57第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系
直线与圆、圆与圆的位置关系―知识讲解提高
直线与圆相交于一点 直线与圆相切于一点 直线与圆相离于一点 直线与圆相交于两点
判断直线与圆的位置关系,可以通过比较圆心到直线的距离与圆的半径大小来实现。
圆心到直线的距离小于半径,则直线与圆相交;等于半径,则直线与圆相切;大于半径,则 直线与圆相离。
判断圆与圆的位置关系,可以通过比较两圆的圆心距与两圆半径之和或半径之差的大小来实 现。
圆心到直线的距离:利用圆心到直 线的距离判断圆与直线的关系
弦长:通过比较弦长来判断圆与圆 的位置关系
添加标题
添加标题
添加标题
添加标题
圆的半径:比较两圆的半径大小, 判断圆与圆的位置关系
切线:利用切线性质判断圆与直线 的关系
距离公式:利用两点间的距离公式求解直线与圆之间的距离 角度公式:利用三角函数或余弦定理求解直线与圆之间的夹角 代数运算:利用代数方法简化计算过程,提高解题效率
交通路线规划:利用直线与圆的位置关系,确定最佳路线。 股市分析:通过分析股票价格与均线的位置关系,判断股票走势。 地球科学:利用圆与圆的位置关系,研究地球与其他天体的相对位置。 建筑学:在建筑设计时,利用直线与圆、圆与圆的位置关系,实现美观与实用的统一。
直线与圆的位置关系在解析几何中的应用 圆与圆的位置关系在几何证明题中的应用 利用直线与圆、圆与圆的位置关系解决数学竞赛中的难题 在数学竞赛中,直线与圆、圆与圆的位置关系常作为考点和难点
特殊情况处理:针对直线与圆相切、相交等特殊情况,采用相应的方法进行求解
理解数形结合的概念,将数学问题转化为图形问题 掌握常见的数形结合方法,如坐标法、向量法等 学会利用图形直观地分析问题,找到解题思路 练习数形结合的题目,提高解题能力
掌握直线与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 掌握圆与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 熟悉不同题型的特点和解题方法,能够根据题目的具体要求选择合适的解题方法。 掌握解题技巧,如利用几何性质、数形结合等方法,提高解题效率。
2020版高考数学历史专用讲义:第九章 9.4 直线与圆、圆与圆的位置关系
§9.4 直线与圆、圆与圆的位置关系最新考纲 1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有相离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(3)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三易错自纠5.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2] B.[-22,22]C.[-2-1,2-1] D.[-22-1,22-1]答案 D解析圆C的标准方程为(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d=|2-1+m|2,若直线与圆恒有公共点,则|2-1+m|2≤2,解得-22-1≤m≤22-1,故选D.6.(2018·石家庄模拟)设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.4 2 C.8 D.8 2答案 C解析因为圆C1,C2和两坐标轴相切,且都过点(4,1),所以两圆都在第一象限内,设圆心坐标为(a,a),则|a|=(a-4)2+(a-1)2,解得a=5+22或a=5-22,可取C1(5+22,5+22),C2(5-22,5-22),故|C1C2|=(42)2+(42)2=8,故选C.7.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为__________.答案5x-12y+45=0或x-3=0解析化圆x2+y2-2x-4y+1=0为标准方程得(x-1)2+(y-2)2=4,其圆心为(1,2),∵|OA|=(3-1)2+(5-2)2=13>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x-3=0,当切线斜率存在时,可设所求切线方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心为(1,2),半径r=2,而圆心到切线的距离d=|3-2k|k2+1=2,即|3-2k|=2k2+1,∴k=512,故所求切线方程为5x-12y+45=0或x-3=0.题型一 直线与圆的位置关系命题点1 位置关系的判断例1 (2018·贵州黔东南州联考)在△ABC 中,若a sin A +b sin B -c sin C =0,则圆C :x 2+y 2=1与直线l :ax +by +c =0的位置关系是( ) A .相切 B .相交 C .相离 D .不确定答案 A解析 因为a sin A +b sin B -c sin C =0, 所以由正弦定理得a 2+b 2-c 2=0.故圆心C (0,0)到直线l :ax +by +c =0的距离d =|c |a 2+b 2=1=r ,故圆C :x 2+y 2=1与直线l :ax +by +c =0相切,故选A. 命题点2 弦长问题例2 已知直线:12x -5y =3与圆x 2+y 2-6x -8y +16=0相交于A ,B 两点,则|AB |=________. 答案 4 2解析 把圆的方程化成标准方程为(x -3)2+(y -4)2=9,所以圆心坐标为(3,4),半径r =3,所以圆心到直线12x -5y =3的距离d =|12×3-5×4-3|122+(-5)2=1,则|AB |=2r 2-d 2=4 2.命题点3 切线问题例3 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0.(2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52,∴切线方程为2x +y ±52=0.(3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 (1)判断直线与圆的位置关系的常见方法 ①几何法:利用d 与r 的关系. ②代数法:联立方程之后利用Δ判断.③点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为________. 答案 相交解析 直线2tx -y -2-2t =0恒过点(1,-2), ∵12+(-2)2-2×1+4×(-2)=-5<0, ∴点(1,-2)在圆x 2+y 2-2x +4y =0内,直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交.(2)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 答案 2 2解析 设P (3,1),圆心C (2,2),则|PC |=2,半径r =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-(2)2=2 2.(3)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________. 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.题型二 圆与圆的位置关系命题点1 位置关系的判断例4 分别求当实数k 为何值时,两圆C 1:x 2+y 2+4x -6y +12=0,C 2:x 2+y 2-2x -14y +k =0相交和相切.解 将两圆的一般方程化为标准方程,得C 1:(x +2)2+(y -3)2=1,C 2:(x -1)2+(y -7)2=50-k , 则圆C 1的圆心为C 1(-2,3),半径r 1=1; 圆C 2的圆心为C 2(1,7),半径r 2=50-k ,k <50.从而|C 1C 2|=(-2-1)2+(3-7)2=5.当|50-k -1|<5<50-k +1,即4<50-k <6,即14<k <34时,两圆相交. 当1+50-k =5,即k =34时,两圆外切;当|50-k -1|=5,即k =14时,两圆内切.所以当k =14或k =34时,两圆相切. 命题点2 公共弦问题例5 已知圆C 1:x 2+y 2-2x -6y -1=0和C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.(1)证明 由题意得,圆C 1和圆C 2一般方程化为标准方程,得(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=16,则圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2, ∴圆C 1和C 2相交.(2)解 圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0. 圆心C 2(5,6)到直线4x +3y -23=0的距离 d =|20+18-23|16+9=3,故公共弦长为216-9=27.思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察. (2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2(a >0), ∴圆心坐标为M (0,a ),半径r 1为a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.(2)圆x 2+y 2+4x -4y -1=0与圆x 2+y 2+2x -13=0相交于P ,Q 两点,则直线PQ 的方程为______________. 答案 x -2y +6=0解析 两个圆的方程两端相减,可得2x -4y +12=0. 即x -2y +6=0.1.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值范围是( ) A .(-∞,1) B .(121,+∞) C .[1,121] D .(1,121)答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为 (x +3)2+(y -4)2=36. 圆心距为d =(0+3)2+(0-4)2=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.2.直线x -3y +3=0与圆(x -1)2+(y -3)2=10相交所得弦长为( ) A.30 B.532 C .4 2 D .3 3答案 A解析 圆(x -1)2+(y -3)2=10的圆心坐标为(1,3),半径r =10,圆心(1,3)到直线x -3y +3=0的距离d =|1-9+3|10=510,故弦|AB |=210-2510=30,故选A.3.