七年级《有理数的乘方》教学设计

合集下载

人教版七年级数学上册有理数的乘方教学设计

人教版七年级数学上册有理数的乘方教学设计
-鼓励学生通过画图、列式等方式,清晰展示解题过程。
3.提高挑战题:设置2-3道综合性的题目,要求学生综合运用乘方及其他相关知识,解决问题。这些题目旨在激发学生的学习兴趣,提升他们的逻辑思维能力和创新意识。
-引导学生进行独立思考和探索,鼓励他们尝试不同的解题方法。
4.小组合作作业:安排一个小组合作项目,要求学生共同探讨乘方在实际生活中的应用案例,并撰写一个小报告。这个项目旨在培养学生的团队合作能力和沟通交流能力。
-培养学生运用乘方解决简单问题的能力。
3.教学方法:
-采用讲解、举例、演示等多种教学方法,帮助学生理解乘方的概念和性质。
-引导学生通过观察、思考,总结乘方的运算法则。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对乘方的运算法则进行讨论。
-每个小组选取一道具有代表性的题目,共同探讨解题思路和方法。
-鼓励学生在报告中包含实际调查、数据分析和解决方案等元素。
5.自主学习任务:鼓励学生利用网络资源或图书馆书籍,自主学习与乘方相关的数学历史或趣味数学知识,并撰写学习心得体会。
-通过自主学习,拓宽学生的知识视野,增强他们对数学学科的兴趣。
作业布置时应注意以下原则:
-作业量适中,避免过多增加学生负担。
-关注学生个体差异,提供不同难度的题目,满足不同学生的学习需求。
2.难点:
-理解乘方的意义,尤其是负数的乘方和零的乘方的实际意义。
-掌握乘方的运算法则,特别是不同符号之间的乘方运算。
-运用乘方解决实际问题时,能够正确设置运算步骤,避免运算错误。
(二)教学设想
1.引入阶段:
-利用生活实例或数学故事引入乘方的概念,激发学生的好奇心和学习兴趣。
-通过具体例子,让学生观察、思考乘方的规律,引导学生发现乘方的性质。

七年级上册数学教案《有理数的乘方》

七年级上册数学教案《有理数的乘方》

七年级上册数学教案《有理数的乘方》教学目标1、理解并掌握有理数的乘方、幂、底数、指数的概念及含义。

2、能够正确进行有理数的乘方运算。

教学重点理解并掌握有理数乘方的意义及运算。

教学难点有理数乘方中幂、指数、底数的概念及其相互关系的理解。

教学过程一、情境导入1、列式求边长为3的正方形面积。

3 × 3 = 3² = 9读作3的平方(或3的二次方)2、列式求边长为5的正方体体积。

5×5×5= 5³= 125读作5的立方(或5的三次方)二、讲授新知1、仿照上述算式,写出这些算式的简便写法或读法。

(-2)×(-2)×(-2)×(-2)记作:(-2)^4 读作:-2的四次方(-2/5)×(-2/5)×(-2/5)×(-2/5)记作:(-2/5)^5 读作:-2/5的五次方3×3…3×3(n个3相乘)记作:3^n 读作:3的n次方a×a×a×…a(n个a相乘)记作:a^n 读作:a的n次方思考:这4个式子有什么共同特征,表示什么运算?因数有什么特征?2、下定义乘方:n个相同因数的积的运算。

记作:读作:a的n次方幂举例:在9^4中,底数是9,指数是4,9^4读作“9的4次方”或“9的4次幂”。

乘方定义理解需注意:①指数n取正整数。

②底数a可代表所有数,可以是正数、负数、0。

③一个数可看作这个数本身的一次方,如 5 = 5^1,指数1通常省略不写。

④书写需注意,当底数为负数、分数时,要用括号把整个底数括起来。

3、计算(1)(-4)^3=(-4)×(-4)×(-4)= 16 ×(-4)= -64(2)(-2)^4= (-2)×(-2)×(-2)= 4 ×(-2)= -8(3)(-2/3)^3= (-2/3)×(-2/3)×(-2/3)= 4/9 × (-2/3)= -8/274、观察上面式子的结果,你发现负数的幂的符号和指数有什么关系?当指数是奇数时,负数的幂是负数;当指数是偶数时,负数的幂是偶数。

人教版七年级上册数学1.5.1《有理数的乘方》教学设计

人教版七年级上册数学1.5.1《有理数的乘方》教学设计
5.拓展延伸,激发思维
引导学生探讨乘方的逆运算,如开平方、开立方等,激发学生的思维,为后续学习打下基础。
6.总结反馈,查漏补缺
通过课堂小结,让学生回顾本节课的学习内容,发现并弥补自己的知识漏洞。
7.课后作业,巩固提高
布置适量的课后作业,包括基础题和提高题,让学生在课后巩固所学知识,并适当拓展。
8.关注个体差异,实施个性化教学
(2)一个正方体的边长是5cm,求它的表面积和体积。
4.思考题:
(1)如何计算负数的奇数次幂和偶数次幂?
(2)有理数的乘方在实际生活中有哪些应用?
作业要求:
1.认真完成作业,字迹清楚,保持卷面整洁。
2.注意有理数乘方的计算法则,避免常见错误。
3.对于应用题和思考题,尽量用自己的语言进行解答,体现思考过程。
2.教师引导学生通过具体的例子,总结有理数乘方的计算法则。
师:请同学们观察以下算式,并总结有理数乘方的计算法则。
算式:(-2)^2, (-2)^3, (-2)^4, ...
生:负数的偶数次幂是正数,负数的奇数次幂是负数。
3.教师强调有理数乘方计算法则中的注意事项,并进行讲解。
(三)学生小组讨论,500字
人教版七年级上册数学1.5.1《有理数的乘方》教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的定义,知道乘方的意义是表示几个相同因数的乘积。
2.掌握有理数乘方的计算法则,能够准确进行有理数乘方运算。
3.能够运用有理数乘方的知识解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
1.观察生活中的乘方现象,培养学生发现问题的能力。
2.学生分享学习心得,教师给予鼓励和肯定。
3.教师布置课后作业,要求学生在课后巩固所学知识,并为下一节课做好准备。

