2019福建高中数学竞赛预赛试题及答案
2019年高中数学联合竞赛(A卷)参考答案及评分标准
2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时, 请依据本评分标准. 填空题只设8分和0分两档; 其他各题的评阅, 请严格按照本评分标准的评分档次给分, 不得增加其他中间档次.2. 如果考生的解答方法和本解答不同, 只要思路合理、步骤正确, 在评卷时可参考本评分标准适当划分档次评分, 解答题中第9小题4分为一个档次, 第10、11小题5分为一个档次, 不得增加其他中间档次.一、填空题: 本大题共8小题, 每小题8分, 满分64分.1. 已知正实数a 满足()89aaa a =, 则()log 3a a 的值为 .答案:916.解: 等式两边同时开8a 次方根, 有189a a =. 这样9163a a ==, 所以()9log 316a a =. 2. 若实数集合{}1,2,3,x 的最大元素与最小元素之差等于该集合的所有元素之和, 则x 的值为 .答案: 32-. 解: 假设0x ≥, 则最大、最小元素之差不超过{}max 3,x , 而所有元素之和大于{}max 3,x , 不符合条件. 故0x <, 即x 为最小元素. 于是36x x -=+, 解得32x =-. 3. 在平面直角坐标系中, e 是单位向量, 向量a 满足2a e ⋅= , 且25a a te ≤+对任意实数t 成立, 则a的取值范围是 .答案: .解: 不妨设()1,0e = . 由于2a e ⋅= , 可设()2,a s =. 又因为对任意实数t , 有2245s a a te +=≤+=这等价于245s s +≤, 解得[]1,4s ∈, 即[]21,16s ∈. 于是a = .4. 设,A B 为椭圆Γ的长轴顶点, ,E F 为Γ的两个焦点, 4,2AB AF ==+, P 为Γ上一点, 满足2PE PF ⋅=, 则PEF ∆的面积为 .答案: 1.解: 不妨设平面直角坐标系中Γ的标准方程为()222210x y a b a b+=>>. 根据条件, 得24,2a AB a AF ==±==+.可知2,1a b ==, 且EF ==.由椭圆的第一定义知24PE PF a +==, 结合2PE PF ⋅=得到()2222212PE PF PE PFPE PF EF +=+-⋅==.所以EPF ∠为直角, 进而112122PEF S PE PF ∆=⋅=⨯=. 5. 在1,2,3,,10 中随机选出一个数a , 在1,2,3,,10---- 中随机选出一个数b , 则2a b +被3整除的概率为 .答案:37100. 解: 数组(),a b 共有210100=种等概率的选法.考虑其中使得2a b +被3整除的选法数N . 若a 被3整除, 则b 也被3整除. 此时,a b 各有3种选法, 这样的(),a b 有239=组. 若a 不被3整除, 则()21mod 3a ≡, 从而()1mod 3b ≡-. 此时a有7种选法, b 有4种选法, 这样的(),a b 有7428⨯=组.因此92837N =+=, 于是所求概率为37100. 6. 对任意闭区间I , 用I M 表示函数sin y x =在I 上的最大值. 若正数a 满足[][]0,,22a a a M M =,则a 的值为 .答案:56π或1312π. 解: 假如02a π<≤, 则由正弦函数图像性质得[][]0,,20sin a a a M a M <=≤, 与条件不符. 因此2a π>, 此时[]0,1a M =, 故[],212a a M =. 于是, 存在非负整数k , 使得51322266k a a k ππππ+≤<≤+,且该不等式中“≤”至少有一处取到等号.当0k =时, 得56a π=或1326a π=. 经检验513,612a ππ=均满足条件. 当1k ≥时, 由于13522266k k ππππ⎛⎫+<+ ⎪⎝⎭, 故不存在满足上述不等式的a . 综上, a 的值为56π或1312π. 7. 如图, 正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K , 且将正方体分成体积比为3:1的两部分, 则EKKF的值为 .答案:解: 记α为截面所在的平面. 延长,AK BF 交于点P , 则P 在α上, 故直线CP 是α与平面BCGF 的交线. 设CP 与FG 交于点L , 则四边形AKLC 为截面.因平面ABC 平行于平面KFL , 且,,AK BF CL 共点P , 故ABC KFL -为棱台. 不妨设正方体棱长为1, 则正方体的体积为1, 结合条件知, 棱台ABC KFL -的体积为14V =. 设PF h =, 则1KF FL PF hAB BC PB h ===+. 注意到,PB PF 分别是凌锥P ABC -与凌锥P KFL -的高, 于是14P ABC P KFL V V V --==-1166AB BC PB KF FL PF =⋅⋅-⋅⋅ ()()3221331116161h h h h h h ⎛⎫++⎛⎫=+-= ⎪ ⎪ ⎪+⎝⎭+⎝⎭. 化简得231h =,故h =从而1EK AE KF PF h ===8. 将6个数2,0,1,9,20,19按任意次序排列成一行, 拼成一个8位数(首位不为0), 则产生的不同的8位数的个数为 .答案: 498.解: 将2,0,1,9,20,19的首位不为0的排列的全体记为A , 易知55!600A =⨯=(这里及以下,X 表示有限集X 的元素个数.)将A 中2的后一项是0, 且1的后一项是9的排列的全体记为B ; A 中2的后一项是0, 但1的后一项不是9的排列的全体记为C ; A 中1的后一项是9, 但2的后一项不是0的排列的全体记为D .将1和9, 2和0按顺序捆绑产生的元素19, 20分别看作两个新的元素,a b . 它们与之前的两个元素19,20产生的元构成B 的全体, 故4!B =; 将2和0按顺序捆绑产生的元素与之前的四个元素产生的元构成B C 的全体, 故5!B C +=; 将1和9按顺序捆绑产生的元素与之前的四个元素产生的首位不为0的元素构成B D 的全体, 故44!B D +=⨯. 从而24,96,72B C D ===.由B 中排列产生的每个8位数, 恰对应B 中的224⨯=个排列(这样的排列中, 20可与“2,0”互换, 19可与“1,9”互换). 类似地, 由C 或D 中排列产生的每个8位数, 恰对应C 或D 中的2个排列. 因此满足条件的8位数的个数为()3\60018483649842422B C D B C DA B C D A +++=---=---= .二、解答题: 本大题共3小题, 满分56分. 解答应写出文字说明、证明过程或演算步骤. 9. (本题满分16分) 在ABC ∆中, ,,BC a CA b AB c ===. 若b 是a 与c 的等比中项, 且sin A 是()sin B A -与sin C 的等差中项, 求cos B 的值.解: 因b 是a 与c 的等比中项, 故存在0q >, 满足2,b qa c q a ==. ①因sin A 是()sin B A -与sin C 的等差中项, 故()()()2sin sin sin sin sin 2sin cos A B A C B A B A B A =-+=-++=.………………… (4分)结合正、余弦定理, 得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. ………………… (8分)将①代入并化简, 可知24212q q q +-=, 即421q q =+. 所以212q +=. ………………… (12分) 进而2224222111cos 222a cb q q B ac q q +-+--====. ………………… (16分) 10. (本题满分20分) 在平面直角坐标系xOy 中, 圆Ω与抛物线2:4y x Γ=恰有一个公共点, 且圆Ω与x 轴相切于Γ的焦点F . 求圆Ω的半径.解: 显然Γ的焦点F 的坐标为()1,0. 设圆Ω的半径为()0r r >. 由对称性, 不妨设Ω在x 轴上方与x 轴相切于F , 故Ω的方程为()()2221x y r r -+-=. ①将24yx =代入①并化简, 得2221204y y ry ⎛⎫-+-= ⎪⎝⎭. 显然0y >, 故 ()222224112432y y r y y y ⎛⎫+⎛⎫⎪=-+= ⎪ ⎪⎝⎭⎝⎭. ② ………………… (5分)根据条件, ②恰有一个正数解y , 该y 值对应Ω与Γ的唯一公共点.考虑()()224,032y f y y y+=>的最小值.由平均值不等式,知224444333y y +=+++≥从而 ()1329f y y ≥⋅=, 当且仅当243y =,即3y =时, ()f y取到最小值9. ………………… (15分)由②有解可知9r ≥.假设9r >, 因()f y 随y 连续变化, 且0y +→及y →+∞时()f y 均可任意大,故②在0,3⎛⎫ ⎪ ⎪⎝⎭及,3⎛⎫+∞ ⎪ ⎪⎝⎭上均有解, 与解的唯一性矛盾. 综上,仅有9r =满足条件(此时1,33⎛⎫ ⎪ ⎪⎝⎭是Ω与Γ的唯一公共点).………………… (20分) 11. (本题满分20分) 称一个复数数列{}n z 为“有趣的”, 若11z =, 且对任意正整数n , 均有2211420n n n n z z z z ++++=. 求最大的常数C , 使得对一切有趣的复数数列{}n z 及任意正整数m , 均有12m z z z C +++≥ .解: 考虑有趣的复数数列{}n z . 由归纳法可知*0,N n z n ≠∈. 由条件得2*114210,N n n n n z z n z z ++⎛⎫⎛⎫++=∈ ⎪ ⎪⎝⎭⎝⎭.解得*11,N 4n n z n z +-±=∈.因此1112n n n nz z z z ++===, 故 1*1111,N 22n n n z z n --⎛⎫=⋅=∈ ⎪⎝⎭. ① ………………… (5分)进而, 有*11111,N 22n n n n n n nz z z z n z ++-+=⋅+==∈. ② 记*12,N m m T z z z m =+++∈ . 当*2,N m s s =∈时,利用②可得12212212212222223sm k kk k k k k k T z z z z z z ∞∞---===≥+-+>-+=-=∑∑∑. ………………… (10分)当*21,N m s s =+∈时,利用①、②可知2121222121211111111212222442s k k s s s s k k k s k s k s z z z ∞∞∞+----=+=+=+==⋅<====+∑∑∑,故12212212122223sm k k s k k k k T z z z z z z z ∞-+-==≥+-+->-+=∑∑.当1m =时, 1113T z ==>.以上表明3C =满足要求. ………………… (15分) 另一方面,当*1221221111,,,N 22k k k k z z z n ++-+--===∈时, 可验证{}n z 为有趣的复数数列. 此时()2112211131lim lim lim 11233sss k k s s s k k T z z z ++→∞→∞→∞==-=++=+=+⋅=∑, 这表明C不能大于3. 综上, 所求的C为3. ………………… (20分)2019年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时, 请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同, 只要思路合理、步骤正确, 在评卷时可参考本评分标准适当划分档次评分, 10分为一个档次, 不得增加其他中间档次.一、(本题满分40分) 如图, 在锐角ABC ∆中, M 是BC 边的中点. 点P 在ABC ∆内, 使得AP 平分BAC ∠. 