已知直线l :x cos α+y sin α=2(α∈R ),圆C :x 2+y 2+2x cos θ+2y sin θ=0(θ∈R ),则直线l 与圆C 的位置关系是( )A .相交B .相切C .相离D .与α,θ有关答案 D解析 圆C :x 2+y 2+2x cos θ+2y sin θ=0(θ∈R ),即(x +cos θ)2+(y +sin θ)2=1(θ∈R ),圆心C 的坐标为(-cos θ,-sin θ),半径为r =1.圆心C 到直线l :x cos α+y sin α=2(α∈R )的距离d =|-cos θcos α-sin θsin α-2|cos 2α+sin 2α=2+cos(θ-α).当cos(θ-α)=-1时,d =r ,直线l 和圆C 相切; 当-1<cos(θ-α)≤1时,d >r ,直线l 和圆C 相离,故选D.4.(2018·福州模拟)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12C .y =-32D .y =-14答案 B解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.5.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.由题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).6.(2018·东北三省联考)直线x +2y +m =0(m >0)与⊙O :x 2+y 2=5交于A ,B 两点,若|OA →+OB →|>2|AB →|,则m 的取值范围是( )A .(5,25)B .(25,5)C .(5,5)D .(2,5)答案 B解析 ∵直线x +2y +m =0与⊙O :x 2+y 2=5交于相异两点A ,B ,∴O 点到直线x +2y +m =0的距离d < 5.记OA →+OB →=OD →,则四边形OADB 是菱形,且|OD →|=2d . ∵|OA →+OB →|>2|AB →|,∴2d >2|AB →|, 即d >|AB →|=25-d 2,解得d >2.又d <5,∴2<d <5,即2<|m |5< 5. 又m >0,解得m ∈(25,5).7.(2016·全国Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________. 答案 4解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -3y +6=0,x 2+y 2=12,得y 2-33y +6=0,解得x 1=-3,y 1=3;x 2=0,y 2=23, ∴A (-3,3),B (0,23).过A ,B 作l 的垂线方程分别为 y -3=-3(x +3),y -23=-3x ,令y =0, 则x C =-2,x D =2,∴|CD |=2-(-2)=4.8.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|P A |=|PB |= 3.∴△POA 为直角三角形, 其中|OA |=1,|AP |=3,则|OP |=2,∴∠OP A =30°,∴∠APB =60°. ∴P A →·PB →=|P A →||PB →|·cos ∠APB =3×3×cos 60°=32.9.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2,整理得3k 2-4k ≤0,解得0≤k ≤43.故k 的最大值是43.10.(2018·成都模拟)已知圆C :(x -3)2+(y -4)2=25,圆C 上的点到直线l :3x +4y +m =0(m <0)的最短距离为1,若点N (a ,b )在直线l 上位于第一象限的部分,则1a +1b 的最小值为____________. 答案7+4355解析 圆C :(x -3)2+(y -4)2=25,圆心坐标(3,4),半径为5,因为圆C 上的点到直线l :3x +4y +m =0(m <0)的最短距离为1,则直线l 与圆C 相离,设圆心到直线的距离为d ,则d -r =1,可得|9+16+m |9+16=6,解得m =-55或m =5(舍去).因为点N (a ,b )在直线l 上位于第一象限的部分, 所以3a +4b =55,a >0,b >0. 则1a +1b =155⎝⎛⎭⎫1a +1b (3a +4b )=155⎝⎛⎭⎫7+4b a +3a b ≥155⎝⎛⎭⎫7+24b a ·3a b =7+4355, 当且仅当a =-55+11033,b =55-5532时取等号.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1, C 到l 的距离d =2=r ,满足条件. 当l 的斜率存在时,设斜率为k , 得l 的方程为y -3=k (x -1), 即kx -y +3-k =0, 则|-k -2+3-k |1+k 2=2,解得k =-34.∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0. (2)设P (x ,y ),则|PM |2=|PC |2-|MC |2 =(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2, 整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围. 解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0). 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1. (2)∵k OA =2,∴可设l 的方程为y =2x +m ,即2x -y +m =0.又BC =OA =22+42=2 5.由题意,圆M 的圆心M (6,7)到直线l 的距离为d = 52-⎝⎛⎭⎫BC 22=25-5=2 5.即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15.∴直线l 的方程为y =2x +5或y =2x -15.(3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又∵P ,Q 为圆M 上的两点,∴PQ ≤2r =10. ∴TA =PQ ≤10,即(t -2)2+42≤10,解得2-221≤t ≤2+221.故所求t 的取值范围为[2-221,2+221].13.(2018·贵阳第一中学月考)已知直线l :(m +2)x +(m -1)y +4-4m =0上总存在点M ,使得过M 点作的圆C :x 2+y 2+2x -4y +3=0的两条切线互相垂直,则实数m 的取值范围是( )A .m ≤1或m ≥2B .2≤m ≤8C .-2≤m ≤10D .m ≤-2或m ≥8答案 C 解析 如图,设切点分别为A ,B .连接AC ,BC ,MC ,由∠AMB =∠MAC =∠MBC =90°及MA =MB 知,四边形MACB 为正方形,故|MC |=2+2=2,若直线l 上总存在点M 使得过点M 的两条切线互相垂直,只需圆心(-1,2)到直线l 的距离d =|-m -2+2m -2+4-4m |(m +2)2+(m -1)2≤2,即m 2-8m-20≤0,∴-2≤m ≤10,故选C.14.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________. 答案 4解析 ⊙O 1与⊙O 在A 处的切线互相垂直,如图,可知两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5. 又A ,B 关于OO 1所在直线对称, ∴AB 长为Rt △OAO 1斜边上的高的2倍, ∴|AB |=2×5×255=4.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线P A ,PB ,A ,B 为切点,则直线AB 过定点( ) A.⎝⎛⎭⎫49,89 B.⎝⎛⎭⎫29,49 C .(1,2) D .(9,0)答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为P A ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥P A ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝⎛⎭⎪⎫x -9-2m 22+⎝⎛⎭⎫y -m 22=(9-2m )2+m24, ① 又x 2+y 2=9, ②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0,即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知抛物线C :y 2=4x 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点A ,B ,以线段AB 为直径的圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝⎛⎭⎫-32,t ,求实数t 的取值范围.解 由题意可得直线AB 的方程为x =y +1,与y 2=4x 联立消去x ,可得y 2-4y -4=0,显然Δ=16+16>0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4,y 1y 2=-4,设E (x E ,y E ),则y E =y 1+y 22=2,x E =y E +1=3,又|AB |=x 1+x 2+2=y 1+1+y 2+1+2=8,所以圆E 是以(3,2)为圆心,4为半径的圆,所以点D 恒在圆E 外.圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝⎛⎭⎫-32,t ,即圆E 上存在点P ,Q ,使得DP ⊥DQ ,设过D 点的两直线分别切圆E 于P ′,Q ′点,要满足题意,则∠P ′DQ ′≥π2,所以|EP ′||DE |=4⎝⎛⎭⎫3+322+()2-t 2≥22,整理得t 2-4t -314≤0,解得2-472≤t ≤2+472,故实数t 的取值范围为⎣⎡⎦⎤2-472,2+472.。
直线与圆的位置关系 课件
则Δ=(2k2+2k-4)2-4(1+k2)(k2+2k+4)=0, 解得 8k2+6k=0,即 k=0 或 k=-34, 因此,所求直线 l 的方程为 y=4 或 3x+4y-13=0.