2024年人教版七年级上册教学设计第二章 有理数的运算有理数的乘方

2024年人教版七年级上册教学设计第二章  有理数的运算有理数的乘方

2.3.1乘方第1课时有理数的乘方运算课时目标1.经历探索有理数乘方的意义的过程,体会转化的数学思想方法,培养学生的运算能力.2.理解乘方的意义,了解乘方与幂的关系,能识别指数和底数,掌握幂的符号法则,会进行乘方运算.3.经历发现问题、提出问题、分析问题和解决问题的过程,培养学生科学的思考问题的方法.学习重点乘方的意义以及幂的符号法则.学习难点幂、底数、指数的概念.课时活动设计情境引入问题1:如果一个正方形的边长为2,那么该正方形的面积是多少?问题2:如果一个正方体的棱长为2,那么该正方体的体积是多少?解:该正方形的面积为2×2,该正方体的体积为2×2×2.设计意图:创设情境,引入新课,为本节课的学习作铺垫.探究新知探究1有理数的乘方在上一教学活动中,所列的两个式子有什么特殊之处?你还能写出几个具有上述特征的式子吗?学生自主交流,独立完成,教师适时给予点拨.根据你发现的特征,完成下面的填空.(1)5×5×5记作53,读作5的3次方.(2)5×5×5×5记作54,读作5的4次方.(3)5×5×5×5×5记作55,读作5的5次方.⏟(4)5×5×5×…×5×5记作5n,读作5的n次方.n个5请你根据上面的内容,自己总结发现的规律.,记作a n,读作“a的n次方”.⏟总结:一般地,n个相同的乘数a相乘,即a·a·…·an个求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂.在a n中,a叫作底数,n叫作指数,当a n看作a的n次方的结果时,也可读作“a的n次幂”.例如,在94中,底数是9,指数是4,94读作“9的4次方”,或“9的4次幂”.一个数可以看作这个数本身的1次方.例如,5就是51.指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.探究2幂的符号法则思考:(1)-26的底数是多少?它与(-2)6表示的意义相同吗?(2)计算,并将下表补充完整.思考:上表中的计算结果的符号有什么规律?学生归纳总结.总结:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数. 0的任何正整数次幂都是0.设计意图:通过探究引导学生思考有理数乘方的意义,区分-a n 与(-a )n ,通过让学生计算乘方,发现幂的符号规律,并总结出幂的符号法则.典例精讲 例1 计算:(1)(-4)3; (2)(-2)4; (3)(-23)3. 解:(1)(-4)3=(-4)×(-4)×(-4)=-64. (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16. (3)(-23)3=(-23)×(-23)×(-23)=-827. 例2 用计算器计算(-8)5和(-3)6. 解:用带符号键的计算器.显示结果为-32 768.显示结果为729.因此,(-8)5=-32 768,(-3)6=729.设计意图:通过例题练习和讲解,提高学生的运算能力,并学会用计算器计算有理数的乘方运算,提高对新知识的应用能力.巩固训练1.(-2)3等于( C )A.-6B.6C.-8D.82.下列各组数中,运算结果相等的是( A )A.-53与(-5)3B.34与43C.-22与(-2)2D.(45)2与4253.计算3×3×…×32+2+⋯+2⏞ m 个3⏟ n 个2的结果为( A ) A.3m2nB.3m2nC.3mn 2D.m 32n4.(-2)5的底数是 -2 ,指数是 5 ,表示的意义是 5个-2相乘的积 ,即(-2)5= -32 .5.计算:(1)(-3)3; (2)(-5)4; (3)(-13)3; (4)0.23; (5)-72. 解:(1)(-3)3=(-3)×(-3)×(-3)=-27. (2)(-5)4=(-5)×(-5)×(-5)×(-5)=625. (3)(-13)3=(-13)×(-13)×(-13)=-127. (4)0.23=0.2×0.2×0.2=0.008. (5)-72=-(7×7)=-49.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也能使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理运用.课堂小结1.乘方中的底数、指数和幂的概念,会求有理数的正整数指数幂,掌握乘方运算与乘法运算的关系,会进行有理数的乘方运算.2.强调有理数乘方的符号规律.3.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.设计意图:学生通过自主反思,可加深对有理数乘方意义的理解,通过反思数学思想方法与活动经验,培养学生的数学思维品质,让学生学会学习,学会思考,使学生真正深入数学的学习过程中,抓住数学思维的内在实质.课堂8分钟.1.教材第52页练习第1,2,3题,第56页习题2.3第1,2题.2.七彩作业.教学反思第2课时有理数的混合运算课时目标1.能确定有理数加、减、乘、除、乘方混合运算的运算顺序,会进行有理数的混合运算,培养学生的运算能力.2.在进行有理数混合运算的过程中,能合理地使用运算律进行简化运算.学习重点掌握有理数混合运算的运算顺序,会进行有理数的混合运算.学习难点熟练合理使用运算律进行混合运算.课时活动设计情境引入计算:1. (1)-32; (2)(-3)2; (3)-16; (4)(-1)6. 2. -3÷25×52.3. 18-32÷8+(-2)2×5.问题:先计算,再思考上述运算中有几种运算?分别是什么?结合经验你能说说混合运算的运算顺序吗?设计意图:通过有理数的混合运算,让学生先独立思考运算顺序,然后谈一谈自己的理解,加深学生对运算顺序的理解.探究新知探究 有理数的混合运算问题:如何计算18-32÷8+(-2)2×5呢?分几步运算? 学生先独立思考,分解计算步骤.教师给出下述计算过程. 18-32÷8+(-2)2×5 ① ① ①所以原式=①-①+①=18-4+20=34.由此可知,有理数混合运算顺序:先算乘方,再算乘除,最后算加减.如果有括号,要先算括号内的.总结:有理数的加、减、乘、除、乘方混合运算的运算顺序为 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 设计意图:通过探究,让学生确定有理数的加、减、乘、除、乘方混合运算的运算顺序,会进行有理数的混合运算,培养学生的运算能力.典例精讲 例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×(-42+2)-(-3)2÷(-2).解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27.(2)原式=-8+(-3)×(-16+2)-9÷(-2)=-8+(-3)×(-14)-(-4.5)=-8+42+4.5=38.5. 例2 观察下面三行数: -2,4,-8,16,-32,64,…;① 0, 6, -6, 18, -30, 66, …; ① -1, 2, -4, 8, -16, 32, …. ①(1)第①行中的数可以看成按什么规律排列? (2)第①①行中的数与第①行中的数分别有什么关系? (3)取每行中的第10个数,计算这三个数的和.分析:观察第①行中的数,发现各数均为2的倍数,联系数的乘方,从符号和绝对值两方面考虑,可以发现排列的规律.解:(1)第①行中的数可以看成按如下规律排列:-2,(-2)2,(-2)3,(-2)4,….(2)对比第①①两行中位置对应的数,可以发现:第①行中的数是第①行中相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…;对比第①①两行中位置对应的数,可以发现:第①行中的数是第①行中相应数的12,即(-2)×12,(-2)2×12,(-2)3×12,(-2)4×12,….(3)每行中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×12=1 024+(1 024+2)+1 024×12=1 024+1 026+512=2 562.设计意图:通过例1让学生得以练习,提高对有理数混合运顺序的应用能力;通过例2引导学生解决简单的规律性问题.巩固训练 计算:(1)(-1)8×3+(-2)4÷4; (2)(-3)3+(-12)3×16; (3)78×(23-12)×37÷54.解:(1)原式=1×3+16÷4=3+4=7. (2)原式=-27+(-18)×16=-27-2=-29. (3)原式=78×16×37×45=120.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.有理数混合运算顺序: 先乘方,再乘除,最后加减; 同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 2.探究简单的规律性问题.设计意图:回顾本节课内容,加深学生对本节课知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第54页练习,第56页习题2.3第3,11题. 2.七彩作业.教学反思2.3.2科学记数法课时目标1.借助身边熟悉的事物体会大数,发展学生的好奇心、想象力及创新意识.2.通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感.学习重点正确使用科学记数法表示大于10的数.学习难点正确掌握10n的特征以及科学记数法中n与数位的关系.课时活动设计情境引入地球距离月球表面约为384 000 000米.这样大的数,读写都有一定的困难.这节课我们就来学习表示大数的一种方法——科学记数法.设计意图:通过实际问题引入本节课的内容,激发学生的学习兴趣.探究新知探究科学记数法观察10的乘方,102=100,103=1 000,104=10 000,….问题1:等号左边10的指数与右边整数中0的个数有什么关系?教师引导学生得到左边10的指数与右边整数中0的个数相同,即10的n次幂等于10…0(在1的后面有n个0),因此可以利用10的乘方表示一些大数,例如,696 000=6.96×105,读作“6.96乘10的5次方(幂)”.像上面这样,把一个大于10的数表示成a×10n的形式(其中a大于或等于1,且a小于10,n是正整数),使用的是科学记数法.问题2:对于小于-10的数能否也用类似的方法表示呢?-567 000 000用这种方法应该怎样表示?学生分小组探究交流,教师将正确答案进行板书.解:-567 000 000=-5.67×108.设计意图:让学生经历用科学记数法表示数的探索过程,提高学生分析问题和解决问题的能力,增强学生的思维能力.典例精讲例用科学记数法表示下列各数:1 000 000,57 000 000,-123 000 000 000.解:1 000 000=1×106.57 000 000=5.7×107.-123 000 000 000=-1.23×1011.设计意图:通过例题讲解,让学生对科学记数法的表示得以运用,提高学生的运用能力.巩固训练1.用科学记数法表示下列各数:(1)352 000 000;(2)167 560 000;(3)602 000 000 000.解:(1)352 000 000=3.52×108.(2)167 560 000=1.675 6×108.(3)602 000 000 000=6.02×1011.2.下列用科学记数法表示的数,原来各是什么数?1×107,1.9×103,2.06×106.解:1×107=10 000 000,1.9×103=1 900,2.06×106=2 060 000.设计意图:通过练习,让学生巩固所学知识,加深对科学记数法的理解,提高学生的运算能力.课堂小结1.本节课主要学习用科学记数法表示大数的方法.应该注意:任意一个大于10的数表示成a×10n的形式,其中10的指数n应等于整数位数减1,1≤a<10,n是正整数.2.思考现实中还有哪些比较大的数,并用科学记数法表示出来.设计意图:学生通过反思,可进一步加深对科学记数法的理解,通过归纳总结,培养学生的数学思维品质,让学生学会学习,学会思考.课堂8分钟.1.教材第56页练习第1,2,3题,第56页习题2.3第4,5,9题.2.七彩作业.2.3.2科学记数法把一个大于10的数表示成a×10n的形式(其中a大于或等于1,且a小于10,n 是正整数),即为科学记数法.教学反思2.3.3近似数课时目标1.了解和掌握近似数的概念,能准确确定一个近似数的精确度.2.能根据要求用四舍五入法取近似数.学习重点近似数、精确度的概念.学习难点由给出的近似数求其精确度.课时活动设计回顾引入回顾什么是四舍五入法.设计意图:通过回顾旧知,引入本节课的学习.探究新知探究近似数和准确数1.宇宙的年龄约为138亿年,长江约长6 300千米,圆周率π约为3.14,每个三角形都有3个内角,某中学七年级共有10个班.上面语句中出现的数字中,哪些是与实际相符的?哪些是与实际相近的?学生分小组交流讨论.教师随后给出近似数和准确数的概念.准确数:与实际相符的数.近似数:与实际相近的数,通过测量或估计得到.2.小明和小颖分别测量了同一片树叶的长度,他们所用的直尺的最小单位是不同的,分别是厘米和毫米.问题:根据小明的测量,这片树叶的长度约为多少米?根据小颖的测量呢?谁的测量结果会更准确一些?学生自主探究.教师给出:近似数与准确数的接近程度,可以用精确度表示.追问:小明、小颖的测量分别精确到什么单位?解:分别精确到了十分位和百分位.按四舍五入法对圆周率π取近似数时,有π≈3(精确到个位),π≈3.1(精确到0.1,或叫作精确到十分位),π≈3.14(精确到0.01,或叫作精确到百分位),π≈3.142(精确到0.001,或叫作精确到千分位),π≈3.141 6(精确到0.000 1,或叫作精确到万分位),……设计意图:让学生通过实际情境理解近似数与准确数及精确度的概念.典例精讲例按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到百分位).解:(1)0.015 8≈0.016.(2)304.35≈304.(3)1.804≈1.8.(4)1.804≈1.80.设计意图:通过例题让学生体会运用四舍五入法求近似数的方法.巩固训练用四舍五入法对下列各数取近似数:(1)0.012 36(精确到0.000 1);(2)688.753 2(精确到个位);(3)2.597 43(精确到0.01);(4)0.085 6(精确到千分位).解:(1)0.012 36≈0.012 4.(2)688.753 2≈689.(3)2.597 43≈2.60.(4)0.085 6≈0.086.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.本节课主要学习近似数的概念,并能按要求取近似数.2.通过这节课的学习,还有哪些收获呢?设计意图:学生通过反思,可进一步加深对近似数的理解.通过归纳总结,培养学生的数学思维品质,让学生学会学习,学会思考.课堂8分钟.1.教材第56页练习第4题,第56页习题2.3第6题.2.七彩作业.2.3.3近似数1.准确数和近似数.2.用四舍五入法求近似数.教学反思。