直线MP 与,ABP ACP ∆∆的外接圆分别相交于不同于点P 的两点,D E . 证明: 若DE MP =, 则2BC BP =.(答题时请将图画在答卷纸上)解: 延长PM 到点F , 使得MF ME =. 连接,,BF BD CE .由条件可知, BDP BAP CAP CEP CEM ∠=∠=∠=∠=∠. ………………… (10分)因为BM CM =且EM FM =, 所以BF CE =且//BF CE .于是F CEM BDP ∠=∠=∠, 进而BD BF =.………………… (20分)又DE MP =, 所以DP DE EP MP PE EM =+=+=,故DP FM =.于是, 在等腰BDF ∆中, 由对称性得BP BM =. 从而22BC BM BP ==. ………………… (40分)二、(本题满分40分) 设整数122019,,,a a a 满足122019199a a a =≤≤≤= . 记()()2222123201913243520172019f a a a a a a a a a a a a =++++-++++ ,求f 的最小值0f , 并确定使0f f =成立的数组()122019,,,a a a 的个数.解: 由条件知()2017222221220182019212i i i f a a aaa a +==++++-∑. ①由于12,a a 及2,1,2,,2016i i a a i +-= 均为非负整数, 故有221122,a a a a ≥≥, 且()222,1,2,,2016i i i i a a a a i ++-≥-= .于是()()201620162221221222017201811i i i i i i a a aa a a a a a a ++==++-≥++-=+∑∑. ②………………… (10分)由①、②得()2222017201820192017201820192f a a a a a a ≥++-++,结合201999a =及201820170a a ≥>, 可知 ()()()2222201720172017201712999949740074002f a a a a ≥+-++=-+≥. ③ ………………… (20分)另一方面, 令()1219201920211920220191,1,2,,49,99k k a a a a a k k a +-+======== ,此时可验证上述所有不等式均取到等号, 从而f 的最小值07400f =. ………………… (30分)以下考虑③的取等条件. 此时2017201849a a ==, 且②中的不等式均取等号, 即{}1221,0,1,1,2,,2016i i a a a a i +==-∈= .因此122018149a a a =≤≤≤= , 且对每个()149k k ≤≤, 122018,,,a a a 中至少有两项等于k . 易验证这也是③取等的充分条件.对每个()149k k ≤≤, 设122018,,,a a a 中等于k 的项数为1k n +, 则k n 为正整数, 且()()()124911119202492018n n n ++++++=+⨯= ,即12491969n n n +++= .该方程组的正整数解()1249,,,n n n 的组数为49148196911968C C --=, 且每组解唯一对应一个使③取等号的数组()122019,,,a a a , 故使0f f =成立的数组()122019,,,a a a 有481968C 个.………………… (40分)三、(本题满分50分) 设m 为整数, 2m ≥. 整数数列123,,a a a 满足: 12,a a 不全为零, 且对任意正整数n , 均有21n n n a a ma ++=-.证明: 若存在整数(),2r s r s >≥使得1r s a a a ==, 则r s m -≥. 证明: 不妨设12,a a 互素, 否则, 若()12,1a a d =>, 则1a d 与2a d 互素, 并且用312,,,a a a d d d代替123,,,a a a , 条件和结论均不改变.由数列的递推关系知()()()2123mod ,1,2,3,mod ,3,4,5,mod ,4,5,6,n n k s a a m n a a m k a a m s ++⎧≡=⎪≡=⎪⎨≡=⎪⎪⎩①以下证明: 对任意整数3n ≥, 有()()()22123mod n a a a n a m m≡-+-. ②………………… (10分)事实上, 当3n =时②显然成立. 假设n k =时②成立(其中k 为某个大于2的整数), 注意到①,有()212mod k ma ma m-≡. 结合归纳假设, 有()()()()21121223mod k k k a a ma a a k a m ma m +-=-≡-+--()()()()22122mod a a k a m m ≡-+-,即1n k =+时②也成立. 因此②对任意整数3n ≥均成立. ………………… (20分)注意, 当12a a =时, ②对2n =也成立.设整数(),2r s r s >≥, 满足1r s a a a ==. 若12a a =, 由②对2n ≥均成立, 可知()()()()()()222122123mod 3mod r s a a r a m m a a a a s a m m -+-≡=≡-+-,即()()()121233mod a r a a s a m +-≡+-, 亦即()()20mod r s a m -≡. ③若12a a =/, 则12r s a a a a ===/, 故3r s >≥. 此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………… (30分)我们证明2,a m 互素.事实上, 假设2a 与m 存在一个公共素因子p , 则由①知, p 为234,,,a a a 的公因子, 而12,a a 互素, 故1|p a /, 这与1r s a a a ==矛盾.因此, 由③得()0mod r s m -≡. 又r s >, 所以r s m -≥. ………………… (50分) 四、(本题满分50分) 设V 是空间中2019个点构成的集合, 其中任意四点不共面. 某些点之间连有线段, 记E 为这些线段构成的集合. 试求最小的正整数n , 满足条件: 若E 至少有n 个元素, 则E 一定含有908个二元子集, 其中每个二元子集中的两条线段有公共端点, 且任意两个二元子集的交为空集.解: 为了叙述方便, 称一个图中的两条相邻的边构成一个“角”.先证明一个引理: 设(),G V E =是一个简单图, 且G 是连通的, 则G 含有2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]α表示实数α的整数部分).引理的证明: 对E 的元素个数E 归纳证明. 当0,1,2,3E =时, 结论显然成立. 下面假设4E ≥, 并且结论在E 较小时均成立. 只需证明, 在G 中可以选取两条边,a b 构成一个角, 在G 中删去,a b 这两条边后, 剩下的图含有一个连通分支包含2E -条边. 对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v , 其中12,,,k v v v 是互不相同的顶点. 因为G 连通, 故3k ≥.情形1: ()1deg 2v ≥. 由于P 是最长路, 1v 的邻点均在2,,k v v 中, 设1i v v E ∈, 其中3i k ≤≤, 则{}121,i v v v v 是一个角, 在E 中删去这两条边. 若1v 处还有第三条边, 则剩下的图是连通的; 若1v 处仅有被删去的两条边, 则1v 成为孤立点, 其余顶点仍互相连通. 总之在剩下的图中有一个连通分支含有2E -条边.情形2: ()()12deg 1,deg 2v v ==. 则{}1223,v v v v 是一个角, 在G 中删去这两条边后, 12,v v 都成为孤立点, 其余的点互相连通, 因此有一个连通分支含有2E -条边.情形3: ()()12deg 1,deg 3v v =≥, 且2v 与4,,k v v 中某个点相邻. 则{}1223,v v v v 是一个角, 在G 中删去这两条边后, 1v 成为孤立点, 其余点互相连通, 因此有一个连通分支含有2E -条边.情形4: ()()12deg 1,deg 3v v =≥, 且2v 与某个{}13,,,k u v v v ∉ 相邻. 由于P 是最长路, 故u 的邻点均在2,,k v v 之中. 因{}122,v v v u 是一个角, 在G 中删去这两条边, 则1v 是孤立点. 若u 处仅有边2uv , 则删去所述边后u 也是孤立点, 而其余点互相连通. 若u 处还有其他边,3i uv i k ≤≤, 则删去所述边后, 除1v 外其余点互相连通. 总之, 剩下的图中有一个连通分支含有2E -条边.引理获证. ………………… (20分) 回到原题, 题中的V 和E 可看作一个图(),G V E =. 首先证明2795n ≥.设{}122019,,,V v v v = . 在1261,,,v v v 中, 首先两两连边. 再删去其中15条边 (例如1213,v v v v ,116,v v ), 共连了261151815C -=条边, 则这61个点构成的图是连通图. 再将剩余的201961-=1958个点配成979对, 每对两点之间连一条边, 则图G 中一共连了181********+=条线段. 由上述构造可见, G 中的任何一个角必须使用1261,,,v v v 相连的边, 因此至多有18159072⎡⎤=⎢⎥⎣⎦个两两无公共边的角. 故满足要求的n 不小于2795. ………………… (30分)另一方面, 若2795E ≥, 可任意删去若干条边, 只考虑2795E =的情形.设G 有k 个连通分支, 分别有1,,k m m 个点, 及1,,k e e 条边. 下面证明1,,k e e 中至多有979个奇数.反证法, 假设1,,k e e 中有至少980个奇数, 由于12795k e e ++= 是奇数, 故1,,k e e 中至少有981个奇数, 故981k ≥. 不防设12981,,,e e e 都是奇数, 显然12981,,,2m m m ≥ .令9812k m m m =++≥ , 则有()229811980,i m i m k C e i C e e ≥≤≤≥++ , 故98022112795ik imm i i e C C===≤+∑∑. ①利用组合数的凸性, 即对3x y ≥≥, 有222211x y x y C C C C +-+≤+, 可知当1980,,,m m m 由980个2以及一个59构成时, 980221imm i C C =+∑取得最大值. 于是 9802222592198026912795imm i C C C C =+≤+=<∑, 这与①矛盾, 从而1,,k e e 中至多有979个奇数. ………………… (40分)对每个连通分支应用定理, 可知G 中含有N 个两两无公共边的角, 其中()11119792795979908222kki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑.综上, 所求最小的n 是2795. ………………… (50分)。
2019年全国高中数学联赛福建赛区预赛
2019年第7期
Z] = 1 -爲 i ,z2 =-1 +石 i. 于是,I Z] _ Z2 I = I Z _ Z]丨=I Z - 22 I = 4. 从而,复数Z、Z1二2对应的点z、Z\、Z?构 成边长为4的正三角形. 又复数可二2对应的点Z\、Zi关于原点 0对称,从而,OZ为\ZZ\Zi的高. 故lzl= \OZ\ = 2j3 . 5.4. 由f( %)的图像关于点(2,0)对称知
,由, 一7T产
7t
=> 一4〒7t Wa+74〒t W43〒兀 n 一乎Wsin(a+于TC )Wl.