类型 3 弦长问题 [典例 3] 设直线 y=x+2a 与圆 C:x2+y2-2ay-2 =0 相交于 A,B 两点,若|AB|=2 3,则圆 C 的面积为 ________.
解析:由圆 C:x2+y2-2ay-2=0 可得 x2+(y-a)2= |-a+2a|
a2+2,所以圆心 C(0,a),由题意可知 2 = a2+2-3, 解得 a2=2,所以圆 C 的面积为π(a2+2)=4π.
答案:4π
归纳升华 1.求弦长常用的三种方法: (1)利用圆的半径 r,圆心到直线的距离 d,弦长 l 之 间的关系 r2=d2+2l 2求弦长.
0)为圆心,以 3为半径长的圆.
设xy=k,即 y=kx. 当直线 y=kx 与圆相切时,斜率 k 取最大值和最小值.
|2k-0|
此时
= 3,
k2+1
解得 k=± 3. 故xy的最大值为 3,最小值为- 3.
(2)设 y-x=b,即 y=x+b,当直线 y=x+b 与圆相 切时,纵截距 b 取得最大值和最小值.
法二 (几何法)圆 x2+y2=100 的圆心为(0,0),半径
r=10, 则圆心到直线的距离 d= 3|2a+| 42=|a5|, ①当直线和圆相交时,d<r,即|a5|<10,-50<a<50; ②当直线和圆相切时,d=r,即|a5|=10,a=50 或 a
=-50;
③当直线和圆相离时,d>r, 即|a5|>10,a<-50 或 a>50.
2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版
第四节
直线与圆、圆与圆的位置关系
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.能根据给定直线、圆的方程,
判断直线与圆、圆与圆的位置 1.直线与圆的位置关系 直观想象
关系.
2.圆的切线与弦长问题 数学运算
2.能用直线和圆的方程解决一
3.圆与圆的位置关系
些简单的数学问题与实际问题.
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线的方程可由①-②得到,即
(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方
典例突破
例1.(1)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法错误的
是(
)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
(2)(2021北京人大附中模拟)已知圆C过点(-1,0)和(1,0),且与直线y=x-1只有
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
圆圆的位置关系知识点总结
圆圆的位置关系知识点总结圆的位置关系是几何学中一个重要的概念,涉及到圆与直线、圆与圆之间的相对位置关系。
下面是关于圆的位置关系的知识点总结。
一、圆与直线的位置关系:1.外切:当直线与圆相切于圆的一点时,我们称这条直线与圆外切。
2.内切:当直线与圆只在圆的内部与圆相切时,我们称这条直线与圆内切。
3.交于两点:当直线与圆相交并有两个交点时,我们称这条直线与圆相交于两点。
4.不相交:当直线与圆没有交点时,我们称这条直线与圆不相交。
二、圆与圆的位置关系:1.相切:当两个圆相切于圆的一点时,我们称这两个圆相切。
2.相交:当两个圆有交点时,我们称这两个圆相交。
3.重合:当两个圆的圆心和半径完全相同时,我们称这两个圆重合。
4.内含:当一个圆完全在另一个圆内部时,我们称这个圆在另一个圆内含。
5.相离:当两个圆没有交点,且一个圆的外部不与另一个圆的内部相交时,我们称这两个圆相离。
三、判别圆与直线的位置关系的方法:1.利用距离:计算直线上一点到圆心的距离,根据距离与圆的半径的大小关系来判断圆与直线的位置关系。
-当直线上一点到圆心的距离等于圆的半径时,这条直线与圆相切。
-当直线上一点到圆心的距离大于圆的半径时,这条直线与圆相交。
-当直线上一点到圆心的距离小于圆的半径时,这条直线与圆不相交。
2.利用方程:通过圆的方程和直线的方程来求解相交的点,根据求解得到的交点的数量来判断圆与直线的位置关系。
四、判别圆与圆的位置关系的方法:1.利用距离:计算两个圆心之间的距离,根据距离与两个圆的半径之和、之差的大小关系来判断圆与圆的位置关系。
-当两个圆心之间的距离等于两个圆的半径之和时,这两个圆相交。
-当两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。
-当两个圆心之间的距离等于两个圆的半径之差的绝对值时,一个圆完全包含在另一个圆内即一个圆内含于另一个圆。
-当两个圆心之间的距离大于两个圆的半径之差的绝对值,但小于两个圆的半径之和时这两个圆相交于两个交点。
第9章 第4课时 直线与圆、圆与圆的位置关系
题型一 • 例1
直线与圆的位置关系
m为何值时,直线2x-y+m=0与圆x2+y2=5.
• (1)无公共点; • (2)截得的弦长为2; • (3)交点处两条半径互相垂直.
• 【思路】
判断;
(1)无公共点即相离,用圆心到直线的距离d>r
• (2)充分利用直角三角形; • (3)两半径互相垂直,形成等腰直角三角形.
成直角三角形表示出切线长,可以设出点的坐标,将其转
化为函数的最值求解;也可根据平面几何的知识将其转化
为圆心到直线上的点的距离的最小值,直接求解.
【解析】 方法一:圆 C 的方程化为(x+2)2+(y+2)2= 1,圆心为 C(-2,-2),半径 r=1. 设直线 l 上任意一点 P(x,y),则由 x+y=1,得 y=1- x. 则|PC|= x+22+y+22 = x+22+1-x+22 = 2x2-2x+13.
• 3.两圆x2+y2-2y=0与x2+y2-4=0的位置关系是( • A.相交 • C.外切 B.内切 D.内含
)
• 答案
• 解析
B
两圆方程可化为x2+(y-1)2=1,x2+y2=4.两圆圆
心分别为O1(0,1),O2(0,0),半径分别为r1=1,r2=2. • ∵|O1O2|=1=r2-r1.
方法二:圆 C 的方程化为(x+2)2+(y+2)2=1,圆心为 C(-2,-2),半径 r=1. 设过点 P 的切线与圆相切于点 Q,则 CQ⊥PQ. 故|PQ|= |PC|2-r2= |PC|2-1. 故当|PC|取得最小值时,切线长最小.
显然,|PC|的最小值为圆心 C 到直线 l 的距离 |-2-2-1| 5 2 d= = 2 ,所以切线长的最小值为 2 2 1 +1 5 22 46 2 -1= 2 .
直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习
≤ + ,解得−
≤≤
.
−−
+
=
+
≤ ,即
考点二 直线与圆位置关系的应用
角度1 圆的切线问题(链接高考)
例2 (2023·新课标Ⅰ卷)过点 , − 与圆 + − − = 相切的两条直
(2)过圆 + = 外一点 , 作圆的两条切线,则两切点所在
直线方程为 + = .
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线 + + = 与圆 + + + + = 交点的圆系方
(其中不含圆 ,所以注意检验 是否满足题意,以防丢解).
1.若经过点 −, − 的直线与圆 + = 相切,则该直线在轴上的截
距为(
A.
)
√
C.−
B.5
解析:选C.因为 −
+ −
D.−
= ,所以点在圆上,
所以切线方程为− − = ,令 = 得 =
+ − − = 相交.
方法三:圆的方程可化为 −
+ = ,
所以圆的圆心为 , ,半径为3.
圆心到直线 − + − = 的距离为
+−
+
=
+
≤ < ,所以直线与圆相交.故选C.