七年级数学上册《有理数的乘方》教案、教学设计

七年级数学上册《有理数的乘方》教案、教学设计
2.针对学生运算能力的差异,设计不同难度的练习题,使学生在分层练习中逐步提高运算能力。
3.注重培养学生的观察、分析、总结能力,引导学生发现乘方的性质和规律,提高学生的数学思维能力。
4.考虑到学生的年龄特点,采用生动、有趣的教学方法,激发学生的学习兴趣,营造轻松愉快的学习氛围。
5.关注学生的学习情感,鼓励学生积极参与课堂讨论,培养合作精神,提高学生的自信心和自主学习能力。
(三)教学设想
1.创设情境,引入乘方概念
利用生活中的实例,如平方土地面积、立方体体积等,引导学生理解乘方的意义。通过实际操作,让学生感受乘方的产生过程,从而加深对乘方概念的理解。
2.分层教学,突破难点
针对学生的认知差异,设计不同层次的例题和练习题。对基础薄弱的学生,重点辅导乘方的基本运算;对中等程度的学生,引导他们发现乘方的性质,提高解题能力;对优秀学生,设置拓展题,培养他们的数学思维能力。
(2)学生回答:“边长乘以边长,即a×a。”
(3)教师继续提问:“如果这个正方体的体积怎么计算呢?如果边长为a,那么它的体积是多少呢?”
(4)学生回答:“边长的三次方,即a×a×a。”
通过这个实例,引出乘方的概念,让学生明白乘方是表示几个相同因数相乘的运算。( Nhomakorabea)讲授新知
1.教学内容:讲解有理数乘方的定义、运算方法以及乘方的性质。
教学过程:
(1)教师讲解有理数乘方的定义,让学生明白乘方是指数运算的一种形式,表示几个相同因数相乘。
(2)教师举例说明有理数乘方的运算方法,如:2^3=2×2×2,(-3)^2=(-3)×(-3)。
(3)引导学生发现乘方的性质,如:负数的奇数次幂是负数,偶数次幂是正数;零的任何正整数次幂都是零。
(4)教师通过例题,演示乘方运算的步骤和注意事项,如符号的处理、计算的准确性等。

