P-Q分解法潮流计算

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算[ΔW(K01)/V],ERM(K01)
解修正方程,并修正V(K01)
ΔW,功率误差的 数值。EMP,寄 存器迭代过程中 最大功率误差。 K01是0时为有功 功率,K01是1时 为无功功率。
否 K01=0?

K01=0,t=t+1 否
K01=1
ERM(1)< ε& ERM(0)< ε
是 输出潮流计算结果
P-Q分解法潮流计算
P-Q分解法潮流计算
PQ分解法是由极坐标形式的牛顿法演 化而来,以有功功率作为修正电压向 量角度的依据,以无功功率作为修正 电压幅值的依据,把有功功率和无功 功率迭代分开进行。
一、P-Q分解法的基本原理
极坐标形式的牛顿潮流算法的修正方程为
P H Q M
H ij VV i j (Gij sin ij Bij cos ij ) Nij VV i j (Gij cos ij Bij sin ij ) M ij VV i j (Gij cos ij Bij sin ij ) Lij VV i j (Gij sin ij Bij cos ij )
化简为
H ij VV i j Bij Lij VV i j Bij (i, j 1, 2,, n 1) (i, j 1, 2,, m)
将上式代入
可得到
P H Q L(V / V )
在实际的P-Q分解法中,两个修正方程的系数矩 阵并不相同,一般可以写为
N L V / V
化简后可得
P H Q L(V / V )
从上式可以看出,化简后的方程把以前耦合 的2n阶线性方程组变成了两个互不关联的n 阶线性方程组。
系数矩阵H和L的简化
简化后的修正方程大大节省了内存需求量和 求解时间,但是矩阵H和L的元素仍然是节点 电压的函数且不对称。一般把系数矩阵H和L 简化成常数对称矩阵。
(3)系数矩阵B’和B’’是对称矩阵。因此,只需要 形成并贮存因子表的上三角或下三角部分,这 样又减少了三角分解的计算量并节约了内存。
P-Q分解法的收敛特性
P-Q分解法所采取的一系列简化假定只影响了修 正方程式的结构,也就是说只影响了 迭代过程, 并不影响最终结果。因为P-Q'分解法和牛顿法都 采用相同的数学模型式,最后计算功率误差和判 断收敛条件都是严格按照精确公式进行的,所以 P-Q分解法和 牛顿法一样可以达到很高的精度。
(1)一般情况下,线路两端电压的相角差不大(不 超过10°~20°),因此可以认为
cos ij 1,
Gij sin ij Bij
(2)与系统各节点无功功率相对应的导纳 通常远小于该节点自导纳的虚部 ,即
B Li Qi 2 Bii Vi
Qi Vi2Bii
考虑到上述关系,略去相关项可将系数矩阵
表1给出了对IEEE的几个标准测试系统进行潮流 计算的收敛情况。大量计算表明,BX法与XB法 在收敛性方面没有显著差别,这两种算法均有很 好的收敛性,凡是牛顿法可以收敛的潮流问题, 它们也可以收敛。
节点数 5 30 牛顿法 4 3 BX法 10 5 XB法 10 5
57
1ቤተ መጻሕፍቲ ባይዱ8
3
3 表1
6
6
6
7
虽然P-Q分解法比牛顿法所需的选代次数要多, 但每次迭代的计算量却要小很多。因此P-Q分解 法的计算速度比牛顿法有明显提高。 目前P-Q 分解法不仅大量地用在规划设计等离线 计算的场合,也已经广泛地应用在安全分析等在 线计算中,它是目前计算速度最快的交流潮流算 法。
在B'中尽量去掉那些对有功功率及电压相角影响 较小的因素,如略去变压器非标准电压比和输电 线路充电电容的影响;在B"中尽量去掉那些对无 功功率及电压幅值影响较小的因素,如略去输电 线路电阻的影响
即B’的非对角和对角元素分别按下式计算:
B”的非对角和对角元素分别按下式计算:
其中rij和xij分别为支路的电阻和感抗,bi0为节点i 的接地支路的电纳。(BX法)
H VBV L VBV 式中:V是由各节点电压幅值组成的对角阵。由 于PV节点的存在, B’及B”的阶数不同,分 别为n-1阶和m阶。(m<n-1)
P-Q分解法的修正方程式为
P / V B Q / V BV
通过这一步简化,修正方程式中的系数矩阵B'和 B"由节点导纳矩阵的虚部构成,从而是常数对称 矩阵。其区别只是阶数不同,矩阵B'为n -1阶, 不含平衡节点对应的行和列,矩阵B"为m阶,不 含平衡节点和PV节点所对应的行和列。但在实际 P-Q分解法程序中,为了提高收敛速度,对B'与 B"的构成作了下面一些修改:
P-Q分解法的特点和性能分析
(1) 用一个n-1阶和一个m阶的线性方程组代替了 牛顿法的n-1+m阶线性方程组,显著地减少了内 存需求量及计算量。
(2)系数矩阵B’和B’’为常数矩阵。因此,不必像牛 顿法那样每次迭代都要形成雅可比矩阵并进行三 角分解,只需要在进入迭代过程以前一次形成雅 可比矩阵并进行三角分解形成因子表,然后反复 利用因子表对不同的常数项△P/V或△Q/V进行消 去回代运算,就可以迅速求得修正量,从而显著 提高了迭代速度。
P-Q分解法改变了牛顿法 迭代公式的结构,就改变 了迭代过程的收敛特性。 事实上,依一个不变的系 数矩阵进行非线性方程组 的迭代求解,在数学上属 于“等斜率法”,其选代过程是按几何级数收敛的,若画 在对数坐标系上,这种收敛特性基本上接近一条直线。而 牛顿法是按平方收敛的,在对数坐标纸上基本上是一条抛 物线,如图2-3所示。
P-Q分解法流程图
输入信息即原始数据并对原始数据进行处理
形成导纳到矩阵
计算系数矩阵B’,形成第一因子表 T:迭代次数计数 单元 K01:当迭代有功 功率时为0,无功 功率时为1。
计算系数矩阵B”,形成第一因子表
t=0,K01=0
V,电压向量数组。 K01是1时为电 压幅值,K01是 0时为电压角度。
由图2-3可以看出,牛顿法在开始时收敛得比较慢, 当收敛到一定程度后,它的收敛速度就非常快, 而P-Q分解法几乎是按同一速度收敛的。如果给 出的收敛条件小于图中A点相应的误差,那么P-Q 分解法所需要的迭代次数要比牛顿法多几次。可 以粗略地认为P-Q分解法的选代次数与精度的要 求之间存在着线性关系。
相关文档
最新文档