平面解析几何直线与圆、圆与圆的位置关系课件
高考要求
该知识点是高中数学重要 内容,也是高考的必考考 点之一。
思维培养
通过学习该知识点,可以 培养学生的空间想象能力 、逻辑推理能力和解决问 题的能力。
学习目标与要求
知识与技能
掌握直线与圆、圆与圆的 位置关系的定义、性质和 判定方法,能熟练求解相 关问题。
过程与方法
经历从具体到抽象、从特 殊到一般、从感性到理性 的认知过程,体会数形结 合的思想方法。
预习要求
学生需要提前预习椭圆、双曲线和抛物线的 定义、性质及其图像,为下节课的学习做好 准备。同时,复习本节课所学内容,加深对
直线与圆、圆与圆位置关系的理解。
THANKS
谢谢您的观看
情感态度价值观
通过主动探究和合作学习 ,培养对数学的兴趣和好 奇心,形成严谨求实的科 学态度。
知识点概述
直线与圆的位置关系
包括相离、相切和相交三种情况,可 以通过比较圆心到直线的距离与圆的 半径来判定。
圆与圆的位置关系
包括外离、外切、相交、内切和内含 五种情况,可以通过比较两圆圆心距 与两圆半径之和或差来判定。
圆的标准方程
$(x-a)^2+(y-b)^2=r^2$,圆心 $(a,b)$,半径$r$。
圆的性质
圆上任一点到圆心的距离等于半 径;过圆心的任意弦为直径,其 两端点与圆上任意一点构成的角 为直角。
两圆位置关系判断
圆心距
两圆圆心之间的距离,记为$d$。
两圆位置关系
通过比较圆心距$d$与两圆半径之和$R+r$、之差$|R-r|$来判断。
03
详细讲解如何求解直线与圆、圆与圆的交点坐标,以及交点个
数的判断方法。
分组讨论与分享
分组讨论
平面解析几何直线与圆的位置关系
平面解析几何直线与圆的位置关系在平面解析几何中,直线和圆是两个基本的几何概念。
它们之间存在着不同的位置关系,这些位置关系在几何学中有着重要的应用。
本文将介绍直线与圆的七种位置关系,并探讨其几何特征和判别方法。
一、直线与圆相离直线与圆相离是指直线与圆不相交,且它们的最短距离大于圆的半径。
这种情况下,直线上的每个点到圆的距离都大于圆的半径。
图1是直线与圆相离的示意图。
判别方法:通过求直线到圆心的距离来判断,若距离大于半径,则直线与圆相离。
二、直线与圆相切直线与圆相切是指直线与圆有且只有一个公共的切点。
这个切点既在直线上,也在圆上。
图2是直线与圆相切的示意图。
判别方法:通过求直线到圆心的距离来判断,若距离等于半径,则直线与圆相切。
三、直线穿过圆直线穿过圆是指直线与圆有两个交点。
这种情况下,直线分为两部分,一部分在圆内,一部分在圆外。
图3是直线穿过圆的示意图。
判别方法:通过求直线到圆心的距离来判断,若距离小于半径,则直线穿过圆。
四、直线与圆相交但不穿过圆直线与圆相交但不穿过圆是指直线与圆有两个交点,但直线的一部分在圆的外部,另一部分在圆的内部。
图4是直线与圆相交但不穿过圆的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线与圆相交但距离大于半径,则直线与圆相交但不穿过圆。
五、直线与圆内切直线与圆内切是指直线与圆有且只有一个公共切点,并且这个切点在直线的一侧。
图5是直线与圆内切的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离小于半径,则直线与圆内切。
六、直线与圆外切直线与圆外切是指直线与圆有且只有一个公共切点,并且这个切点在直线的另一侧。
图6是直线与圆外切的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离大于半径,则直线与圆外切。
七、直线在圆内直线在圆内是指直线的所有点都在圆的内部。
图7是直线在圆内的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线到圆心的距离小于圆的半径,则直线在圆内。
平面几何中的圆与直线的位置关系
平面几何中的圆与直线的位置关系在平面几何中,圆与直线是两种常见的几何元素,它们之间的位置关系是几何学中的一个重要研究内容。
本文将讨论圆与直线在平面上的不同位置关系,以及对应的性质和定理。
一、圆与直线的位置关系之相离当一个直线与一个圆没有任何交点时,我们称这两者为相离的关系。
具体而言,相离有以下三种情况:1. 直线在圆的外部:当直线的位置离开圆,且没有与圆相交时,我们说直线在圆的外部。
在这种情况下,直线与圆之间的最短距离等于两者的半径之差。
2. 直线与圆相切:当直线恰好与圆相切于一点时,我们称这两者为相切的关系。
在这种情况下,直线与圆的切点即为其唯一的交点。
此时,直线与圆的切点到圆心的距离等于圆的半径。
3. 圆在直线的外部:当圆完全在直线的一侧,且没有与直线相交时,我们说圆在直线的外部。
此时,直线与圆之间的最短距离等于两者的半径之和。
二、圆与直线的位置关系之相交当一个直线与一个圆相交于两个不同的交点时,我们称这两者为相交的关系。
具体而言,相交有以下两种情况:1. 直线通过圆:当一条直线正好经过圆心时,这条直线被称为直线通过圆。
在这种情况下,直线与圆有无数个交点,且直线与圆的切点到圆心的距离等于圆的半径。
2. 直线与圆相交于两点:当直线与圆相交于两个不同的交点时,我们称这两者为相交于两点的关系。
在这种情况下,直线与圆的交点满足以下性质:- 直线与圆的交点到圆心的距离等于圆的半径。
- 直线与圆的交点所在的弦垂直于直线,并且两者的交点处于弦的中垂线上。
三、圆与直线的位置关系之相切当一个直线与一个圆仅在一点处相切时,我们称这两者为相切的关系。
相切有以下两种情况:1. 直线外切圆:当直线与圆只在圆的外切点相切时,我们说直线外切圆。
在这种情况下,直线与圆的切点到圆心的距离等于圆的半径。
2. 直线内切圆:当直线与圆在圆的内切点相切时,我们说直线内切圆。
在这种情况下,直线与圆的切点到圆心的距离等于圆的半径。
四、圆与直线的位置关系之包含当一个圆完全包含在直线的内部时,我们称圆被直线包含。
直线与圆及圆与圆的位置关系
直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。
三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。
法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。
法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。
法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。
分析:作出图形后进⾏观察,以找到解决问题的思路。
分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。
例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。
解:因P点在圆上,故可求切线L的⽅程为x+2y=5。
2018卓越学案高考理科数学新课标一轮复习课件:第9章 平面解析几何 第4讲 精品
1.(必修 2 P132A 组 T1 改编)直线 4x-3y+10=0 与圆 x2+y2=r2(r>0)
相切,则 r=( B )
A.1
B.2
C.5
D.10
解析:由题意得 r= 42+10-32=2.故选 B.
2.(必修 2 P132 练习 T1 改编)若直线 x-y+1=0 与圆(x-a)2+y2 =2 有公共点,则实数 a 的取值范围是( C )
(t-3)≥0,解得-1≤t≤4,且 t≠0,
故 t=41k++k32的最大值为 4,此时|AB|最小为 2 7.