1.6有理数的乘方教学设计-2024—2025学年沪科版数学七年级上册

1.6有理数的乘方教学设计-2024—2025学年沪科版数学七年级上册
重点难点及解决办法
重点:1. 有理数的乘方概念及其性质;2. 有理数乘方的运算方法及法则;3. 运用有理数乘方解决实际问题。
难点:1. 有理数乘方的性质理解;2. 负数乘方的运算规律;3. 运用乘方解决复杂实际问题。
解决办法:1. 通过具体例子引导学生理解有理数乘方的概念,如利用平方尺规作图解释平方的直观含义;2. 通过小组讨论和师生互动,让学生探索并总结有理数乘方的性质和运算法则;3. 设计具有层次性的练习题,让学生在实践中运用乘方知识,逐步突破难点。
- 积的乘方:(ab)^n = a^n × b^n
- 零的乘方:0^n = 0(n为正整数)
- 负整数指数幂:a^(-n) = 1/(a^n)(a ≠ 0)
4. 应用实例:
- 面积计算:矩形的面积 = 长 × 宽
- 体积计算:立方体的体积 = 边长 × 边长 × 边长
- 复利计算:本利和 = 本金 × (1 + 利率)^时间
1. 有理数乘方定义:
- 幂:a^n = a × a × ... × a(n个a)
- 零次幂:a^0 = 1(a ≠ 0)
- 负整数次幂:a^(-n) = 1/(a^n)(a ≠ 0)
2. 有理数乘方性质:
- 同底数幂相乘:a^m × a^n = a^(m+n)
- 同底数幂相除:a^m ÷ a^n = a^(m-n)(a ≠ 0)
- 幂的乘方:(a^m)^n = a^(m×n)
- 积的乘方:(ab)^n = a^n × b^n
3. 有理数乘方运算法则:
- 相同底数幂的乘法:a^m × a^n = a^(m+n)
- 相同底数幂的除法:a^m ÷ a^n = a^(m-n)(a ≠ 0)

《有理数的乘方》

《有理数的乘方》

《有理数的乘方》一、教学目标根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:1.在现实背景中,理解有理数乘方的意义。

2.能准确说出有理数乘方的底数、指数和幂;能准确地计算有理数的乘方。

3. 经历观察、类比、归纳得出有理数乘方的概念店过程,领会重要的数学建模思想、归纳思想,形成数感、符号感,发展抽象思维。

二、教学重、难点重点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算。

难点:准确建立底数、指数和幂三个概念,并能求幂的运算。

本节课,借助多媒体课件,通过讲授法、归纳法等多种形式进行学习。

针对乘方运算的抽象概括性,我们采用特殊到一般的思路和具象化、归纳法的思路。

三、教学过程(一)课堂引入某种细胞每30分钟便由一个分裂成两个. 经过3小时这种细胞由1个能分裂成多少个?分裂方式如下所示:时间/h分裂次数细胞个数简写0.51221122×2221.532×2×223242×2×2×224…………0.5n42×2×2×…×2(二)新知探究【有理数的乘方】求n个相同因数的积的运算叫做乘方。

一般的,n个相同的因数a相乘,即,记作,读作:a的n次幂或a的n次方。

用图表表示:读作:a的n次幂或a的n次方.【乘方的意义】【有理数的乘方计算】例1:设计意图:类比乘法的符号法则,剖析乘方运算的符号法则和运算步骤。

【探·数学之理】珠穆朗玛峰是世界的最高峰,它的海拔高度是8848米。

把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。

这是真的吗? 【折纸丈量宇宙】解:0.1×230 =0.1×1073741824=107374182.4(毫米) =107374.1824米 >8848米×12=106133.16米 【体会数学之妙】设计意图:薄薄的一张纸仅仅通过30次的对折就超过了世界上最高的山峰。

七年级有理数乘方教案

七年级有理数乘方教案

七年级有理数乘方教案【篇一:七年级数学有理数的乘方教学设计】七年级数学《有理数的乘方》教学设计刘永洪一、内容分析有理数的乘方是初中数学人教版七年级上册的第一章的一个内容,是小学生升入初中学习遇过的第一种新运算,且乘方运算的运用却贯穿初中数学学习的始终,可以说乘方运算在初中数学中非常重要。

虽然它的意义与计算都比较简单,但学生学起来有很多地方易出错。

通过学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透细心的重要性,渗透数学的简洁美。

重点:乘方的意义及用乘方的定义正确地进行乘方运算;难点:能准确无误地说出乘方中的底数以及进行乘方运算;教学关健:乘方的意义及幂的结果的符号确定的规律探索和运用。

二、学情分析学生刚进初中,在前面已学过有理数的加、减、乘、除四种运算,这四种运算在小学就已熟悉了,而乘方是到初中学的第一种全新的运算,因此本课引入时要让学生觉得本课内容虽是新知识但其实也很简单,只是旧知识的引伸得来的。

从思想方法上说,可以通过学生动脑动手来培养学生探索精神和观察、分析、辩别、归纳的能力,以及逻辑思维能力、推理论证能力。

通过实际有趣的问题的分析培养学生的数感。

三、教学目标1.认知目标理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。

2.能力目标(1)使学生能够灵活地进行乘方运算。

(2)通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

3.情感目标(1)通过对实例的讲解,让学生体会数学与生活的密切联系。

(2)学会数学的转化思想,培养学生灵活处理现实问题的能力。

过程与方法:1、通过对乘方义意义的引入及幂的符号法则的探索培养学生积极探索和观察分析的能力2、通过对乘方的运算及实际问题的运用培养学生的逻辑思维能力四、教学重点、难点1.教学重点:正确理解乘方的意义,弄清底数、指数、幂等概念,掌握乘方运算法则。

人教版数学七年级上1.5.1有理数的乘方教学设计

人教版数学七年级上1.5.1有理数的乘方教学设计
通过生活中的实例,如平方、立方等,引导学生发现乘方的规律,激发学生的兴趣,从而引出乘方的定义。
2.分步骤讲解,突破难点
(1)借助具体实例,讲解乘方符号法则,帮助学生理解和记忆。
(2)通过对比不同乘方运算,引导学生发现运算简便方法,提高解题效率。
(3)设计具有挑战性的题目,让学生在解决实际问题时,运用乘方知识建立数学模型。
人教版数学七年级上1.5.1有理数的乘方教学设计
一、教学目标
(一)知识与技能
1.理解乘方的定义,知道乘方的意义是将几个相同因数相乘的运算。
2.掌握有理数乘方的符号法则,包括同号得正、异号得负的规律。
3.学会进行有理数乘方运算,能够准确计算出结果,并掌握乘方运算的简便方法。
4.能够运用乘方知识解决实际问题,如计算面积、体积等。
3.教师总结与拓展
教师对乘方知识进行总结,并提出拓展性问题,激发学生的思考,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对有理数乘方知识的掌握,培养其运用乘方解决实际问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第25页第3、4、5题,强化对有理数乘方定义和符号法则的理解。
(2)根据课堂所学的简便方法,计算以下乘方运算:(-2)^3、(-3)^4、2^5、3^6,并解释运算过程中符号的变化规律。
(3)结合实际情境,编写两个应用有理数乘方的实际问题,并与同学交流讨论解题方法。
2.选做题:
(1)探索有理数乘方在生活中的应用,如面积、体积等,撰写一篇小论文,不少于300字。
(2)研究乘方运算的规律,如负数的奇数次幂和偶数次幂的性质,整理成笔记,与同学分享。
3.思考题:
(1)为什么负数的偶数次幂等于正数,而奇数次幂等于负数?

