-rang echo. So there will be a largest measurable distance. On the other side, the temperature compensation can improve the accuracy of the measurement.VII. CONCLUSIONIn this paper, it makes use of the reflection characteristics of ultrasound. We design this kind of ranging system based on STC89C52RC. Its effective range is from 25cm to 372cm by means of non-contact measurement. Once the environment temperature changes, it improves the measurement accuracy of the system bytemperature compensation circuit. After modifying the system delay, it can reduce the system latency measurement error and have a significantly improved accuracy. The results validate the rationality of the system including both the hardware and the software. This ranging system is reliable and stable. It is fully able to meet a number of high-precision occasions, such as level measurement, robot positioning, etc.ACKNOWLEDGMENTFirst of all, I thank the IEEE for providing this template, secondly I want to thank my instructor Mr. Guo, last but not least, We sincerely thank all colleagues who previously provided technical support.REFERENCES[1] WANG AI ZH. Design and reality of ultrasonic ranging systembase on the microcontroller[J]. Journal of Xinzhou Teachers University, 2010,26(2): 44-46.[2] KANG Y P, LIU ZH Y, GUO X, et al. Design of high-precisionultrasonic wave ranging system[J]. Experimental Technology and Management, 2010, 27(3): 61-64.[3] WANG ZH J, SU X Y, HAN Y P. Ultrasonic distancemeasurement system with high precision based on AT89C51 microprocessor[J]. Sensor Technology & Applocation, 2010(1): 21-24.[4] HAN L R. A survey of methods for improving ultrasonic rangingprecision[J]. Telecommunication Engineering, 2010, 50(9): 132-136.AUTHOR BIOGRAPHYZhang Ping was born in HuNan, China, in 1986.He received B.Eng. from Jishou University, China ˈin 2009 . Now he is a graduate student in Department of Mechatronics Engineering, University of Electronic Science and Technology of China. His research interests include Integrated circuit, EDA.Guo Hui received the Master degree in North China Electric Power University, the Ph.D. degree in Nanjing University of Aeronautics and Astronautics. He did his postdoctoral work in Nanjing University. His research interests are in the Mechatronics.。