圆与圆的位置关系
(1)[圆与圆相切]若圆 C1:x2+y2=1 与圆 C2:x2+y2-6x-
8y+m=0 外切,则 m=( C )
A.21
B.19
C.9
D.-11
(2)[圆与圆相交]已知圆 O1:(x-a)2+(y-b)2=4,O2:(x-a-1)2
直线与圆的位置关系
(1)[直线与圆相离]已知 M 是直线 3x+4y-12=0 上一点, 过点 M 作圆 x2+y2=1 的两切线,切点分别为 A,B,则四边形
119 OAMB 面积的最小值为____5____. (2)[直线与圆相切]已知圆 C:x2+y2+2x-4y+1=0,O 为坐标原 点,动点 P 在圆 C 外,过 P 作圆 C 的切线,设切点为 M.若点 P 运动到(1,3)处,则切线 l 的方程为__x_=__1_或__3_x_+__4_y_-__1_5_=__0___.
所以 x1+x2=411++kk2 ,x1x2=1+7k2. O→M·O→N=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=4k1+1+k2k+8. 由题设可得4k1+1+k2k+8=12,解得 k=1,所以直线 l 的方程为 y=x+ 1. 故圆心 C 在直线 l 上, 所以|MN|=2.
拔高讲义——第九章平面解析几何之第4讲:直线与圆、圆与圆的位置关系(教师版)
第4讲 直线与圆、圆与圆的位置关系最新考纲 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.知 识 梳 理1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.2.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.(×) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(4)从两相交圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(√)(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.(√)2.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b2<1,故直线与圆O 相交.答案 B3.(2015·全国Ⅱ卷)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( ) A.2 6B.8C.4 6D.10解析 由已知,得AB→=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB→⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C. 答案 C4.(2015·湖南卷)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =________.解析 如图,过O 点作OD ⊥AB 于D 点,在Rt △DOB 中, ∠DOB =60°,∴∠DBO =30°, 又|OD |=|3×0-4×0+5|5=1,∴r =2|OD |=2. 答案 25.(人教A 必修2P133A9改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2. 答案 22考点一 直线与圆的位置关系【例1】 已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.法一 (1)证明 由⎩⎨⎧y =kx +1,(x -1)2+(y +1)2=12, 消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(2-4k )2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1),B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长|AB |=1+k 2|x 1-x 2| =28-4k +11k 21+k 2=211-4k +31+k 2, 令t =4k +31+k 2,则tk 2-4k +(t -3)=0, 当t =0时,k =-34,当t ≠0时,因为k ∈R , 所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0,故t =4k +31+k 2的最大值为4,此时|AB |最小为27. 则直线l 被圆C 截得的最短弦长为27.法二 (1)证明 因为不论k 为何实数,直线l 总过点P (0,1),而|PC |=5<23=R ,所以点P (0,1)在圆C 的内部,即不论k 为何实数,直线l 总经过圆C 内部的定点P .所以不论k 为何实数,直线l 和圆C 总有两个交点.(2)解 由平面几何知识知过圆内定点P (0,1)的弦,只有与PC (C 为圆心)垂直时才最短,而此时点P (0,1)为弦AB 的中点,由勾股定理,知|AB |=212-5=27, 即直线l 被圆C 截得的最短弦长为27.规律方法 判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.【训练1】 (1)“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)直线y =-33x +m 与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是( ) A.(3,2)B.(3,3)C.⎝ ⎛⎭⎪⎫33,233 D.⎝⎛⎭⎪⎫1,233 解析 (1)若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.但当a =3时,直线y =x +4与圆(x -a )2+(y -3)2=8一定相切,故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件.(2)当直线经过点(0,1)时,直线与圆有两个不同的交点,此时m =1;当直线与圆相切时有圆心到直线的距离d =|m |1+⎝ ⎛⎭⎪⎫332=1,解得m =233(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,则1<m <233. 答案 (1)A (2)D考点二 圆的切线、弦长问题 [微题型1] 有关弦长问题【例2-1】 (1)在平面直角坐标系xOy 中,求直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长.(2)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. ①求k 的取值范围;②若OM→·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)易知圆心坐标为(2,-1),r =2,所以圆心到直线的距离为d =|2+2×(-1)-3|5=355,∴弦长l =2r 2-d 2=2555.(2)①由题设,可知直线l 的方程为y =kx +1,因为l 与C 交于两点,所以|2k -3+1|1+k 2<1.解得4-73<k <4+73.所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73.②设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.规律方法 求直线被圆所截得的弦长时,通常考虑由弦心距垂线段作为直角边的直角三角形,利用勾股定理来解决问题. [微题型2] 有关切线问题【例2-2】 (1)(2015·山东卷)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( ) A.-53或-35 B.-32或-23 C.-54或-45D.-43或-34(2)(2014·江西卷)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C.(6-25)πD.54π解析 (1)由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.(2)由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小,又圆C 与直线2x +y -4=0相切,所以由平面几何知识,当OC 所在直线与l 垂直时,|OD |最小,即圆C 的直径最小,则|OD |=|2×0+0-4|5=45,所以圆的半径为25,圆C 的面积的最小值为S =πr 2=45π.答案 (1)D (2)A规律方法 求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.【训练2】 已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4. (1)求过M 点的圆的切线方程;(2)若直线ax -y +4=0与圆相切,求a 的值;(3)若直线ax -y +4=0与圆相交于A ,B 两点,且弦AB 的长为23,求a 的值. 解 (1)圆心C (1,2),半径r =2, 当直线的斜率不存在时,方程为x =3.由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知, 此时,直线与圆相切.当直线的斜率存在时,设方程为y -1=k (x -3), 即kx -y +1-3k =0.由题意知|k -2+1-3k |k 2+1=2,解得k =34. ∴圆的切线方程为y -1=34(x -3),即3x -4y -5=0. 综上过M 点的圆的切线方程为x =3或3x -4y -5=0. (2)由题意得|a -2+4|a 2+1=2,解得a =0或a =43. (3)∵圆心到直线ax -y +4=0的距离为|a +2|a 2+1, 又l =23,r =2,∴⎝ ⎛⎭⎪⎫|a +2|a 2+12+⎝⎛⎭⎪⎫2322=4,解得a =-34. 考点三 圆与圆的位置关系【例3】 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.相离(2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________.解析 (1)两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1, ①x 2+y 2+2x +2y +1=0, ②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小.∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.答案 (1)B (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45规律方法 判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.【训练3】 如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解 (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为|MA |=2|MO |, 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1,即1≤a 2+(2a -3)2≤3.整理得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125.[思想方法]1.解决有关弦长问题的两种方法:(1)几何法,直线被圆截得的半弦长l 2,弦心距d 和圆的半径r 构成直角三角形,即r 2=⎝ ⎛⎭⎪⎫l 22+d 2;(2)代数法,联立直线方程和圆的方程,消元转化为关于x 的一元二次方程,由根与系数的关系即可求得弦长|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2或|AB |=1+1k 2|y 1-y 2|=1+1k 2(y 1+y 2)2-4y 1y 2.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形. [易错防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.基础巩固题组(建议用时:40分钟)一、选择题1.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=2-a,圆心到直线x+y+2=0的距离d=|-1+1+2|2=2,故r2-d2=4,即2-a-2=4,所以a=-4,故选B.