七年级《有理数的乘方》教学设计

七年级《有理数的乘方》教学设计

七年级《有理数的乘方》教学设计一、教学内容本节课的教学内容选自人教版七年级数学上册第六章第三节《有理数的乘方》。

该章节主要介绍了有理数的乘方概念、性质及运算法则,旨在让学生掌握有理数乘方的基本概念,理解乘方的性质,能够熟练运用乘方法则进行计算。

二、教学目标1. 理解有理数乘方的概念,掌握有理数乘方的性质。

2. 能够运用有理数乘方法则进行计算,解决实际问题。

3. 培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。

三、教学难点与重点重点:有理数乘方的概念、性质及运算法则。

难点:理解有理数乘方的性质,熟练运用乘方法则进行计算。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、文具。

五、教学过程1. 情景引入利用多媒体展示生活中的实际问题,如:“一个正方形的边长为2米,求它的面积。

”引导学生思考如何用数学知识解决此类问题。

2. 知识讲解(1)介绍有理数乘方的概念:求n个相同因数积的运算,称为乘方。

(2)讲解有理数乘方的性质:同号得正,异号得负;绝对值相等。

3. 例题讲解出示例题:计算(2)^3 + (3)^2 + 2^0。

引导学生按照乘方法则进行计算,解答过程中强调负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。

4. 随堂练习出示随堂练习题:计算(5)^4 (2)^2 + 3^0。

学生独立完成,教师巡回指导,及时纠正错误。

5. 课堂小结六、板书设计板书内容:有理数乘方的概念:求n个相同因数积的运算。

有理数乘方的性质:同号得正,异号得负;绝对值相等。

乘方法则:负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。

七、作业设计作业题目:1. 计算下列各题:(1)(3)^5 (2)^3 + 4^2(2)5^0 (1)^4 + 2^3答案:(1)243 (8) + 16 = 229(2)1 1 + 8 = 8八、课后反思及拓展延伸拓展延伸:引导学生思考有理数乘方在实际生活中的应用,如计算利息、折现等问题。

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计一. 教材分析《有理数的乘方》是人教版七年级数学上册1.5.1的内容,主要介绍了有理数的乘方概念、乘方法则和乘方运算。

本节内容是在学生掌握了有理数的概念和运算基础上进行学习的,对于学生来说,乘方是一个比较抽象的概念,需要通过实例和练习来理解和掌握。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念和运算规则有一定的了解。

但是,对于乘方这一概念,学生可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。

三. 教学目标1.理解有理数的乘方概念,掌握有理数的乘方法则。

2.能够进行有理数的乘方运算,并解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.有理数的乘方概念的理解。

2.乘方法则的掌握和运用。

3.有理数乘方运算的熟练掌握。

五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握乘方概念和乘方法则。

2.问题解决法:通过解决实际问题,让学生运用乘方知识,巩固所学内容。

3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括乘方概念、乘方法则和乘方运算的实例和练习题。

2.练习题:准备一些有关有理数乘方的练习题,用于巩固和拓展学生的知识。

3.教学素材:准备一些与乘方相关的实际问题,用于引导学生运用乘方知识解决实际问题。

七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,如“一个物体每次翻倍,翻倍3次后的数量是多少?”来引导学生思考和引入乘方概念。

2.呈现(15分钟)教师通过PPT呈现乘方概念和乘方法则的定义和规则,并用具体的例子来解释和展示乘方的运算过程。

同时,教师引导学生观察和总结乘方的规律。

3.操练(10分钟)教师给出一些有理数的乘方运算题目,让学生独立完成,并及时给予反馈和解释错误的答案。

4.巩固(10分钟)教师学生进行小组合作学习,让学生分组讨论和解决一些与乘方相关的实际问题。

【有理数的乘方教案(精选多篇)】

【有理数的乘方教案(精选多篇)】

【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。

教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。

教学难点:正确理解乘方、底数、指数的概念并合理运算。

教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。

教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。

教学用具:电脑多媒体。

课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。

整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。

缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。

第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。

2、培养学生观察,归纳,猜测,推理的才能。

重点:能正确的进展有理数的混合运算。

难点:灵敏的运用运算律,使计算简单。

教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。

2.3 有理数的乘方 人教版数学七年级上册教学设计

2.3 有理数的乘方 人教版数学七年级上册教学设计

的正方形的面积为)棱长为的正方体的体积为预习检测)求几个相同因数的中,表示是_____________________________.看,,__________________________.;指数是______.5)将下列各式写成乘方(即幂)的形式;.(6)根据乘方的意义计算.①;.3.预习收获:_________________________________________.预习疑惑:___________________________________________.预习检测课前三分钟以火车接龙的形式展示预习案的答案.认真听课,把错误的及时改正,有疑惑的可纠正、补充.检测学生的预习情况,初步认识乘方,激发学生的学习兴趣.教学步骤教师活动学生活动设计意图创设情境导入新课组织学生开展自主学习活动,并完成学案上的相应内容.活动探究一:探究乘方的意义.1.问题:某种细胞每30分钟便由一个分裂成两个.经过3小时这种细胞由1个能分裂成多少个?2.思考:(1)这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次、四次呢?(用算式表示出来)(2)比较细胞分裂四次和分裂六次后的算式,有什么相同的地方?(用算式表示出来)(3)这样的运算能否像平方、立方那样简写呢?(1)认真审题,完成学案上的相应内容;(2)独立思考完成后,积极参与展示点评,并做好相应笔记.从其他学科的知识引入,突出数学在其他学科中的渗透性以及数学的重要性.合作交流解读探究组织学生归纳出乘方的相关概念,并进行巩固练习,引导学生找出乘方的相关概念中的注意事项.1.归纳:乘方的相关概念.一般地,个相同的因数相乘,即,记作,读作“的次方”.求个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在中,叫做底数,叫做指数,当看作的次方的结果时,也可读作“的次幂”.2.练习巩固相关概念.(1)的底数是_____,指数是_____,表示个_____相乘,读作_____的次方,也读作的_____,还可读作的_____.(2)表示___个相乘,读作的________,也读作的_________,其中叫做____,叫做________.(3)根据下列条件,写出幂的形式.(1)根据老师的引导归纳出乘方的相关概念;(2)认真审题,完成对应的巩固练习,并尝试找出乘方的相关概念中需要注意的事项.(1)培养学生的归纳概括、语言表达、知识迁移的能力;①的次方记作________________;②的次方记作_______________;③的次方的相反数记作_________;④的相反数的次方记作_________.(4)观察、、,比较其表示法有什么不同?教学教师活动学生活动设计意图步骤它不能单独存在,;;;.;;;)5)(6).教师活动必做题1.底数是,指数是的幂记作__________,结果是______________.2.的意义是_______________,的意义是___________________.3. 个相乘写成_____________,的次幂写成__________________.4.如果一个有理数的偶次幂是非负数,那么这个有理数是()A.正数B.负数C.0D.任何有理数5.平方等于的数是_________,立方等于的数是_________,平方等于它本身的数是_________,立方等于它本身的数是_________.6.思考:与分别如何读和计算?7.填空:(1);(2);(3);(4);(5);(6);(7);(8);(9).选做题(1)的意义________________;的意义__________________;的意义__________________.(2)试比较(为自然数,且)与的大小关系.(3)若,且,,则①与(为自然数)的关系是什么呢?②与(为自然数)的关系呢?(4)计算::①;②.。