4 因此,/(%)的值域为[0,71 + 1]. 4.2再. 先求复数-2-2A i的平方根. 设(%+yi)2=_2 —2石 i(%、yGR)・贝!] (%2 -y2) + 2xy i = -2 -2® i
2. 在△磁中,4C=Q,4B=2,且
打sin 4 + cos A _ 上 5冗
T^cos A - sin A
】2
贝g BC=______.
3. 函数/(x ) = ^2x -x + x的值域为
4. 已知复数Z、Z]、Z2(Z]丹2)满足:
z; =z; =-2 -2事 i, Iz -Z] I = Iz -z21 = 4. 则 lzl =______. 5. 已知/(%) = %3 + ax2 + bx +2的图像关 于点(2,0)对称.则/(1) =_____. 6. 如图1 ,在 三棱锥P - ABC 中,P4丄面ABC, / ABC = 120°, PA =4.若三棱锥PABC外接球的半径
【竞赛试题】2019年全国和高中数学联赛试卷及答案
æ 4ö 【竞赛试题】2019 年全高中数学联合竞赛一试(B 卷) 参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 已知实数集合{1, 2, 3, x } 的最大元素等于该集合的所有元素之和,则 x 的 值为 .答案:-3 .解:条件等价于1, 2, 3, x 中除最大数以外的另三个数之和为 0 .显然 x < 0 , 从而1 + 2 + x = 0 ,得 x = -3 .2. 若平面向量 a = (2m , -1) 与 b = (2m -1, 2m +1) 垂直,其中 m 为实数,则 a 的 模为 . 答案: 10 . 解:令 2m = t ,则 t > 0 .条件等价于 t ⋅ (t -1) + (-1) ⋅ 2t = 0 ,解得 t = 3 .因此 a 的模为 32 + (-1)2 = 10 .3. 设a , b Î (0, p ) ,cos a , cos b 是方程5x 2 -3x -1 = 0 的两根,则sin a sin b 的 值为. 答案:7 .5解:由条件知 cos a + cos b = 3 , cos a cos b = - 1,从而5 5(s i n a sin b )2 = (1- c os 2 a )(1- c os 2 b ) = 1- cos 2 a - cos 2 b + cos 2 a cos 2 b2 2= (1+ cos a cos b )2 - (cos a + cos b )2 = ÷ æ 3ö - = 7 . ç ÷ ç ÷ çè 5 ø çè5ø 25又由a , b Î (0, p ) 知sin a sin b > 0 ,从而sin a sin b = 7.54. 设三棱锥 P - ABC 满足 PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的 体积的最大值为 .答案: 2 6 .3解:设三棱锥 P - ABC 的高为 h .取M 为棱 AB 的中点,则h £ PM = 32 -12 = 2 2 .当平面 PAB 垂直于平面 ABC 时, h 取到最大值 2 2 .此时三棱锥 P - ABC 的体r n -rnn积取到最大值 1S⋅= 1 ⋅ = 2 6 .3 D ABC3 35. 将 5 个数 2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 . 答案:95 . 解:易知 2, 0, 1, 9, 2019 的所有不以 0 为开头的排列共有 4´ 4! = 96 个.其中, 除了 (2, 0, 1, 9, 2019) 和 (2019, 2, 0, 1, 9) 这两种排列对应同一个数 20192019 ,其余 的数互不相等.因此满足条件的 8 位数的个数为96 -1 = 95 .6. 设整数 n > 4 ,( x + 2 的值为. 答案:51. y -1)n 的展开式中x n -4 与 xy 两项的系数相等,则 nn解:注意到 ( x + 2 y -1)n= år =0C n x (2 y -1)r . 其中 x n -4 项仅出现在求和指标 r = 4 时的展开式 C 4 x n -4 (2 y -1)4中,其 x n -4 项系数为 (-1)4 C 4 = n (n -1)(n - 2)(n -3) .n24而 xy 项仅出现在求和指标 r = n -1 时的展开式 C n -1x ⋅ (2y -1)n -1 中,其 xy 项系数为 n -1 2 n -3 n -3C n C n -1 4⋅ (-1) = (-1) 2n (n -1)(n - 2) .因此有 n (n -1)(n - 2)(n - 3)= (-1)n -3 2n (n -1)(n - 2) .注意到 n > 4 ,化简得24n - 3 = (-1)n -3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51 .7. 在平面直角坐标系中,若以 (r +1, 0) 为圆心、 r 为半径的圆上存在一点 (a , b ) 满足b 2 ³ 4a ,则 r 的最小值为.答案: 4 .解:由条件知 (a - r -1)2 + b 2 = r 2 ,故4a £ b 2 = r 2 - (a - r -1)2 = 2r (a -1) - (a -1)2 . 即 a 2 - 2(r -1)a + 2r +1 £ 0 . 上述关于 a 的一元二次不等式有解,故判别式(2(r -1))2 - 4(2r +1) = 4r (r - 4) ³ 0 ,解得 r ³ 4 .经检验,当 r = 4 时, (a , b ) = (3, 2 3) 满足条件.因此 r 的最小值为 4 .8. 设等差数列{a n } 的各项均为整数,首项 a 1 = 2019 ,且对任意正整数 n ,总 存在正整数 m ,使得 a 1+ a 2 ++ a n = a m .这样的数列{a n } 的个数为.答案:5 .解:设{a n } 的公差为 d .由条件知 a 1 + a 2 = a k ( k 是某个正整数),则2a 1 + d = a 1 + (k -1)d ,a 1即 (k - 2)d = a 1 ,因此必有 k ¹ 2 ,且d =k - 2.这样就有 a = a + (n -1)d = a + n -1a , n 1 1 k - 2 1í而此时对任意正整数 n ,a +a++ a = a n + n (n -1) d = a + (n -1)a + n (n -1) d 1 2 n 1 2 1 12æ n (n -1) ö = a + (n -1)(k - 2) + d ,确实为{a n } 中的一项.ç 1 çè 2 ø 因此,仅需考虑使 k - 2| a 1 成立的正整数 k 的个数.注意到 2019 为两个素数3 与 673 之积,易知 k - 2 可取-1, 1, 3, 673, 2019 这5 个值,对应得到5 个满足条 件的等差数列.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆G 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.解:不妨设平面直角坐标系中椭圆 G 的标准方程为 x2y 2+= 1 (a > b > 0) ,并记 c = a 2 b 2a 2 -b 2 .由对称性,可设 F 为 G 的右焦点. 易知 F 到 G 的左顶点的距离为 a +c ,到右顶点的距离为 a - c ,到上、下顶点的距离均为 a .分以下情况讨论:(1) A , B 分别为左、右顶点.此时a + c = 3, a - c = 2 ,故 AB = 2a = 5 (相应地,b 2= (a + c )(a - c ) = 6 ,G 的方程为4 x 2y 2+ = 1 ). …………………4 分25 6(2) A 为左顶点,B 为上顶点或下顶点.此时 a + c = 3, a = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 3 ,所以 AB =a 2 +b 2= 7(相应的 G 的方程为 x + y = 1 ).4 3…………………8 分(3) A 为上顶点或下顶点, B 为右顶点.此时 a = 3, a - c = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 8 ,所以 AB =a 2 +b 2 = 17(相应的 G 的方程为 x + y= 1 ).9 8…………………12 分综上可知, AB 的所有可能值为5, 7, 17 . …………………16 分10. (本题满分 20 分)设 a , b , c 均大于 1,满足ìïlg a + log b c = 3, ïîlg b + log a c = 4. 求 lg a ⋅ lg c 的最大值.解:设lg a = x , lg b = y , lg c = z ,由 a , b , c >1可知 x , y , z > 0 . 由条件及换底公式知 x + z = 3, y + z= 4 ,即xy + z = 3y = 4x . y x…………………5 分。
2015-2021七年高中数学联赛真题分类汇编 (学生版+解析版)(共63个专题)
2015-2021七年高中数学联赛真题分类汇编专题01 集合第一讲1.【2021年江西预赛】集合M是集合A={1,2,…,100}的子集,且M中至少含有一个平方数或者立方数,则这种子集M的个数是.2.【2021年浙江预赛】给定实数集合A,B,定义运算A⊗B={x∣x=ab+a+b,a∈A,b∈B}.设A= {0,2,4,⋯,18},B={98,99,100},则A⊗B中的所有元素之和为.3.【2021年广西预赛】集合M={1,2,3,4,5,6}的所有子集的元素的和等于.4.【2021年新疆预赛】若实数集合{3,6,9,x}的最大元素与最小元素之积等于该集合的所有元素之和,则x 的值为.5.【2021年全国高中数学联赛A卷一试】设集合A={1,2,m},其中m为实数.令B={a2∣a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为.6.【2020高中数学联赛B卷(第01试)】设集合X={1,2,⋯,20},A是X的子集,A的元素个数至少是2,且A 的所有元素可排成连续的正整数,则这样的集合A的个数为.7.【2020年福建预赛】已知[x]表示不超过实数x的最大整数,集合A={x∣x2−x−6<0},B={x∣2x2−3[x]−5=0}.则A∩B=.8.【2020年甘肃预赛】设集合:A={(x,y)∣log a x+log a y>0},B=|(x,y)|x+y<a}.若A∩B=∅,则a 的取值范围是.9.【2020年广西预赛】已知集合M={1,2,⋯,2020},对M的任意非空子集A,λA为集合A中最大数与最小数的和.则所有这样的λA的算术平均数为.10.【2020年广西预赛】设集合M={1,2,⋯,2020},A⊆M,且对集合A中的任意元素x,4x∉A.则集合A的元索个数的最大值为.11.【2020年吉林预赛】已知集合A={x∣log a(ax−1)>1}.若2∈A,则a的取值范围是.12.【2020年浙江预赛】一个正整数若能写成20a+8b+27c(a ,b ,c∈N)形式,就称其为“好数".则集合{1,2,⋯,200}中好数的个数为.13.【2020年新疆预赛】已知集合A={1,2,3,⋯,2020},对于集合A的每一个非空子集的所有元素,计算它们乘积的倒数.则所有这些倒数的和为.14.【2019年全国】若实数集合{1,2,3,x}的最大元素与最小元素之差等于该集合的所有元素之和,则x的值为.15.【2019年江苏预赛】已知集合A={x|x2−3x+2≥0},B={x|√x−a≥1},且A∩B={x|x≥3},则实数a的值是.16.