答案 B2.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11解析圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),半径r2=25-m,从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9,故选C.答案 C3.(2016·南昌模拟)已知过定点P(2,0)的直线l与曲线y=2-x2相交于A,B两点,O为坐标原点,当S△AOB=1时,直线l的倾斜角为()A.150°B.135°C.120°D.不存在解析由于S△AOB=12×2×2sin ∠AOB=sin ∠AOB=1,∴∠AOB=π2,∴点O到直线l的距离OM为1,而OP=2,OM=1,在直角△OMP中∠OPM=30°,∴直线l的倾斜角为150°,故选A.答案 A4.(2016·青岛一模)过点P(1,3)作圆O:x2+y2=1的两条切线,切点分别为A和B,则弦长|AB|=()A. 3B.2C. 2D.4解析 如图所示,∵P A ,PB 分别为圆O :x 2+y 2=1的切线,∴AB ⊥OP .∵P (1,3),O (0,0),∴|OP |=1+3=2.又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|OA |sin ∠AOP = 3.答案 A5.(2015·重庆卷)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A.2B.42C.6D.210解析 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1).∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36.∴|AB |=6.答案 C二、填空题6.(2016·唐山模拟)过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA→·CB →=________.解析 法一 由已知得:圆心C (0,2),半径r =5,△ABC 是直角三角形,|AC |=(3-0)2+(1-2)2=10,|BC |=5,∴cos ∠ACB =BC AC =510, ∴CA→·CB →=|CA →|·|CB →|·cos ∠ACB =5.法二 CA →·CB →=(CB →+BA →)·CB →=CB →2+BA →·CB →,由于|BC |=5,AB ⊥BC ,因此CA→·CB →=5+0=5. 答案 57.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析 依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|1·a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15. 答案 4±158.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是为________.解析 整理曲线C 1的方程得,(x -1)2+y 2=1,知曲线C 1为以点C 1(1,0)为圆心,以1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,依题意知直线l 与圆相交,故有圆心C 1到直线l 的距离d =|m (1+1)-0|m 2+1<r =1,解得m ∈⎝ ⎛⎭⎪⎫-33,33,又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去.故m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33. 答案 ⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 三、解答题9.已知一圆C 的圆心为(2,-1),且该圆被直线l :x -y -1=0截得的弦长为22,求该圆的方程及过弦的两端点的切线方程.解 设圆C 的方程为(x -2)2+(y +1)2=r 2(r >0),∵圆心(2,-1)到直线x -y -1=0的距离d =2,∴r 2=d 2+⎝ ⎛⎭⎪⎫2222=4, 故圆C 的方程为(x -2)2+(y +1)2=4.由⎩⎨⎧x -y -1=0,(x -2)2+(y +1)2=4,解得弦的两端点坐标为(2,1)和(0,-1). 所以过弦的两端点的圆的切线方程为y =1和x =0.10.已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程.(1)与直线l 1:x +y -4=0平行;(2)与直线l 2:x -2y +4=0垂直;(3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0(b ≠-4), 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0;(2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52,∴切线方程为2x +y ±52=0; (3)∵k AC =-2+11-4=13, ∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.能力提升题组(建议用时:20分钟)11.(2014·新课标全国Ⅱ卷)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤-12,12 C.[-2,2]D.⎣⎢⎡⎦⎥⎤-22,22解析 法一 如图,依题意,直线MN 与圆O 有公共点,即圆心O到直线MN 的距离小于等于1,过O 作OA ⊥MN ,垂足为A .在Rt △OMA 中,因为∠OMA =45°,故|OA |=|OM |sin 45°=22|OM |≤1,所以|OM |≤2,则x 20+1≤2,解得-1≤x 0≤1. 法二 当x 0=0时,M =(0,1),N =(-1,0)或N (1,0).当x 0≠0时,过点M 的切线与圆分别相切于A ,B ,则∠OMA =∠OMB .又因为∠OMN =45°,所以∠OMA =∠OMB ≥45°.因为OA =1,所以AM ≤1,故0<x 0≤1或-1≤x 0<0.综上可知,-1≤x 0≤1.答案 A12.(2015·四川卷)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)·(y 1-y 2)=4(x 1-x 2), 当l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12,∴-23<y 0<23,∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16,又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.答案 D13.(2015·江苏卷)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析 因为直线mx -y -2m -1=0恒过定点(2,-1),所以当点(2,-1)为切点时,半径最大,此时r =(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x -1)2+y 2=2.答案 (x -1)2+y 2=214.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程.(2)若a =2,过点M 作圆O 的两条弦AC ,BD 互相垂直,求|AC |+|BD |的最大值. 解 (1)由条件知点M 在圆O 上,所以1+a 2=4,则a =±3.当a =3时,点M 为(1,3),k OM =3,k 切=-33,此时切线方程为y -3=-33(x -1).即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33.此时切线方程为y +3=33(x -1).即x -3y -4=0.所以所求的切线方程为x +3y -4=0或x -3y -4=0.(2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0),则d 21+d 22=OM 2=3.又有|AC |=24-d 21,|BD |=24-d 22,所以|AC |+|BD |=24-d 21+24-d 22.则(|AC |+|BD |)2=4×(4-d 21+4-d 22+24-d 21·4-d 22)=4×[5+216-4(d 21+d 22)+d 21d 22]=4×(5+24+d 21d 22).因为2d 1d 2≤d 21+d 22=3,所以d 21d 22≤94, 当且仅当d 1=d 2=62时取等号,所以4+d 21d 22≤52, 所以(|AC |+|BD |)2≤4×⎝ ⎛⎭⎪⎫5+2×52=40. 所以|AC |+|BD |≤210,即|AC |+|BD |的最大值为210.。
平面几何中的圆与直线的位置关系
平面几何中的圆与直线的位置关系在平面几何中,圆和直线是两种最基本的几何元素。
它们的相互位置关系是几何学中一个重要且常见的研究课题。
本文将就圆与直线的位置关系展开讨论,分析并总结它们之间的几种典型关系。
1. 直线与圆相离:当一条直线与一个圆没有任何公共点时,它们被称为相离。
在这种情况下,直线既不穿过圆,也不与圆相切。
这种位置关系在平面几何中经常出现。
例如,当直线的距离大于圆的半径时,直线与圆相离。
2. 直线与圆相切:直线与圆相切是指直线与圆只有一个公共点,并且这个公共点在直线上。
当直线与圆相切时,可以根据公共切点的位置关系进一步分类:a. 外切:当直线与圆相切,且直线在圆的外部时,称为外切。
此时,切点位于圆的外部,且直线与圆的切点处垂直于半径。
b. 内切:当直线与圆相切,且直线在圆的内部时,称为内切。
此时,切点位于圆的内部,且直线与圆的切点处垂直于半径。
3. 直线穿过圆:直线与圆相交于两个不同的交点,这种情况被称为直线穿过圆。
直线穿过圆的位置关系可以进一步分类:a. 两交点:当直线与圆相交于两个不同的交点时,称为两交点。
b. 一内一外:当直线与圆相交于一个交点,且直线一部分在圆的内部,一部分在圆的外部时,称为一内一外。
c. 两内:当直线与圆相交于两个交点,且直线完全在圆的内部时,称为两内。
4. 直线包围圆:当一条直线把一个圆完全包围在内时,称为直线包围圆。
这种情况下,直线将圆分成两个半圆。
直线包围圆是直线与圆的一种特殊位置关系,也称为割圆。
根据以上分析,我们可以看出圆与直线的位置关系种类丰富多样。
在解决实际问题时,对于圆与直线的位置关系的准确理解和判断是非常重要的。
这些位置关系在几何证明、物理问题以及工程应用等方面都有着广泛的应用。
因此,我们需要通过学习和实践,熟练掌握这些位置关系的判断方法和应用技巧,以便能够灵活运用于实际问题的解决中。
在平面几何中,圆与直线的位置关系是一个博大精深的领域。
本文只对圆与直线的几种典型关系进行了简要介绍,实际上还有更多更复杂的情况和结论等待我们去探索和研究。
解析几何直线与圆圆与圆的位置关系课件理新
解析几何直线与圆圆与圆的位置关系课件理新汇报人:日期:•直线与圆•圆与圆的位置关系•解析几何的基本概念•直线与圆及圆与圆的方程•应用举例目•复习与总结录直线与圆01给定两点$P_1(x_1, y_1)$和$P_2(x_2, y_2)$,直线方程可以表示为$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$。
直线的基本性质直线的两点式方程直线与x轴夹角的正切值称为直线的斜率。
直线的斜率所有垂直于x轴的直线的斜率都为无穷大。
垂直于x轴的直线圆心位于圆的中心,半径是从圆心到圆上任意一点的距离。
圆心和半径圆的方程圆的直径给定圆心坐标$(h, k)$和半径$r$,圆的方程可以表示为$(x - h)^{2} + (y - k)^{2} = r^2$。
直径是圆中最长的弦,其长度为2r。
03圆的基本性质0201如果直线与圆没有交点,则称直线与圆相离。
相离如果直线与圆只有一个交点,则称直线与圆相切。
相切如果直线与圆有两个交点,则称直线与圆相交。
相交直线与圆的位置关系圆与圆的位置关系02外切两圆的外切是指两个圆在外部相切,即两个圆心之间的距离等于两个圆的半径之和。
内切两圆的内切是指两个圆在内部相切,即两个圆心之间的距离等于两个圆的半径之差。
外切与内切相交两圆相交是指两个圆心之间的距离小于两个圆的半径之和且大于两个圆的半径之差。
相离两圆相离是指两个圆心之间的距离大于两个圆的半径之和。
内含两圆内含是指两个圆心之间的距离小于两个圆的半径之差。
圆与圆的相离、相交、内含关系对于两个外切的圆,存在两条外公切线,它们与两个圆都相切。