有理数的乘方的教案(优秀6篇)-最新

有理数的乘方的教案(优秀6篇)-最新

有理数的乘方的教案(优秀6篇)作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。

那么应当如何写教案呢?下面是整理的6篇《有理数的乘方的教案》,在大家参考的同时,也可以分享一下给您的好友哦。

有理数的乘方教案篇一一、学习目标1.能确定有理数加、减、乘、除、乘方混合运算的顺序;2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;3.偶次幂的非负性的应用。

二、知识回顾1.在2+ ×(-6)这个式子中,存在着3种运算。

2.上面这个式子应该先算乘方、再算2 、最后加法。

三、新知讲解1.偶次幂的非负性若a是任意有理数,则(n为正整数),特别地,当n=1时,有。

2.有理数的混合运算顺序①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

四、典例探究1.有理数混合运算的顺序意识【例1】计算:-1-3×(-2)3+(-6)÷总结:做有理数的混合运算时,应注意以下运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

练1计算:-2×(-4)2+3-(-8)÷ +2.有理数混合运算的转化意识【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。

练2计算:3.有理数混合运算的符号意识【例3】计算:-42-5×(-2)× -(-2)3总结:在有理数运算中,最容易出错的就是符号。

符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。

要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。

2.4有理数的乘方(第2课时)教学设计+2024-2025学年北师大版数学七年级上册

2.4有理数的乘方(第2课时)教学设计+2024-2025学年北师大版数学七年级上册

第二章有理数及其运算第4节有理数的乘方(第2课时)一、学习任务分析本节内容为“有理数的乘方”的第2课时,是有理数乘方的应用和拓展。

一方面感受现实世界中的大数,培养数感;另一方面学会用科学的、简洁的方法表示绝对值较大的数,为今后用科学记数法表示绝对值较小的数奠定基础。

本节课通过发现问题、提出问题、分析问题、解决问题的过程,让学生经历观察、发现、类比、探究、归纳等一系列数学活动,获得知识,形成技能,发展思维。

二、学生起点分析学生知识技能基础:学生在小学已经学习过亿位级别的大数,能够对亿位级的大数进行读写,在本章前面几节中,学习了有理数的加、减、乘、除、乘方,能够理解并运用有理数的运算法则,同时能应用乘方进行运算。

学生活动经验基础:在“数与代数”相关知识的学习中,学生能够感受到大数与生活的密切联系,同时经历了观察、发现、类比、归纳等一系列数学活动,积累了研究问题的经验,具备了类比应用、发现总结问题的能力。

在以往的数学学习中,学生经历了合作学习的过程,具备了合作交流的能力。

三、教学目标1.经历收集生活中大数的过程,体会大数与生活的紧密联系,通过对大数的读、写,体会科学记数法表示大数的必要性。

2.会用科学记数法表示大数,能对含有较大数字的信息作出合理的解释和推断,发展数感。

3.通过发现问题、主动探索、互助合作、解决问题、归纳总结,探究科学记数法的表示方法,增强应用意识。

教学重点:会用科学记数法表示大数。

教学难点:正确掌握10n的特征以及科学记数法中n与数位的关系。

四、教学过程设计本节课设计了六个教学环节:【第一环节】创设情境,问题引入;【第二环节】层层递进,探索新知;【第三环节】典例精析,应用新知;【第四环节】拓展提升,学以致用;【第五环节】课堂小结,归纳梳理;【第六环节】布置作业,练习提高。

【第一环节(一)】创设情境,问题引入1.活动内容创设情境著名数学家华罗庚曾说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。