【2019年江西预赛】将集合{1,2,⋯,19}中每两个互异的数作乘积,所有这种乘积的和为.17.【2019年新疆预赛】已知集合U={1,2,3,4,5,6,7,8},A={1,2,3,4,5},B={4,5,6,7,8},则是集合U的子集但不是集合A的子集,也不是集合B B的子集的集合个数为.18.【2019年浙江预赛】已知集合A={k+1,k+2,⋯,k+n},k,n为正整数,若集合A中所有元素之和为2019,则当n取最大值时,集合A=.19.【2019年重庆预赛】设A为三元集合(三个不同实数组成的集合),集合B={x+y|x,y∈A, x≠y},若B={log26, log210, log215},则集合A=________.20.【2019年北京预赛】已知集合A={x|x2+x−6>0},B={x|x2−2ax+3≤0},若a>0,且A∩B中恰有两个整数,则a的取值范围是.21.【2019年福建预赛】已知f(x)=x2-2x,集合A={x|f(f(x))=0},则集合A中所有元素的和为.22.【2019年福建预赛】已知集合U={1,2,3,4,5},I={X|X⊆U},从集合I中任取两个不同的元素A、B,则A∩B中恰有3个元素的概率为.23.【2019年贵州预赛】已知集合A={1,2,3,……,2019},对于集合A的每一个非空子集的所有元素,计算它们乘积的倒数.则所有这些倒数的和为.24.【2019高中数学联赛A卷(第01试)】若实数集合{1,2,3,x}的最大元素与最小元素之差等于该集合的所有元素之和,则x的值为.25.【2019高中数学联赛B卷(第01试)】已知实数集合{1,2,3,x}的最大元素等于该集合的所有元素之和,则x的值为.|a∈A,b∈A,且a≠b},则集合B中元素26.【2018年福建预赛】已知集合A={1,3,5,7,9},集合{ab的个数为________.27.【2018年江苏预赛】在1,2,3,4,…,1000中,能写成a2−b2+1(a∈N)的形式,且不能被3整除的数有________个。
2019年全国各省高中数学竞赛预赛试题汇编(含答案) 精品
各省数学竞赛汇集高中数学联赛江苏赛区初赛试卷一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____.6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为____________.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明: (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2018年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
2019年全国高中数学联赛福建省预赛及解析
2019年全国高中数学联赛福建省预赛注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)一、填空题1.已知2f x x x =-,集合(){}|(0A x f f x ==,则集合A 中所有元素的和为____________ .2.在△ABC 中,若AC =AB =25tan 12π=,则BC =____________ .3.函数()f x x =的值域为____________ .4.已知复数()1212,,z z z z z ≠满足22122z z ==--,且124z z z z -=-=,则||z =____________ .5.已知32()2f x x ax bx =+++的图象关于点(2,0)对称,则(1)f =____________ .6.如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,120ABC ︒∠=,P A =4.若三棱锥P -ABC 的外接球的半径为PC 与平面ABC 所成角的正切值为____________ .7.已知椭圆22122:1x y C a b +=()0a b >>与双曲线22222:1x y C m n-=()0,0m n >>有相同的焦点1F 、2F ,其中1F 为左焦点.点P 为两曲线在第一象限的交点,1e 、2e 分别为曲线1C 、2C 的离心率,若12PF F ∆是以1PF 为底边的等腰三角形,则21e e -的取值范围为________.8.已知为△ABC 的内心,且54()IA BI CI =+.记R 、r 分别为△ABC 的外接圆、内切圆半径,若15r =,则R =____________ .9.已知集合U ={1,2,3,4,5},{|}I X X U =⊆,从集合I 中任取两个不同的元素A 、B ,则A ∩B 中恰有3个元素的概率为____________ .10.已知532()10f x x x ax bx c =-+++,若方程f (x )=0的根均为实数,m 为这5个实根中最大的根,则m 的最大值为____________ .二、解答题11.已知数列{a n }满足()1119,2731204n n n n a a a a a n N +++=--+=∈. (1)记2n n c a =-,求数列{c n }的通项公式;(2)记21n n n b a n =+,求使[][][][]1232019n b b b b ++++成立的最大正整数n 的值.(其中,符号[x ]表示不超过x 的最大整数)12.已知F 为椭圆22:143x y C +=的右焦点,点P 为直线x =4上的动点,过点P 作椭圆C 的切线P A 、PB ,A 、B 为切点. (1)求证:A 、F 、B 三点共线; (2)求△P AB 面积的最小值13.如图,O 、H 分别为锐角△ABC 的外心垂心,AD ⊥BC 于D ,G 为AH 的中点点K 在线段GH 上,且满足GK =HD ,连结KO 并延长交AB 于点E .(1) 证明://EK BC ; (2) 证明:GE GC ⊥. 14.已知()x f x e =.(1)当0x ≥时,不等式2(1)()1x f x mx --恒成立,求m 的取值范围;(2)求证:当0x >时,()4ln 88ln 2f x x >+-. 15.已知实数12100,,,x x x 满足121001x x x +++=,且11,1,2,,9950k k x x k +-<=.证明:存在整数12501250,,,,1100i i i i i i <<<,使得12504951100100i i i x x x +++.参考答案1.4【解析】1.将方程f (f (x )=0化为f (x 2-2x )=0,即()()2222220x x x x ---=,所以()()222220x xxx ---=.解得12340,2,11x x x x ====所以{0,2,1A =-,A 中所有元素的和为4. 故答案为:4.【解析】2.5tan12π=,得2sin 56tan 122cos 6A A πππ⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭, 即5tan tan 612A ππ⎛⎫+= ⎪⎝⎭,所以5,612A k k πππ+=+∈Z . 结合0A π<<,得5,6124A A πππ+==. 所以由余弦定理,得:2222cos BC AC AB AC AB A =+-⋅⋅⋅22222cos 4π=+-⋅2=所以BC =.3.1]【解析】3.解法一:()f x x =. 设1sin 22x ππαα⎛⎫-=-⎪⎝⎭,则()cos (1sin )14f x πααα⎛⎫=++=++ ⎪⎝⎭.由22ππα-,得32,sin 144424ππππαα⎛⎫-+-+ ⎪⎝⎭.所以f (x )的值域为1].解法二:()11(02)f x x '=+=<<.因为01x <<+时,f'(x )>0;12x +<<时,f'(x )<0. 所以f (x )在区间0,12⎡+⎢⎣⎦上为增函数,在区间122⎡⎤+⎢⎥⎣⎦上为减函数. 所以f (x)的值域为1].故答案为:1].4.【解析】4.先求复数2--的平方根.设2()2(,)x yi x y +=--∈,则()222i 2x yxy -+=--.故有2222x y xy ⎧-=-⎪⎨=-⎪⎩,解得111x y =⎧⎪⎨=⎪⎩221x y =-⎧⎪⎨=⎪⎩由2212122z z z z ==--≠,知12,z z 为复数2--的两个平方根.由对称性,不妨设1211z z ==-.于是,1212124,4z z z z z z z z -=-=-=-=,复数12,,z z z 对应的点12,,Z Z Z 构成边长为4的正三角形.又复数12,z z 对应的点12,Z Z 关于原点O 对称,所以OZ 为△ZZ 1Z 2的高, 故||||z OZ ==故答案为: 5.4【解析】5.解法一:由f (x )的图象关于点(2,0)对称,知32(2)(2)(2)(2)2f x x a x b x +=++++++32(6)(412)4210x a x b a x a b =++++++++为奇函数.所以6042100a a b +=⎧⎨++=⎩,解得67a b =-⎧⎨=⎩. 所以f (1)=1+a +b +2=1-6+7+2=4解法二:由f (x )的图象关于点(2,0)对称,知对任意x ∈R ,(2)(2)0f x f x ++-=. 于是,对任意x ∈R ,32(2)(2)(2)2x a x b x +++++++32(2)(2)(2)20x a x b x -+-+-+=,即2(212)(8220)0a x a b ++++=恒成立.所以212084200a a b +=⎧⎨++=⎩,解得67a b =-⎧⎨=⎩. 所以f (1)=1+a +b +2=1-6+7+2=4 解法三:依题意,有f (x )=(x -2)3+m (x -2). 利用f (0)=-8-2m =2,得m =-5.于是,f (x )=(x -2)3-5(x -2),f (1)=-1-(-5)=4. 故答案为:4.【解析】6.如图,设O 1为△ABC 的外P 心,O 为三棱锥P -ABC 的外接球的球心.由P A ⊥平面ABC ,OO 1⊥平面ABC ,知P A ∥OO 1.取P A 的中点D ,由OP OA ==,知D 为P A 的中点,且四边形DAO 1O 为矩形. 又P A =4,所以O 1O =AD =2,△ABC 的外接圆的半径r =O 1A =2.在△ABC 中,由2sin =∠ACr ABC,得22sin120AC ︒=⨯⨯=所以tanPA PCA AC ∠===因此PC 与平面ABC .故答案为:3. 7.2,3⎛⎫+∞ ⎪⎝⎭【解析】7.设12,PF s PF t ==,由椭圆和双曲线的定义得到,s a m t a m =+=-,根据12PF F ∆是以1PF 为底边的等腰三角形,得到 2t a m c =-= ,从而有12112e e -=,根据21e >,得到1113e <<,再利用导数法求21212112212=-=⋅=-e y e e e e e 的范围.设12,PF s PF t ==, 由椭圆的定义得 2s t a += , 由双曲线的定义得2s t m -=, 所以,s a m t a m =+=-,因为12PF F ∆是以1PF 为底边的等腰三角形, 所以1222F F PF c ==, 即 2t a m c =-= , 因为12,c ce e a m==, 所以12112e e -=, 因为21e >,所以2101e <<,所以121123e e =+<,即1113e <<, 而21212112212=-=⋅=-e y e e e e e ,因为()11214(1)012-'=>-e e y e ,所以y 在1,13⎛⎫ ⎪⎝⎭上递增, 所以23>y . 