外公切线对于两个内切的圆,存在两条外公切线,它们与两个圆都相切。
内公切线对于给定的两个圆,我们可以使用极坐标方程来表示它们的圆心和半径。
极坐标方程圆与圆的公切线解析几何的基本概念03向量的定义向量是一个有方向和大小的量,通常用一条有向线段表示,包括起点、方向和长度。
高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新
§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能判断直线与圆的位置关系.2.能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题. 考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的X 围、最值、几何量的大小等.题型主要以选择、填空题为主,难度中等,但有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.(最重要)d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0)方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有外离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)若直线平分圆的周长,则直线一定过圆心.( √ ) (2)若两圆相切,则有且只有一条公切线.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值X 围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+-12≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.外离 答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值X 围是( ) A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1] 答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),半径为2, ∵|OA |=3-12+5-22=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1, ∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.直线与圆的位置关系命题点1 位置关系的判断例1 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,由勾股定理得,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 (2020·某某部分重点中学联考)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A.(2,1) B.(2,2) C.(2,2) D.(2,0) 答案 C 解析 如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P =2,则P (2,2).命题点4 直线与圆位置关系中的最值问题例4 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,则最短弦所在的直线方程为________. 答案 x -y -2=0解析 设P (3,1),圆心C (2,2), 则|PC |=2,半径r =2,由题意知最短弦过P (3,1)且与PC 垂直,k PC =-1,所以所求直线方程为y -1=x -3,即x -y -2=0. 思维升华 (1)判断直线与圆的位置关系常用几何法.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2020·某某江淮十校联考)已知直线l :x cos α+y sin α=1(α∈R )与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值X 围是 ( )A.0<r ≤1B.0<r <1C.r ≥1D.r >1 答案 D解析 圆心到直线的距离d =1cos 2α+sin 2α=1,故r >1. (2)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A.-2B.-4C.-6D.-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2=2,由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.(3)(2019·某某)已知圆C 的圆心坐标是(0,m ),半径长是r ,若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________. 答案 -25解析 根据题意画出图形,可知A (-2,-1),C (0,m ),B (0,3),∵k AB =2,∴k AC =-12,∴直线AC 的方程为y +1=-12(x +2),令x =0,得y =-2, ∴圆心C (0,-2),∴m =-2. ∴r =|AC |=4+-2+12= 5.(4)从直线l :x +y =1上一点P 向圆C :x 2+y 2+4x +4y +7=0引切线,则切线长的最小值为________. 答案462解析 方法一 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1. 设直线l 上任意一点P (x ,y ), 则由x +y =1,得y =1-x . 则|PC |=x +22+y +22=x +22+1-x +22=2x 2-2x +13.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ .故|PQ |2=|PC |2-r 2=(2x 2-2x +13)-1=2x 2-2x +12=2⎝ ⎛⎭⎪⎫x -122+232,所以当x =12时,|PQ |2取得最小值,最小值为232,此时切线长为|PQ |=232=462. 方法二 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ . 故|PQ |=|PC |2-r 2=|PC |2-1. 故当|PC |取得最小值时,切线长最小.显然,|PC |的最小值为圆心C 到直线l 的距离d =|-2-2-1|12+12=522, 所以切线长的最小值为⎝ ⎛⎭⎪⎫5222-1=462. 圆与圆的位置关系例5 已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求: (1)m 取何值时两圆外切?(2)m 取何值时两圆内切,此时公切线方程是什么? (3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m .解得m =25+1011.(2)当两圆内切时,两圆圆心间距离等于两圆半径之差的绝对值.故有61-m -11=5,解得m =25-1011. 因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有⎪⎪⎪⎪⎪⎪43×1+3-b ⎝ ⎛⎭⎪⎫432+1=11.解得b =133±5311.容易验证,当b =133+5311时,直线与圆x 2+y 2-10x -12y +m =0相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×112-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27. 思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2020·某某模拟)圆C 1:(x +2)2+(y -2)2=4和圆C 2:(x -2)2+(y -5)2=16的位置关系是( ) A.外离B.相交 C.内切D.外切 答案 B解析 易得圆C 1的圆心为C 1(-2,2),半径r 1=2,圆C 2的圆心为C 2(2,5),半径r 2=4,圆心距|C 1C 2|=[2--2]2+5-22=5<2+4=r 1+r 2且5>r 2-r 1,所以两圆相交.(2)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a-a .∵公共弦长为23,∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a-a 2,∴a 2=4,a =±2.1.已知a ,b ∈R ,a 2+b 2≠0,则直线l :ax +by =0与圆C :x 2+y 2+ax +by =0的位置关系是( )A.相交B.相切C.相离D.不能确定 答案 B解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,圆心C ⎝ ⎛⎭⎪⎫-a 2,-b 2,半径r =a 2+b 22,圆心到直线ax +by =0的距离为d =⎪⎪⎪⎪⎪⎪-a 2×a +⎝ ⎛⎭⎪⎫-b 2×b a 2+b 2=a 2+b 22=r ,所以直线与圆相切.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交B.相切C.相离D.不确定 答案 A解析 方法一 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.方法二 直线l :mx -y +1-m =0过定点(1,1), 因为点(1,1)在圆x 2+(y -1)2=5的内部, 所以直线l 与圆相交.3.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值X 围是( ) A.(-∞,1) B.(121,+∞) C.[1,121] D.(1,121) 答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为(x +3)2+(y -4)2=36. 圆心距为d =0+32+0-42=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.4.(2019·某某八市重点高中联考)已知圆x 2+y 2-2x +2y +a =0截直线x +y -4=0所得弦的长度小于6,则实数a 的取值X 围为( ) A.(2-17,2+17) B.(2-17,2) C.(-15,+∞) D.(-15,2) 答案 D解析 圆心(1,-1),半径r =2-a ,2-a >0,∴a <2, 圆心到直线x +y -4=0的距离d =|1-1-4|2=2 2.则弦长为22-a2-222=2-a -6<6.解得a >-15,故-15<a <2.5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,且l 与圆相交 B.m ⊥l ,且l 与圆相切 C.m ∥l ,且l 与圆相离 D.m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m , 又k OP =b a ,∴k m =-a b,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C.6.(2020·某某华附、省实、广雅、深中四校联考)过点A (a ,0)(a >0),且倾斜角为30°的直线与圆O :x 2+y 2=r 2(r >0)相切于点B ,且|AB |=3,则△OAB 的面积是( ) A.12B.32C.1D.2答案 B解析 由切线的性质可得△ABO 是以点B 为直角顶点的直角三角形,在Rt△ABO 中,∠OAB =30°,AB =3,则OB =1,OA =2,△OAB 的面积是12×1×3=32.7.已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A.6或-6B.5或-5C.6D. 5 答案 B解析 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =± 5.8.(2020·西南地区名师联盟调研)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的标准方程为________. 答案 (x -2)2+(y +1)2=9 解析 圆心到直线的距离为|3×2-4×-1+5|5=3,则所求圆的标准方程为(x -2)2+(y +1)2=9.9.(2020·某某“荆、荆、襄、宜”四地七校联考)已知圆C 经过直线x +y +2=0与圆x 2+y 2=4的交点,且圆C 的圆心在直线2x -y -3=0上,则圆C 的方程为________.