七年级上数学 有理数的乘方优质课教案

七年级上数学 有理数的乘方优质课教案

2.3 有理数的乘方2.3.1 乘方第1课时有理数的乘方教学目标课题 2.3.1 第1课时有理数的乘方授课人素养目标1.理解有理数乘方的意义,知道幂、底数、指数的概念.2.已知一个数,会求它的乘方,提高运算能力.3.知道有理数乘方的符号规律.4.会利用计算器进行乘方运算,进一步提高运用计算工具的能力.教学重点幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.教学难点准确理解底数、指数和幂三个概念,并能求负数的正整数次幂.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】某种细胞每30 m in便由一个分裂成两个,经过3`h这种细胞由1个能分裂成多少个?分裂方式如下所示.以后会遇到很多类似的问题,这涉及数学中的乘方运算,今天我们就来学习这方面的内容.【教学建议】鼓励学生交流讨论,列式计算,引出本节课要学习的内容.设计意图巧妙地借助科学情境,引发学生的好奇心和求知欲,调动学生的学习积极性,让学生知道数学无处不在,激发学生解决问题的强烈欲望. 活动二:问题引入,合作探究探究点乘方的意义及算法问题1(1)完成下列填空,并说一说这两个式子有什么相同点?(2)这两个过程有什么简单的写法吗?(类比单位的写法)【教学建议】让学生观察算式特点,使学生明确乘方是乘法的特殊情况.设计意图以问题串的形式,采用从具体到抽象的方法,引导学生理解有理数乘方的意义,并通过例题和练习使学生熟练乘方运算,提高运算能力.教学步骤师生活动问题2 类比以上研究,填写下面的表格: (-2)×(-2)×(-2)×(-2) (-2)4-2的4次方 (-25 )×(-25 )×(-25 )×(-25 )×(-25)(-25 )5-25的5次方【教学建议】教师酌情解释中“…”再加上“n 个”的标示,整体表示“n 个a 相乘”.【教学建议】提醒学生:乘方是一种运算,幂是乘方的结果.【教学建议】对于一个数的情况,可给学生提供一种角度:指数就是指相同乘数的个数,指数是1,就是指只有一个乘数.这种规定可为以后整式次数的讲解做铺垫.【教学建议】引导学生用多个有理数相乘的符号法则来问题3 (-2)4与-24一样吗?为什么? 不一样,(-2)4表示-2的4次方,-(2×2×2×2)记作-24,-24表示2的4次方的相反数. 一般地,n 个相同的乘数a 相乘,即,记作a n ,读作“a 的n 次方”. 概念引入:求n 个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂.在a n中,a 叫作底数,n 叫作指数.当a n看作a 的n 次方的结果时,也可读作“a 的n 次幂”.试一试:填一填下面图示中的空.注意:一个数可以看作这个数本身的1次方.例如,5就是51.指数1通常省略不写. 例1 (教材P 51例1) 计算:(1)(-4)3; (2)(-2)4; (3)(-23)3.解:(1)(-4)3=(-4)×(-4)×(-4)=-64;(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16;(3)(-23 )3=(-23 )×(-23 )×(-23 )=-827 .例1变式 计算: (1)(-1)5; (2)(-0.5)2; (3)(-13)4.解:(1)(-1)5=(-1)×(-1)×(-1)×(-1)×(-1)=-1; (2)(-0.5)2=(-0.5)×(-0.5)=0.25; (3)(-13 )4=(-13 )×(-13 )×(-13 )×(-13 )=181. 思考:(1)结合例1和例1变式,你发现负数的幂的正负与指数有什么关系?当指数是奇数时,负数的幂是负数; 当指数是偶数时,负数的幂是正数.发现负数的幂的符号规律,用有理数的乘法法则得出正数和0的幂的符号规律,最后总结出有理数乘方的符号规律.教学步骤 师生活动设计意图(2)如果幂的底数是正数,那么这个幂有可能是负数吗?不可能,正数的任何次幂都是正数. 归纳总结:根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.例2 (教材P 52例2) 用计算器计算(-8)5和(-3)6.解:用带符号键的计算器,有显示结果为-32768;显示结果为729.因此,(-8)5=-32`768,(-3)6=729. 【对应训练】教材P 52练习.,让学生了解如何用计算器进行乘方运算,进一步培养学生使用计算工具的意识与能力.活动三:知识延伸,巩固升华 例3 计算:(1)-(-32 )2; (2)-(-3)3;(3)-(-1A14)3; (4)(-4)2×(-2)3.【教学建议】 选取学生代表上台板演,其他学生在纸上作答,提设计意图 解:(1)-(-32 )2=-[(-32 )×(-32 )]=-94; (2)-(-3)3=-[(-3)×(-3)×(-3)]=-(-27)=27; (3)-(-114 )3=-[(-54 )×(-54 )×(-54 )]=-(-12564 )=12564; (4)(-4)2×(-2)3=16×(-8)=-128. 【对应训练】计算:(1)-(-27 )2;(2)-(-6)3;(3)-(-113 )4;(4)(-22)×(-3)3.解:(1)-(-27 )2=-[(-27 )×(-27 )]=-449; (2)-(-6)3=-[(-6)×(-6)×(-6)]=-(-216)=216;(3)-(-1A13 )4=-[(-43 )×(-43 )×(-43 )×(-43 )]=-25681; (4)(-22)×(-3)3=(-4)×(-27)=108. 醒学生:(1)底数是带分数时可先将带分数化成假分数再计算;(2)对于例3(4)和对应训练的第(4)问,可将幂看作单独的一个数,先算出幂后再来计算乘法.通过例题和练习帮助学生进一步掌握乘方运算,熟悉负数的幂的符号规律,并为后续的混合运算做铺垫.活动四:【随堂训练】,【课堂总结】【随堂训练】 见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】 师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是乘方?在乘方中,幂、底数、指数分别指的是什么?2.怎样计算一个有理数的乘方?3.有理数的乘方的符号规律是怎样的? 【知识结构】【作业布置】1.教材P 56习题2.3第1,2,7,11,12题.2.《创优作业》主体本部分相应课时训练.) 教学步骤师生活动板书设计2.3 有理数的乘方2.3.1 乘方第1课时有理数的乘方1.乘方的意义及相关概念2.有理数乘方的计算3.有理数乘方的符号规律教学反思本节课从一个科学情境出发,激发学生学习兴趣,通过具体的例子,逐步引入乘方的概念,使学生体会到乘方与乘法的关系,进而理解乘方运算,同时体会幂、底数、指数之间的关系.接着通过例题和练习进一步理解乘方的意义,并归纳总结有理数乘方的符号规律,掌握乘方运算,提高推理能力和运算能力.同时学习用计算器计算乘方的操作,进一步培养学生利用计算工具的意识和能力.然后巩固加强学生对于负数的幂的符号规律的理解,并为后续的混合运算做一点铺垫,整体效果较好.解题大招一利用偶次幂的非负性解决问题(1)一个数的偶次幂和绝对值都是非负数.(2)若几个非负数的和为0,则每个非负数都是0.(3)若一个数的正整数次幂为0,则这个数为0.例1(1)若(x-4)2+|y+1|=0,则x的值为4,y的值为-1.(2)如果(a+3)2+|b-2|=0,那么(a+b)2 025=-1.解析:(1)因为(x-4)2+|y+1|=0,(x-4)2是非负数,|y+1|是非负数,所以(x -4)2=|y+1|=0,所以x=4,y=-1.(2)因为(a+3)2+|b-2|=0,(a+3)2是非负数,|b-2|是非负数,所以(a+3)2=|b-2|=0,所以a=-3,b=2.所以(a+b)2 025=[(-3)+2]2 025=(-1)2 025=-1.解题大招二互为相反数的两个数的幂与几个特殊值的幂互为相反数的两个数的幂①互为相反数的两个数的奇次幂仍互为相反数,即-a m=(-a)m(m为奇数);②互为相反数的两个数的偶次幂相等,即a n=(-a)n(n为偶数)几个特殊值的幂①0的任何正整数次幂都是0;②1的任何正整数次幂都是1;③-1的奇次幂都是-1,-1的偶次幂都是1注意如果一个数的偶次幂是正数,那么这个幂的底数有两个,且互为相反数例2(1)下列各组数中,互为相反数的有(B)①(-3)3和33;②(-1)4和-14;③23和32;④(-2)3和-23.A.④B.①②C.①②③D.①②④(2)计算:(-1)2n+(-1)2n+1= 0 (n为正整数).培优点 有理数乘方的应用例 一根1 m 长的铜丝,第一次剪去铜丝的14 ,第二次剪去剩下铜丝的14 ,如此剪下去,第2 025次剪完后剩下铜丝的长度是( CA .(14)2 025m B .(14)2 024m C .(34)2 025m D .(34)2 024m解析:第一次剪去铜丝的14 ,剩下铜丝的长度是1×(1-14 )=34 m ,第二次剪去剩下铜丝的14 ,剩下铜丝的长度是34 ×(1-14 )=(34 )2,……,依次类推,第2 025次剪完后剩下铜丝的长度是(34 )2 025m .故答案为C .。