故答案为:2,3⎛⎫+∞ ⎪⎝⎭8.32【解析】8.解法一:如图,取BC 的中点D ,依题意,有54()8IA IB IC ID =-+=-.所以A 、I 、D 三点共线,AB =AC.由r =ID =15,知IA =24. 作IE ⊥AB 于E ,则IE =ID =15,155sin ,cos ,tan2488BAD BAD BAD ∠==∠=∠=.所以22tan 239BC BD AD BAD ==⋅∠=⨯=又5sin sin 228BAC BAD ∠=∠=⨯=.所以264,32sin 539BC R R BAC ====∠.解法二:依题意,有5440IA IB IC ++=.由三角形内心的向量表示:若a 、b 、c 分别为△ABC 的内角A 、B 、C 的对边,I 为△ABC 的内心,则0aIA bIB cIC ++=.可得,a :b :c =5:4:4,设a =10k ,则b =c =8k .作AD ⊥BC 于D ,则AD =,212ABCSBC AD =⨯⨯=.又r =15,1()132ABCS AB BC CA r kr =++=,因此,k ==又sin AD B AB ==,所以8264,32sin sin b k R R B B =====. 故答案为:32. 9.562【解析】9.当A ∩B 确定后,如A ∩B ={3,4,5}时,设A =A'∪{3,4,5},B =B ′∪{3,4,5},A ′∩B =∅,那么{A',B'}的情况有:{∅,{1}},{∅,{2}},{∅,{1,2}},{{1},{2}},共4种情形.所以所求的概率为35232C 410425C 323162⨯⨯⨯==⨯. 故答案为:562. 10.4【解析】10.设f (x )=0的5个实根为1234x x x x m ,则由韦达定理,得12340m x x x x ++++=,()()123412131423243410m x x x x x x x x x x x x x x x x +++++++++=-.于是,212131423243410x x x x x x x x x x x x m +++++=-+. 所以22222341x x x x +++()()212341213142324342x x x x x x x x x x x x x x x x =+++-+++++()22221020m m m =--+=-.另一方面,由柯西不等式,知()()22222123412344x x x x x x x x ++++++. 于是,()222420,16,4mm m m -.又对f (x )=(x -4)(x +1)4=5321020154x x x x ----, 方程f (x )=0的根均为实数,且5个实根中最大的根m =4. 所以m 的最大值为4.故答案为:4. 11.(1)131n nc =+.(2)45.【解析】11.(1)由2n n c a =-,得2n n a c =+,代入条件递推式, 得()()()()112227232120n n n n c c c c ++++-+-++=. 整理,得11230n n n n c c c c ++-+=,即1132n nc c +=-. 所以111131n n c c +⎛⎫-=- ⎪⎝⎭,数列11n c ⎧⎫-⎨⎬⎩⎭是以111413c -=-=为首项,公比为3的等比数列. 所以1113,31n n n n c c -==+. (2)由(1)知,12231n n n a c =+=++,22121131n n n n n b a n n ⎛⎫==+ ⎪+++⎝⎭()2221(1)31nn n n n =++++()222(1)1(1)31n n n n n =-+++++ ()22322(1)(1)31n n n n n ⨯++=-+++.因为n ≥2时,1223(12)1C 2C 212n n n n n =+=+⨯+⨯+>+,()()22(1)31232(1)31n n n n n n n n ++-⨯++=-⨯-+-2(1)(12)1n n n n >-+-+-220n =->.所以n ≥2时,()223201(1)31n nn n ⨯++<<++. 又n =1时,()22326129248(1)31n nn n ⨯++++==⨯++, 所以[b 1]=1;n ≥2时,[b n ]=2(n -1),所以n ≥2时,[][][][]123121222(1)n b b b b n ++++=+⨯+⨯++-21(1)1n n n n =+-=-+.由n 2-n +1≤2019,及n ∈N +,得n ≤45. 所以使[][][][]1232019n b b b b ++++成立的最大正整数n 的值为45.12.(1)证明见解析.(2)92【解析】12.(1)F (1,0),设P (4,t ),()11,A x y ,()22,B x y . 则切线P A 、PB 的方程分别为11221,14343x x y y x x y y +=+=. 由切线P A 、PB 过点P (4,t )得12121,133y t y tx x +=+=, 即11221,133t tx y x y +=+=. 由此可得直线AB 的方程为13tx y +=,易知直线AB 过点F (1,0),所以A 、F 、B 三点共线,如图所示.(2)由2213143t x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩得()22126270t y ty +--=. ()2236427120t t ∆=+⨯⨯+>, 122612t y y t +=+,1222712y y t -=+.于是,12||AB y y =-=()224912t t +=+. 又点P (4,t )到直线AB的距离d = 所以1||2PABSAB d =⋅()22491212t t +=⨯+(222912t t +=+.λ=,由t ∈R ,知3λ,且322()3PABSf λλλ==+.因为()()()223422222632(2)218()033f λλλλλλλλλ'+-+==>++,所以()f λ在区间[3,+∞)上为增函数,()f λ的最小值为9(3)2f =,此时t =0. 所以△P AB 面积的最小值为92. 13.(1)证明见解析.(2)证明见解析【解析】13.(1)如图,连结BO 并延长交圆O 于点F ,由O 为△ABC 的外心,知BF 为圆O 的直径,所以,AF AB FC BC ⊥⊥.结合H 为△ABC 的垂心,得HC ⊥AB ,所以AF ∥HC .同理,FC ∥AH . 所以四边形AHCF 为平行四边形,FC AH =. 作OM ⊥BC 交BC 于点M ,则OM =12FC . 因此,由G 为AH 的中点,GK =HD , 可得KD KH HD KH GK =+=+1122GH AH FC OM ====.结合KD ∥OM ,得四边形OMDK 为平行四边形. 所以OK ∥MD ,即EK ∥BC . (2)如图,作GN ⊥AB 于N .由H 为△ABC 的垂心,知90NAG ABC DCH ︒∠=-∠=∠, 结合HD ⊥BC ,得△ANG ∽△CDH .所以NG AG DH CH=,∠NGA =∠DHC. 又GK =HD ,AG =GH ,因此,NG GHGK HC=. 又∠NGK =180°-∠NGA =180°-∠DHC =∠GC ,所以△NGK ∽△GHC ,故∠KNG =∠CGH . 由(1)知,GK ⊥KE .因此,E 、K 、G 、N 四点共圆.所以CGH KNG GEK ∠=∠=∠, 故90EGC EGK CGH EGK GEK ︒∠=∠+∠=∠+∠=.所以GE ⊥GC.14.(1)1,2⎛⎤-∞ ⎥⎝⎦.(2)证明见解析【解析】14.(1)依题意,当x ≥0时,2(1)e 1x x mx --恒成立.设2()(1)e 1x k x x mx =--+,则x ≥0时,k (x )≥0恒成立, 若12m,则x >0时,()()e 20xk x x m '=->,k (x )在[0,+∞)上为增函数. 于是,x ≥0时,k (x )≥k (0)=0.因此,12m 符合要求. 若12m >,则2m >1,0<x <ln (2m )时,k'(x )<0,k (x )在[0,ln(2)]m 上为减函数. 于是,(ln(2))(0)0k m k <=.因此,12m >不符合要求. 所以m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)解法一:设()e 4x g x x =-,则()e 4xg x '=-.当x <ln 4时,g'(x )<0;当x >ln 4时,g'(x )>0所以g (x )在(-∞,ln 4]上为减函数,在[ln 4,+∞)上为增函数. 所以g (x )≥g (ln 4)=4-4ln 4.由此可得,g (x )=e x -4x ≥4-4ln 4,即e 448ln 2x x +-, 当且仅当x =ln 4时等号成立.所以x >0时,()4ln 88ln 2(448ln 2)4ln 88ln 2f x x x x --++---+44ln 4x x =--,当且仅当x =ln 4时等号成立. 设h (x )=4x -4lnx -4,则4()4h x x'=-. 当0<x <1时,h'(x )<0;当x >1时,h'(x )>0.所以h (x )在(0,1]上为减函数,在[1,+∞)上为增函数. 所以h (x )≥h (1)=0,即()44ln 40h x x x =--,当且仅当x =1时等号成立.故()4ln 88ln 244ln 40f x x x x --+--. 由于上述两个等号不同时成立,因此()4ln 88ln 20f x x --+>. 所以当x >0时,f (x )>4lnx +8-8ln 2.解法二:设()()(4ln 88ln 2)e 4ln 88ln 2xg x f x x x =-+-=--+, 则4()e xg x x'=-. 由g "(x )=24e 0xx+>,知g'(x )为增函数. 又g'(1)=e -4<0,g'(2)=e 2-2>0,因此,g'(x )有唯一零点,设为x 0. 则x 0∈(1,2),且0<x <x 0时,g'(x )<0;x >x 0时,g'(x )>0所以g (x )在区间(0,x 0]上为减函数,在区间[x 0,+∞)上为增函数. 所以g (x )有最小值()000e 4ln 88ln 2xg x x =--+.又由()0004e 0xg x x '=-=,知00004e ,e 4x x x x ==, 两边取对数,得00ln ln 4x x +=. 所以()()00044ln 488ln 2g x x x =---+ ()0001480(1,2)x x x ⎛⎫=+->∈ ⎪⎝⎭.所以当x >0时,g (x )≥g (x 0)>0,故当x >0时,()4ln 88ln 2f x x >+-. 15.证明见解析【解析】15.记{}{}212212min ,,max ,,1,2,,50i i i i i i a x x b x x i --===.构造下列51个数:01250S b b b =+++, 121250,1,2,,49k k k k S a a a b b b k ++=++++++=,501250S a a a =+++.下面证明01250S ,S ,S ,,S 中至少有一个在区间4951,100100⎡⎤⎢⎥⎣⎦内. 由上述符号的含义, 知()()05012501250S S b b b a a a +=+++++++121001x x x =+++=,且01250S S S S .所以06012S S .(1)若051100S ,则由012S ,得04951100100S . 