答案 (x -3)2+(y -3)2=34解析 方法一 联立方程⎩⎪⎨⎪⎧x +y +2=0,x 2+y 2=4,解得交点坐标为A (-2,0),B (0,-2).弦AB 的垂直平分线方程为y +1=x +1即x -y =0.由⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,解得⎩⎪⎨⎪⎧x =3,y =3.弦AB 的垂直平分线过圆心,所以圆心坐标为(3,3), 半径r =[3--2]2+32=34, 故所求圆C 的方程为(x -3)2+(y -3)2=34.方法二 设所求圆的方程为(x 2+y 2-4)+a (x +y +2)=0, 即x 2+y 2+ax +ay -4+2a =0,∴圆心为⎝ ⎛⎭⎪⎫-a 2,-a2,∵圆心在直线2x -y -3=0上,∴-a +a2-3=0,∴a =-6.∴圆的方程为x 2+y 2-6x -6y -16=0, 即(x -3)2+(y -3)2=34.10.若过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=______. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∵△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos60°=32.11.(2019·某某青山区模拟)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 (1)根据题意,圆C :x 2+y 2-8y +12=0,则圆C 的标准方程为x 2+(y -4)2=4,其圆心为(0,4),半径r =2,若直线l 与圆C 相切,则有|4+2a |1+a 2=2,解得a =-34. (2)设圆心C 到直线l 的距离为d ,则⎝⎛⎭⎪⎫|AB |22+d 2=r 2,即2+d 2=4,解得d =2,则有d =|4+2a |1+a 2=2,解得a =-1或-7,则直线l 的方程为x -y +2=0或7x -y +14=0.12.已知一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求该圆的方程.解 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=a -b22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.13.(2019·某某师大附中月考)已知圆x 2+(y -1)2=2上任一点P (x ,y ),其坐标均使得不等式x +y +m ≥0恒成立,则实数m 的取值X 围是( ) A.[1,+∞) B .(-∞,1] C.[-3,+∞) D .(-∞,-3] 答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C (0,1)到直线l 的距离为|1+m |2,切线l 0应满足|1+m |2=2,∴|1+m |=2,m =1或m =-3(舍去),从而-m ≤-1,∴m ≥1.14.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为_______. 答案7解析 设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d , 则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, |PQ |=|PM |2-1=222-1=7.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89B.⎝ ⎛⎭⎪⎫29,49C.(1,2) D.(9,0) 答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=9-2m2+m24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0, 即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程. 解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧2-a 2+4-b 2=r 2,1-a 2+3-b2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A (0,1)作直线AT 与圆C 相切,切点为T , 易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos0°=|AT |2=7, ∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=41+k 1+k 2,x 1x 2=71+k2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8=12, 即4k1+k1+k2=4,解得k =1, 又当k =1时Δ>0,∴k =1,∴直线l 的方程为y =x +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.4直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的范围、最值、几何量的大小等.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆的半径r的大小关系.⇔相交;⇔相切;⇔相离.(2)代数法:―――→判别式Δ=b2-4ac⎩⎪⎨⎪⎧>0⇔;=0⇔;<0⇔ .2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).方法位置关系几何法:圆心距d与r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离外切相交内切内含概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.()(3)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.()(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B 四点共圆且直线AB的方程是x0x+y0y=r2.()(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.()题组二教材改编2.[P128T4]若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是() A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)3.[P130练习]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离4.[P133A组T9]圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.题组三易错自纠5.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1]6.(2018·石家庄模拟)设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.4 2 C.8 D.8 27.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为__________.题型一 直线与圆的位置关系命题点1 位置关系的判断例1 (2018·贵州黔东南州联考)在△ABC 中,若a sin A +b sin B -c sin C =0,则圆C :x 2+y 2=1与直线l :ax +by +c =0的位置关系是( ) A .相切B .相交C .相离D .不确定命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2 命题点3 切线问题例3 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).跟踪训练1 (1)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为________. (2)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(3)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________.题型二圆与圆的位置关系命题点1位置关系的判断例4 分别求当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交和相切.命题点2公共弦问题例5 已知圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.跟踪训练2 (1)(2016·山东)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)圆x2+y2+4x-4y-1=0与圆x2+y2+2x-13=0相交于P,Q两点,则直线PQ的方程为______________.1.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是() A.(-∞,1) B.(121,+∞)C.[1,121] D.(1,121)2.直线x-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦长为()A.30B.532C .4 2D .3 33.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A .m ∥l ,且l 与圆相交 B .m ⊥l ,且l 与圆相切 C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离4.(2018·福州模拟)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-145.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条6.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( )A .6B .7C .8D .97.(2016·全国Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.8.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________. 9.(2018·衡阳质检)已知圆E :x 2+y 2-2x =0,若A 为直线l :x +y +m =0上的点,过点A 可作两条直线与圆E 分别切于点B ,C ,且△ABC 为等边三角形,则实数m 的取值范围是______________.10.已知圆C 1:x 2+y 2+2ay +a 2-4=0和圆C 2:x 2+y 2-2bx -1+b 2=0外切,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为____________.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.12.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.13.(2018·贵州贵阳第一中学月考)已知直线l :(m +2)x +(m -1)y +4-4m =0上总存在点M ,使得过M 点作的圆C :x 2+y 2+2x -4y +3=0的两条切线互相垂直,则实数m 的取值范围是( ) A .m ≤1或m ≥2 B .2≤m ≤8 C .-2≤m ≤10D .m ≤-2或m ≥814.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线P A ,PB ,A ,B 为切点,则直线AB 过定点( ) A.⎝⎛⎭⎫49,89 B.⎝⎛⎭⎫29,49 C .(1,2)D .(9,0)16.已知抛物线C :y 2=4x 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点A ,B ,以线段AB 为直径的圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝⎛⎭⎫-32,t ,求实数t 的取值范围.。