北师大版七年级上册2.9有理数的乘方优秀教学案例

北师大版七年级上册2.9有理数的乘方优秀教学案例
(三)学生小组讨论
1.设计具有挑战性的问题,让学生在小组讨论的过程中,自主探索有理数乘方的规律。
2.引导学生分享自己的思考和观点,培养学生的团队合作意识,提高学生的数学思维能力。
(四)总结归纳
1.对有理数乘方的概念和法则进行总结,让学生形成系统的知识结构。
2.总结有理数乘方在实际问题中的应用,让学生明确有理数乘方的意义和价值。
2.利用数学情境导入:通过计算一个数的平方,引导学生思考如何计算一个数的立方,从而引出有理数乘方的概念和法则。
(二)讲授新知
1.有理数乘方的概念:引导学生理解有理数乘方的意义,解释有理数乘方的运算规律。
2.有理数乘方的法则:讲解有理数乘方的运算规则,让学生掌握有理数乘方的计算方法。
3.有理数乘方的应用:通过实例讲解有理数乘方在实际问题中的应用,让学生学会运用有理数乘方解决实际问题。
在设计本节课的教学案例时,我充分考虑了学生的学情。七年级的学生已经具备了一定的数学基础,对于有理数的加减乘除运算有一定的了解。但是,对于乘方的概念和法则可能还存在一定的困惑。因此,在教学过程中,我注重引导学生从实际问题出发,通过观察、分析、归纳等方法,自主探索有理数乘方的规律,从而达到理解并掌握有理数乘方的目的。
2.探究学习法:引导学生自主探索有理数乘方的规律,培养学生的自主学习能力。
在教学过程中,我会组织学生进行小组讨论,让学生通过自主探索有理数乘方的规律,培养学生的自主学习能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情。
在教学过程中,我会注重激发学生的学习兴趣,通过设置一些有趣的例子和问题,让学生感受到数学学科的趣味性,从而培养学生的学习热情。
4.反思与评价:本节课引导学生对自己学习过程进行反思,总结学习经验和教训,提高了学生的自我学习能力。同时,对学生的学习成果进行评价,及时给予反馈,激发了学生的学习动力。

2.7《有理数的乘方》教案

2.7《有理数的乘方》教案
另外,我发现学生们在分组讨论和实践活动中表现得相当积极,他们能够将乘方的知识应用到解决实际问题中,这让我感到很欣慰。不过,我也注意到,在小组讨论的过程中,有些学生参与度不高,可能是由于他们对乘方的知识掌握得不够牢固,导致在讨论中缺乏自信。因此,我计划在下一节课前,对这部分学生进行一些额外的辅导和鼓励,帮助他们建立起信心。
1.数学抽象:通过有理数乘方的学习,使学生能够从具体实例中抽象出乘方的概念,理解数学表达式的内涵,发展数学抽象能力。
2.逻辑推理:引导学生运用已知的数学性质和定理,推理出有理数乘方的相关性质,培养逻辑思维和推理能力。
3.数学建模:结合实际例题,培养学生运用乘方知识建立数学模型,解决现实问题的能力,增强数学应用意识。
(1)有理数乘方的定义:理解有理数乘方的概念,掌握乘方的表示方法,如a^n(a为有理数,n为整数)。
举例:教师可以通过具体的实例,如2的3次方(2^3),让学生理解乘方的意义,即2自乘3次。
(2)有理数乘方的性质:掌握负数的奇数次幂和偶数次幂的性质,以及非零有理数的零次幂等于1。
举例:教师可引导学生通过计算-2的奇数次幂(如-2^3)和偶数次幂(如-2^4),让学生发现性质并加以总结。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相同数的连乘的情况?”比如,计算一块正方体木块的体积,就需要用到2的3次方。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方的奥秘。
在今天《有理数的乘方》这节课的教学过程中,我注意到了几个值得反思的地方。首先,学生们对于乘方的概念理解整体上是顺利的,但仍有部分学生在具体的运算过程中出现了混淆。特别是在处理负数的奇数次幂和偶数次幂时,一些学生还是容易犯错。这让我意识到,在今后的教学中,我需要更多地将理论讲解与实际例题结合起来,通过具体案例来加深学生对乘方性质的理解。

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。

来参考自己需要的教案吧!以下是人见人爱的小编分享的5篇七年级数学《有理数的乘方》教案设计,希望能够满足亲的需求。

七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

有理数的乘方教学设计教案

有理数的乘方教学设计教案

有理数的乘方教学设计-教案第一章:导入1.1 教学目标让学生了解有理数乘方的概念。

让学生掌握有理数乘方的运算规则。

1.2 教学内容引入有理数乘方的概念,解释乘方的意义。

通过实际例子,讲解有理数乘方的运算规则。

1.3 教学方法通过生活实例引入有理数乘方的概念,激发学生兴趣。

使用PPT展示有理数乘方的运算规则,让学生跟随讲解。

提供例题,让学生分组讨论和解答,加深理解。

1.4 教学评估通过提问方式检查学生对有理数乘方概念的理解。

设计练习题,让学生独立完成,评估学生对运算规则的掌握。

第二章:有理数的乘方运算规则2.1 教学目标让学生掌握有理数乘方的运算规则。

让学生能够运用运算规则进行有理数的乘方运算。

2.2 教学内容讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。

提供实际例子,让学生理解和运用运算规则。

使用PPT展示有理数乘方的运算规则,让学生跟随讲解。

提供例题,让学生分组讨论和解答,加深理解。

设计练习题,让学生独立完成,巩固运算规则。

2.4 教学评估通过提问方式检查学生对有理数乘方运算规则的理解。

设计练习题,让学生独立完成,评估学生对运算规则的掌握。

第三章:有理数的乘方运算练习3.1 教学目标让学生能够运用有理数乘方的运算规则进行计算。

提高学生的运算速度和准确性。

3.2 教学内容提供一系列有理数乘方的练习题,包括不同难度的题目。

指导学生运用运算规则,进行计算和解答。

3.3 教学方法引导学生独立完成练习题,提供必要的帮助和指导。

鼓励学生互相交流和讨论,共同解决问题。

通过PPT展示正确答案,让学生核对和纠正错误。

3.4 教学评估通过提问方式检查学生对有理数乘方运算的掌握情况。

评估学生的运算速度和准确性,及时给予反馈和指导。

第四章:有理数的乘方应用让学生理解有理数乘方在实际问题中的应用。

培养学生解决实际问题的能力。

4.2 教学内容提供实际问题,让学生运用有理数乘方的运算规则进行解决。

讲解实际问题中的数量关系和运算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我的教学设计
生在计算()n
a -与n a -时就很容易混淆,另外在进行分数的乘方运算时学生容易忘记加括
号,因此在教学中我都安排了相关的具有针对性的问题来突破难点。

六、教学过程 教师活动
学生活动
设计意图
(一)创景设问,揭示目标
1.导入:出示拉拉面示意图
下面是拉拉面示意图,当捏合6次时,一共有多少根拉面?
2.出示学习目标:
(1)掌握有理数乘方的概念及书写方法;
(2)能正确进行乘方运算; (3)理解有理数乘方的意义。

学生产生疑问并讨论。

学生齐读学习目标。

吸引学生的注意力,唤起学生的好奇心,激发学生兴趣,引出课题。

让学生明白本节课要学什么,学到什么程度。

(二)自主探究,质疑问难
1.出示自学指导:
(1)什么叫乘方?什么叫幂:它们有什么联系与区别?
(2)在n
a 中,底数和指数分别是什么?表示什么意义?一个数或一个字母的底数和指数又分别是什么呢?
(3)当底数是负数或分数时,需要注意什么?
(4)3
2和23表示的意义一样吗?为什
么?
32)(-与3
2-呢? 给学生10分钟时间独立看书。

2.小组合作,讨论自学指导中的问题。

学生独立看书。

小组讨论自学指导中问题的答案
通过自主学习,培养学生分析问题,解决问题的能力。

通过分组讨论,提高学生合作交流的意识。

(三)展示提升,释疑解难 教师提出问题: 自学检测: 1.填空:。

相关文档
最新文档