因此0S ∈4951,100100⎡⎤⎢⎥⎣⎦. (2)若051100S >,假设1250,,,S S S 都不在区间4951,100100⎡⎤⎢⎥⎣⎦内,则由011121150S S b a x x -=-=-<,知101511495010050100S S >->-=. 结合假设,得151100S >. 又由051100S >,知500491100S S =-<. 所以1250,,,S S S 中存在比49100小的数,也存在比51100大的数.又01250S S S S ,且1250,,,S S S 都不在区间4951,100100⎡⎤⎢⎥⎣⎦内. 因此,存在j ∈{1,2,……,50},使得14951,100100j j S S -<>. 此时,15149110010050j j S S -->-=. 另一方面,1221150j j j j j j S S b a x x ---=-=-<,两者矛盾. 所以1250,,,S S S 中至少有一个在区间4951,100100⎡⎤⎢⎥⎣⎦内. 由(1)、(2)知,01250S ,S ,S ,,S 中至少有一个在区间4951,100100⎡⎤⎢⎥⎣⎦内. 由(0,1,2,,50)k S k =的定义知,结论成立解法二:首先用数学归纳法证明 对于任意正整数n ,若实数122,,,n x x x 满足11,1,2,,2150k k x x k n +-<=-,则存在122,,,n x x x 的一个排列1212,,,,,,,n n i i i j j j x x x x x x ,使得()()1212150n n i i i j j j x x x x x x +++-+++<. 证明如下:(1)当n =1时,结论显然成立 (2)假设当n =k 时,结论成立,则当n =k +1时,由归纳假设知,存在122,,,k x x x 的一个排列1212,,,,,,,k k i i i j j j x x x x x x ,使得()()1212150k k i i i j j j x x x x x x +++-+++<. 记()()12121k k i i i j j j x x x x x x d +++-+++=,22212k k x x d ++-=,则1211,5050d d <<.从而当120d d ⋅时: ()()12122122k k i i i k j j j k xx x x x x x x ++++++-++++12150d d =-<; 当120d d ⋅<时:()()12122221k k i i i k j j j k xx x x x x x x ++++++-++++12150d d =+<. 即当n =k +1时,结论也成立.由(1)、(2)知,对于任意正整数n ,结论都成立. 回到本题,利用上述结论容易知道存在12100,,,x x x 的一个排列12501250,,,,,,,i i i j j j x x x x x x 满足12501100i i i <<<,12501100j j j <<<,且()()1250120150i i i j j j x x x x x x +++-+++<. 又()()125012501i i i j j j x x x x x x +++++++=,所以12505051100100i i i x x x +++<或12505051100100j j j x x x +++<. 因此结论成立.。
2019年全国高中数学联赛(福建赛区)预赛暨2019年福建省高中数学竞赛试卷(扫描版)
可得, a : b : c 5 : 4 : 4 ,设 a 10k ,则 b c 8k .
作 AD BC 于 D ,则 AD
39k
, S△ABC
1 BC 2
AD
5
39k 2 。
又r
15 , S△ABC
1 2
( AB
BC
CA)r
13kr
,因此, k
13 15 5 39
a a
2c 3c
,于是,
1 3
e1
1 2
。
又
e2
c m
a
c 2c
e1 1 2e1
。
∴
e2
e1
e1 1 2e1
e1
。
设1
2e1
t
,则
t
(0
,1) 3
,
e2
e1
e1 1 2e1
e1
1t 2t
1t 2
1 2
(t
1) t
1。
由 f (t) 1 (t 1) 1 在区间 (0 ,1) 上为减函数,得
:
x a
2 2
y2 b2
1( a
b
0
)与双曲线
C2
:
x2 m2
y2 n2
1(m
0,n
0 )有
相同的焦点 F1 、 F2 ,其中 F1 为左焦点。点 P 为两曲线在第一象限的交点, e1 、 e2 分别为曲线 C1 、 C2 的 离 心 率 , 若 △PF1F2 是 以 PF1 为 底 边 的 等 腰 三 角 形 , 则 e2 e1 的 取 值 范 围
2019年高中数学竞赛试题及答案及答案
高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是.①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④ 3.设0.50.320.5,log 0.4,cos3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或2 5.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图像,则只要将()f x 的图像A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图2222=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防(若疫苗有效已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数()1f x =-. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.3 11.2201112. 31(,),(1,0),(3,4)22-- 三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos 2cos 1+-+=ππx x 2sin 212cos 231++= ………………… 2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32sin()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-EFG B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分 综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分ACBB 1A 1C 1FGE(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r=2. ……1分由于点A 的横坐标为4,所以点A 的坐标为(4,5),即AM =……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540kx y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分2=,2=,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………所以满足条件的点A 为线段PQ 上的点,即满足条件的点的横坐标取值范围是.……14分18.(本题满分14分) 解:(1)由()1f x =-可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11()(1f x x x ===3分 显然)(1x f x在区间(0,1]∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)21()()f x f x -===.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即2>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。
专题12导数与极限第一辑2022年高中数学联赛之历年真题分类汇编(2015-2021)
备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题12导数与极限第一辑1.【2021年福建预赛】若关于x 的不等式(x −2)e x <ax +1有且仅有三个不同的整数解,则整数a 的最小值为.【答案】3【解析】设f(x)=(x −2)e x , g(x)=ax +1.则f ′(x)=(x −1)e x ,x <1时,f ′(x)<0;x >1时,f ′(x)>0. 因此,f(x)在区间(−∞,1)上递减,在区间(1,+∞)上递增: 且x <2时,f(x)<0;x >2时,f(x)>0. 由此作出f(x)的草图如图所示.又g(x)的图像是过点(0,1)的直线,结合图像可知a >0.由于a >0时,f(0)=−2<g(0)=1;f(1)=−e <g(1)=a +1; f(2)=0<g(2)=2a +1,因此,0,1,2是不等式(x −2)e x <ax +1的三个整数解. 由于不等式(x −2)e x <ax +1有且仅有三个不同的整数解, 所以{f(−1)≥g(−1)f(3)≥g(3) ,即{−3e −1≥−a +1e 3≥3a +1,1+3e ≤a ≤e 3−13 .经检验,a=3符合要求,所以,符合条件的a 的最小值为3.2.【2019年贵州预赛】已知函数f(x)=(e x −e −x )⋅x 3,若m 满足f (log 2m )+f (log 0.5m )⩽2(e 2−1e).则实数m 的取值范围是 .【答案】[12,2]【解析】由f(x)=(e x −e −x )⋅x 3⇒f(−x)=f(x),且x ∈(0,+∞)时,f(x)是增函数.又由f(log2m)+f(log0,5m)≤2(e2−1e)⇒f(log2m)≤f(1).所以|log2m|≤1⇒−1≤log2m≤1⇒12≤m≤2.即m的取值范围是[12,2].3.【2018年广西预赛】若定义在R上的函数f(x)满足f′(x)−2f(x)−4>0,f(0)=−1,则不等式f(x)> e2x−2的解为___________.【答案】x>0【解析】构造函数g(x)=e−2x[f(x)+2],则g(0)=1.由g′(x)=e−2x[f′(x)−2f(x)−4]>0可知g(x)在(−∞,+∞)内单调递增,从而有g(x)>1⇔x>0.故f(x)>e2x−2⇔x>0.4.【2018年甘肃预赛】已知函数f(x)=x3+sinx(x∈R),函数g(x)满足g(x)+g(2−x)=0(x∈R),若函数ℎ(x)=f(x−1)−g(x)恰有2019个零点,则所有这些零点之和为______.【答案】2019【解析】易知函数f(x)=x3+sinx为奇函数,从而f(x−1)的图象关于(1,0)点对称.函数g(x)+g(2−x)=0,可知g(x)的图象也关于(1,0)点对称.由此ℎ(x)的图象关于(1,0)点对称,从而这2019个零点关于点(1,0)对称,由于ℎ(1)=f(0)−g(1)=0⇒x=1是ℎ(x)的一个零点,其余2018个零点首尾结合,两两关于(1,0)点对称,和为2018,故所有这些零点之和为2019.5.【2018年四川预赛】设直线y=kx+b与曲线y=x3−x有三个不同的交点A、B、C,且|AB|=|BC|=2,则k的值为______.【答案】1【解析】曲线关于点(0,0)对称,且|AB|=|BC|=2,所以直线y=kx+b必过原点,从而b=0.设A(x,y),则{y=kx, y=x3−x,√x2+y2=2.由此得x=√k+1,y=k√k+1,代入得(k+1)+k2(k+1)=4,即(k−1)(k2+2k+3)=0,解得k=1.故答案为:16.【2017年广西预赛】设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R 有f (x )+f (−x )=x 2,在(0,+∞)上f ′(x )>x .若f (1+a )−f (1−a )≥2a ,则实数a 的范围是 .【答案】a ≥0【解析】提示:由题意得f ′(x )>x ,构造函数g (x )=f (x )−12x 2,则g ′(x )=f ′(x )−x >0.从而g (x )在(0,+∞)上单调递增. 由条件f (x )+f (−x )=x 2得g (x )+g (−x )=0,则g (x )是奇函数.因为g (x )在R 上单调递增,由f (1+a )−f (1−a )≥2a 知g (1+a )−g (1−a )≥0,g (1+a )≥g (1−a ), 所以1+a ≥1−a 解得a ≥0.7.【2017年湖南预赛】设函数f (x )是定义在(−∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2017)2f (x +2017)−f (−1)>0的解集为 .【答案】(−∞,−2018)【解析】提示:将不等式(x +2017)2f (x +2017)−f (−1)>0 化为(x +2017)2f (x +2017)>(−1)2f (−1),①构造F (x )=x 2f (x ),使得①式化为F (x +2017)>F (−1),② 因为F ′(x )=2xf (x )+x 2f ′(x ),由已知条件2f (x )+xf ′(x )>x 2, 两边同乘以x ,可得F ′(x )=2xf (x )+x 2f ′(x )<x 3<0(因x ∈(−∞,0)). 所以,F (x )在(−∞,0)上是减函数,不等式②化为x +2017<−1,即x <−2018, 所以,不等式的解集为(−∞,−2018).8.【2016年福建预赛】函数f (x ) =x 2lnx +x 2-2零点的个数为________. 【答案】1 【解析】由条件知f ′(x)=2x ln x +x +2x =x(2lnx +3). 当0<x <e −32时,f ′(x)<0; 当x >e −32时,f ′(x)>0.于是,f (x )在区间(0,−32)上为减函数,在区间(−32,+∞)上为增函数.又0<x <e −32时,lnx +1<−32+1=−12<0f (x )=x 2(lnx +1)-2<0,注意到,f(e −32)=e −3(−32+1)−2<0,f(e)=2e 2−2>0 故函数f (x )零点的个数为1.9.【2015年山东预赛】设a >1.若关于x 的方程a x =x 无实根,则实数a 的取值范围是______. 【答案】a >e 1e【解析】由函数y =a x 与y =x 的图像,知若a >1,且a x =x 无实根,则a x >x 恒成立, 设f (x )=a x −x .则:f′(x )=a x (lna )−1>0⇒x >−log a (lna ).故f (x )=a x −x 在区间(−∞,−log a (lna ))上递减,在区间(−log a (lna ),+∞)上递增. 从而, f (x )在x =−log a (lna )时取得最小值,即:f (x )min =f(−log a (lna ))=a −log a (ln a )−(−log a (lna ))>0, ⇒1lna −(−log a (lna ))>0.又1lna =log a e,−log a (lna )=log a 1lna , ⇒log a e >log a1lna⇒lna >1e⇒a >e 1e .10.【2015年福建预赛】函数f (x )=e x (x −ae x )恰有两个极值点x 1,x 2(x 1<x 2),则a 的取值范围是__________. 【答案】(0,12) 【解析】∵函数f (x )=e x (x −ae x ),∴f′(x )=(x +1−2a ⋅e x )e x ,由于函数f (x )两个极值点为x 1,x 2,即x 1,x 2是方程f′(x )=0的两个不等实数根,即方程x +1−2ae x =0,且a ≠0,∴x+12a=e x ;设y 1=x+12a(a ≠0),y 2=e x ,在同一坐标系内画出两个函数图象,如图所示,要使这两个函数有2个不同的交点,应满足{12a >01 2a >1,解得0<a<12,所以a的取值范围为(0,12),故选A.【方法点睛】本题主要考查函数的极值、函数与方程以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解11.【2018年湖南预赛】函数f(x)=ln(x2+1)的图像大致是()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.12.【2018年湖南预赛】设函数f(x)是R上的奇函数,当x>0时,f(x)=e x+x−3,则f(x)的零点个数是A.1 B.2 C.3 D.4【答案】C【解析】∵函数f(x)是定义域为R的奇函数,∴f(0)=0,所以0是函数f(x)的一个零点;当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f (x )有一个零点,又根据对称性知,当x <0时函数f (x )也有一个零点.综上所述,f (x )的零点个数为3个, 故选:C .13.【2017年四川预赛】已知函数f (x )=a ln x +x 2在x =1处有极值,则实数a 的值是()(A)−2(B)−1(C)1(D)2【答案】A【解析】提示:因为f ′(x )=ax+2x =a+2x 2x由条件知f ′(1)=0,解得a =−2.14.【2016年陕西预赛】设函数f (x )=x 3+ax 2+6x +c (a 、b 、c 均为非零整数).若f (a )=a 3,f (b )=b 3,则c 的值为(). A .-16 B .-4 C .4 D .16 【答案】D 【解析】设g (x )=f (x )-x 3=ax 2+bx +c . 由f (a )=a 3,f (b )=b 3⇒g (a )=g (b )=0.则a 、b 为方程g (x )=0的两个根⇒a +b =−ba,ab =ca⇒c =−a 4a+1=−(a 2+1)(a −1)−1a+1.因为c 为整数,所以,a +1=±1⇒a =0(舍去)或-2. 故c =16. 选D.15.【2015年黑龙江预赛】设0(sin cos )k x x dx π=-⎰,若8280128(1)kx a a x a x a x -=++++,则128a a a +++=()A.-1B.0C.1D.256 【答案】B 【解析】试题分析:000(sin cos )sin cos cos sin 2k x x dx xdx xdx x x πππππ=-=-=--=⎰⎰⎰,所以88280128(1)(12)kx x a a x a x a x -=-=++++,令1x =得80128(12)1a a a a ++++=-=,,令0x =得01a =,所以12801280()110a a a a a a a a +++=++++-=-=,故选B.考点:1.积分运算;2.二项式定理.16.【2015年黑龙江预赛】设函数f (x )=sin 5x +1.则∫f (x )π2−π2dx 值为()。
2019年全国高中数学联赛福建赛区预赛试题含答案解析
2019年福建省高中数学竞赛暨2019年全国高中数学联赛(福建省赛区)预赛试卷参考答案(考试时间:2019年5月22日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 1.若函数()3cos()sin()63f x x x ππωω=+--(0ω>)的最小正周期为π,则()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值为。
【答案】 【解答】∵ ()3cos()sin()3cos()sin()63662f x x x x x πππππωωωω=+--=+-+-3cos()cos()4cos()666x x x πππωωω=+++=+,且()f x 的最小正周期为π。
∴ 2ω=,()4cos(2)6f x x π=+。
又02x π⎡⎤∈⎢⎥⎣⎦,时,72666x πππ≤+≤,∴ 266x ππ+=,即0x =时,()f x 在区间02π⎡⎤⎢⎥⎣⎦,上取最大值 2.已知集合{}2320A x x x =-+≤,13B xa x ⎧⎫=<⎨⎬-⎩⎭,若A B ⊆,则实数a 的取值范围为 。
【答案】 1()2-+∞,【解答】{}12A x x =≤≤。
由13a x <-,得3103ax a x -++<-。
∴ 0a =时,{}3B x x =<。
满足A B ⊆。
0a >时,由3103ax a x -++<-,得1(3)03x a x -+>-,133B x x x a ⎧⎫=<>+⎨⎬⎩⎭或。
满足A B ⊆。
0a <时,由3103ax a x -++<-,得1(3)03x a x -+<-,133B x x a ⎧⎫=+<<⎨⎬⎩⎭。
由满足A B ⊆,得131a +<,102a -<<。
综合得,12a >-。
a 的取值范围为1()2-+∞,。
专题01集合第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)
备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题01集合第一缉1.【2021年江西预赛】集合M 是集合A={1,2,…,100}的子集,且M 中至少含有一个平方数或者立方数,则这种子集M 的个数是.【答案】288(212‒1).【解析】集合 中的平方或者立方数构成集合 ,100},A ={1,2,⋯,100}B ={1,4,8,9,16,25,27,36,49,64,81其中有12个元素,从 中挖去集合 后剩下的元索构成集合 ,则 中有88个元索,A B C C 由于 的子集有 个, 的非空子集有 个,C 288B 212‒1集 可表示为 形式,其中 是 的任一非空子集, 是 的任一子集,因此 的个数为M M =B 0∪C 0B 0B C 0C M 288(212‒1).2.【2021年浙江预赛】给定实数集合A,B,定义运算 .设A ⊗B ={x∣x =ab +a +b,a ∈A,b ∈B} ,则 中的所有元素之和为.A ={0,2,4,⋯,18},B ={98,99,100}A ⊗B 【答案】29970【解析】由 ,x =(a +1)(b +1)‒1则可知所有元素之和为 .(1+3+⋯+19)×300‒3×10=299703.【2021年广西预赛】集合 的所有子集的元素的和等于 .M ={1,2,3,4,5,6}【答案】672【解析】所有子集的元素的和为 .25(1+2+3+4+5+6)=6724.【2021年新疆预赛】若实数集合 的最大元素与最小元素之积等于该集合的所有元素之和,则{3,6,9,x}x 的值为 .【答案】94【解析】若 是最大元素,则 ,解得 ,不合题意;x 3x =18+x x =9若 是最小元素,则 ,解得 ;x 9x =18+x x =94若 既不是最大元素也不是最小元素,则 ,解得 ,不合题意;x 27=18+x x =9所以 .x =945.【2021年全国高中数学联赛A 卷一试】设集合,其中为实数.令.若的A ={1,2,m }mB ={a 2∣a ∈A },C =A ∪B C 所有元素之和为6,则的所有元素之积为 .C【答案】‒8【解析】由条件知(允许有重复)为的全部元素.1,2,4,m ,m 2C 注意到,当为实数时,,故只可能是,且m 1+2+4+m +m 2>6,1+2+4+m 2>6C ={1,2,4,m }1+2+4+m =6.于是(经检验符合题意),此时的所有元素之积为.m =‒1C 1×2×4×(‒1)=‒86.【2020高中数学联赛B 卷(第01试)】设集合,A 是X 的子集,A 的元素个数至少是2,且A X ={1,2,⋯,20}的所有元素可排成连续的正整数,则这样的集合A 的个数为 .【答案】190【解析】每个满足条件的集合A 可由其最小元素a 与最大元素b 唯一确定,其中a ,b ∈X ,a <b ,这样的的(a,b)取法共有种,所以这样的集合A 的个数为190.C 220=1907.【2020年福建预赛】已知[x]表示不超过实数的最大整数,集合,x A ={x∣x 2‒x ‒6<0}B =则.{x∣2x 2‒3[x]‒5=0}.A ∩B =【答案】{‒1,222}【解析】易知, .若 ,则A =(‒2,3)x ∈A [x]=‒2,‒1,0,1,2.当 时,若 ,则 ,[x]=‒2x ∈B 2x 2+6‒5=0 不存在.x 当 时,若 ,则[x]=‒1x ∈B 2x 2+3‒5=0⇒x =±1.经检验, 不符合要求, 符合要求.x =1x =‒1当 时,若 ,则 ,[x]=0x ∈B 2x 2‒0‒5=0⇒x =±102均不符合要求.当 时,若 ,则 ,[x]=1x ∈B 2x 2‒3‒5=0⇒x =±2均不符合要求.当 时,若 ,则 .[x]=2x ∈B 2x 2‒6‒5=0⇒x =±222经检验, 符合要求, 不符合要求.故 .x =222x =‒222A ∩B ={‒1,222}8.【2020年甘肃预赛】设集合: , 若 ,则 的取值范A ={(x,y)∣log a x +log a y >0}B =|(x,y)|x +y <a}.A ∩B =∅a 围是.【答案】(1,2]【解析】若 ,则 a >1A ={(x,y)∣xy >1}.而当 与 相切时,x +y =a xy =1.x +1x =a⇒x 2‒ax +1=0⇒a =2于是,当 时, .若 ,则 ,此时, .a ∈(1,2]A ∩B =∅a <1A ={(x,y)∣xy <1}A ∩B ≠∅综上, .a ∈(1,2]9.【2020年广西预赛】已知集合 ,对 的任意非空子集 为集合 中最大数与最小数的M ={1,2,⋯,2020}M A,λA A 和.则所有这样的 的算术平均数为 .λA 【答案】2021【解析】考虑 的子集 若 ,则 若 ,设 中最大数为 ,最小M A '={2021‒x∣x ∈A}.A '=A λA'=λA =2021.A '≠A A a 数为 ,则 '中最大数为 ,最小数为2021- ,此时,b A 2021‒b a λA'+λA2=2021.故所求算术平均数为2021.10.【2020年广西预赛】设集合 ,且对集合 中的任意元素 则集合 的元索M ={1,2,⋯,2020},A ⊆M A x,4x ∉A.A 个数的最大值为 .【答案】1616【解析】首先,构造404个集合 ,其中,{k,4k}k =1;8,9,⋯,31;127,128,⋯,505.其次,集合 中的数除前述已提到的808个外,剩下的每个数 单独构成一个集合 ,有1212个.M x {x}共 个集合.404+1212=1616据抽臣原理,知若集合 中有多于1616个数,则必有两个数取自上述同一集合.从而,存在 ,矛盾.A x,4x ∈A 故集合 中至多有1616个数,满足条件的一个集合是A .A ={2,3,⋯,7,32;33,⋯,126,506,507,⋯,2020}11.【2020年吉林预赛】已知集合 若 ,则 的取值范围是 .A ={x∣log a (ax ‒1)>1}.2∈A a 【答案】(12,1)∪(1,+∞).【解析】由题意,得log 则 或a (2a ‒1)>1.{0<a <1,0<2a ‒1<a {a >1,2a ‒1>a.解得 或12<a <1a >1.12.【2020年浙江预赛】一个正整数若能写成形式,就称其为“好数".则集合20a +8b +27c (a ,b ,c ∈N) 中好数的个数为.{1,2,⋯,200}【答案】153【解析】先考虑 20a +8b =4(5a +2b). 可取5a +2b 2,4,5,6,⋯,50.则 可取 .20a +8b 8,16,20,24,⋯,200故当 时共有48个非零好数 型);c =0(4k 时共有42个好数 型),此时好数为 ;c =1(4k +327,35,43,47,⋯,199 时共有35个好数 型),此时好数为 c =2(4k +254,62,70,74,⋯,198; 时共有28个好数 型),此时好数为c =3(4k +181,89,97,101,⋯,197.综上,共有 个好数.48+42+35+28=15313.【2020年新疆预赛】已知集合 ,对于集合 的每一个非空子集的所有元素,计算它们A ={1,2,3,⋯,2020}A 乘积的倒数.则所有这些倒数的和为 .【答案】2020【解析】集合的 个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2020,1×2,1A 22020‒1 ,它们的倒数和为×3⋯,2019×2020,⋯,1×2×⋯×2020 1+12+…+12020+11×2+11×3+…+12019×2020+⋯+11×2×⋯×2020 .=(1+1)(1+12)⋯(1+12020)‒1=2×32×⋯×20212020‒1=202014.【2019年全国】若实数集合的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值{1,2,3,x }为.【答案】‒32【解析】由题意知,x 为负值,.∴3‒x =1+2+3+x⇒x =‒3215.【2019年江苏预赛】已知集合,,且,则实数A ={x|x 2‒3x +2≥0}B ={x|x ‒a ≥1}A ∩B ={x|x ≥3}a 的值是 .【答案】2【解析】,.又,故,解得.A ={x|x ≥2或x ≤1}B ={x|x ≥a +1}A ∩B ={x|x ≥3}a +1=3a =216.【2019年江西预赛】将集合中每两个互异的数作乘积,所有这种乘积的和为 .{1,2,⋯,19}【答案】16815【解析】所求的和为12[(1+2+⋯+19)2‒(12+22+⋯+192)]=12[36100‒2470]=1681517.【2019年新疆预赛】已知集合,,,则是集合的子集但U ={1,2,3,4,5,6,7,8}A ={1,2,3,4,5}B ={4,5,6,7,8}U 不是集合的子集,也不是集合B 的子集的集合个数为 .A B 【答案】196【解析】解法一:因为,且,所以满足题意的集合所含的元素至少在中取一个A ∪B =U A ∩B ={4,5}{1,2,3}且至少在中取一个,集合中的元素可取或不取,于是满足题意的集合共有{6,7,8}{4,5}(23‒1)(23‒1)×22个.=196解法二:集合的子集个数为,其中是集合或集合的子集个数为.所以满足条件的集合个数为U 28A B 25+25‒22个.28‒(25+25‒22)=19618.【2019年浙江预赛】已知集合为正整数,若集合中所有元素之和为,A ={k +1,k +2,⋯,k +n },k,n A 2019则当取最大值时,集合A =.n 【答案】A ={334,335,336,337,338,339}【解析】由已知.2k +n +12⋅n =3×673当时,得到;n =2m (2k +2m +1)m =3×673⇒m =3,n =6,k =333当时,得到.n =2m +1(k +m +1)(2m +1)=3×673⇒m =1,n =3所以的最大值为,此时集合.n 6A ={334,335,336,337,338,339}19.【2019年重庆预赛】设为三元集合(三个不同实数组成的集合),集合,若A B ={x +y|x,y ∈A, x ≠y},则集合________.B ={log 26, log 210, log 215}A =【答案】{1, log 23, log 25}【解析】设,其中A ={log 2a, log 2b, log 2c}0<a <b <c.则解得,从而。
2019全国高中数学联赛一试和二试真题(含赛制介绍)
2019年数学联赛
数学联赛由全国高中数学联赛组委会统一命题,分一试和二试。
一试考试时间为8:00—9:20,共80分钟,包括8道填空题(每题8分)和3道解答题(分别为16分、20分、20分),满分120分。
二试(也称加试)考试时间为9:40—12:30,共170分钟,包括4道解答题,涉及平面几何、代数、数论、组合四个方面。
前两题每题40分,后两题每题50分,满分180分。
(部分地区一试二试一起考)。
参加全国高中数学联赛的学生可以自愿选择是否参加“全国高中数学联赛加试”;有意获得赛区一等奖和有意参加全国中学生数学冬令营的学生必须参加联赛一试及联赛二试(加试),并以两试的总分作为确定赛区一等奖、冬令营营员的标准。
数学联赛试题依然分AB卷两套试卷,浙江、江苏、河北、湖南、湖北、北京、上海、广东等绝大数省份使用A卷;极少数偏远地区则使用B卷。
B卷偏重对计算能力的考察,对思维方面的考察略低。
2019年全国高中数学联赛福建赛区预赛试卷及答案
2019年全国高中数学联赛(福建省赛区)预赛暨2019年福建省高中数学竞赛试卷参考答案(考试时间:2019年5月19日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上)1.已知2()2f x x x =-,集合{}(())0A x f f x ==,则集合A 中所有元素的和为。
【答案】4【解答】方程(())0f f x =化为2(2)0f x x -=,即222(2)2(2)0x x x x ---=。
∴22(2)(22)0x x x x ---=。
解得,10x =,22x =,31x =-41x =∴{}0211A =-+,,,A 中所有元素的和为4。
2.在ABC △中,若AC =,2AB =5tan 12π=,则BC =。
【答案】【解答】5tan 12π=,得2sin()56tan 122cos()6A A πππ+=+,即5tan(tan 612A ππ+=。
∴5612A k πππ+=+,k Z ∈。
结合0A π<<,得5612A ππ+=,4A π=。
∴由余弦定理,得222222cos 222cos 24BC AC AB AC AB A π=+-⋅⋅⋅=+-⋅⋅=。
∴BC =3.函数()f x x =的值域为。
【答案】01⎡⎤+⎣⎦【解答】解法一:()f x x =。
设1sin x α-=(22ππα-≤≤),则()cos (1sin ))14f x πααα=++=++。
由22ππα-≤≤,得3444πππα-≤+≤,sin()124πα-≤+≤。
∴()f x值域为01⎡⎤⎣⎦。
解法二:()11f x '==(02x <<)。
∵012x <<+时,()0f x '>;122x +<<时,()0f x '<。
∴()f x在区间012⎡+⎢⎣⎦,上为增函数,在区间122⎡⎤+⎢⎥⎣⎦,上为减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 重庆高中数学竞赛预赛试题
第1页
淮北市第一中学高中数学竞赛备考 第2页
淮北市第一中学高中数学竞赛备考
2019 重庆高中数学竞பைடு நூலகம்预赛答案
第3页
淮北市第一中学高中数学竞赛备考 第4页
淮北市第一中学高中数学竞赛备考 第5页
淮北市第一中学高中数学竞赛备考 第6页
淮北市第一中学高中数学竞赛备考 第7页
淮北市第一中学高中数学竞赛备考 第8页
淮北市第一中学高中数学竞赛备考 第9页
淮北市第一中学高中数学竞赛备考 第 10 页
淮北市第一中学高中数学竞赛备考 第 11 页
淮北市第一中学高中数学竞赛备考 第 12 页
淮北市第一中学高中数学竞赛备考 第 13 页
淮北市第一中学高中数学竞赛备考 第 14 页