概率论与数理统计学习地总结

合集下载

学习概率论总结报告(个人总结)

学习概率论总结报告(个人总结)

实用汇总报告学习概率论心得思想到在大二刚开学我接触到了概率论与数理统计这门课程,虽然在高中时已经接触到了许多跟概率相关的东西,比如随机事件、古典概型以及一系列的计算方法但是在接触到更加高深的层次后还是有许多不一样的感受。

在课程开始之初老师就告诉我们这门课不是很难,关键还在于上课认真听讲。

通过老师的简单介绍,我了解到概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。

对于作为信息管理与信息系统专业的我,其日后的帮助也是很大的,尤其是对于日后电脑方面的操作有着至关重要的辅助作用。

在这门课程中我们首先研究的是随机事件及一维随机变量二维随机变量的分布和特点。

而在第二部分的数理统计中,它是以概率论为理论基础,根据试验或者观察得到的数据来研究随机现象,对研究对象的客观规律性做出种种估计和判断。

整本书就是重点围绕这两个部分来讲述的。

初学时,就算觉得理解了老师的讲课内容,但是一联系实际也会很难以应用上,简化不出有关所学知识的模型。

在期末复习中,自己重新对于整个书本的流程安排还有每个章节的重点重新复习一遍,才觉得有了点头绪。

在长达一个学期的学习中,我增长了不少课程知识,同时也获得了好多关于这门课程的心得思想到。

整个学期下来这门课程给我最深刻的思想到就是这门课程很抽象,很难以理解,但是这门课程给我带来了一种新的思维方式。

前几章的知识好多都是高中讲过的,接触下来觉得挺简单,但是后面从第五章的大数定理及中心极限定理就开始是新的内容了。

我觉得学习概率论与数理统计最重要的就是要学习书本中渗透的一种全新的思维方式。

统计与概率的思维方式,和逻辑推理不一样,它是不确定的,也就是随机的思想。

这也是一我思维能力最主要的体现,整个学习过程中要紧紧围绕这个思维方式进行。

这些都为后面的数理统计还有参数估计、检验假设打下了基础。

其次,在所有数学学科中,概率论是一门具有广泛应用的数学分支,是一门真正是把实际问题转换成数学问题的学科。

概率论与数理统计课程总结

概率论与数理统计课程总结

概率论与数理统计课程总结概率论的重要观点和关键发现1. 概率的定义概率是描述不确定性的数学工具,它告诉我们一个事件发生的可能性程度。

概率可以用来描述随机试验的结果,并帮助我们理解事件发生的规律。

2. 概率的公理化定义概率的公理化定义由科尔莫哥洛夫公理系统提出,包括三个公理:非负性(概率值非负)、规范性(样本空间的概率为1)和可加性(互斥事件的概率加起来等于它们分别的概率之和)。

3. 随机变量随机变量是概率论中的一个重要概念,它将样本空间中的元素映射到实数集上。

随机变量可以是离散型的(取有限或无限个值)或连续型的(取某一区间内的任意值)。

4. 概率分布随机变量的概率分布描述了随机变量取各个值的概率,可以用概率质量函数(对于离散型随机变量)或概率密度函数(对于连续型随机变量)来表示。

5. 期望和方差期望是随机变量的平均值,反映了随机变量的中心位置。

方差是随机变量离其期望值的平均偏离程度,反映了随机变量的离散程度。

6. 大数定律大数定律指出,随着试验次数的增加,随机事件的频率会趋近于其概率。

这意味着随机事件的长期平均结果会逼近理论结果。

7. 中心极限定理中心极限定理指出,当样本容量足够大时,样本均值的分布将近似于正态分布。

这是由于多个独立随机变量之和的分布趋近于正态分布。

数理统计的重要观点和关键发现1. 统计推断统计推断是通过样本数据对总体特征进行推断的方法。

它分为参数统计推断和非参数统计推断。

参数统计推断是假设总体具有某种概率分布,并对总体参数进行估计和假设检验。

非参数统计推断则更加自由,不需要对总体分布作出假设。

2. 抽样分布抽样分布是随机抽样统计量的概率分布。

它的性质决定了参数的估计和假设检验的准确性。

常见的抽样分布有正态分布、t分布、卡方分布和F分布。

3. 置信区间置信区间是对总体参数的一个范围估计,反映了估计的不确定性。

置信区间的计算方法依赖于样本数据和抽样分布的性质。

4. 假设检验假设检验是用来检验关于总体参数的假设是否成立的统计方法。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。

下面将对概率论与数理统计的一些重要知识点进行总结。

一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。

- 概率:用来描述随机事件发生的可能性大小的数值。

2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。

- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。

3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。

- 离散随机变量:取有限个或可列个数值的随机变量。

- 连续随机变量:取无限个数值的随机变量。

4. 期望与方差- 期望:反映随机变量平均取值的数值。

- 方差:反映随机变量取值偏离期望值的程度。

5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。

- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。

二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。

- 抽样分布:指用统计量对不同样本进行计算所得到的分布。

2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。

- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。

3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。

- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。

4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。

- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。

5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。

概率论与数理统计总结

概率论与数理统计总结

概率论与数理统计总结3、分布函数与概率的关系 ∞<<∞-≤=x x X P x F ),()()()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<4、离散型随机变量的分布函数 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B nk p p C k X P k n k k n,,1,0,)1()( =-==- 泊松定理 0lim >=∞→λnn np有,2,1,0!)1(lim ==---∞→k k ep p Ckkn n knk nn λλ(3) 泊松分布 )(λP =,2,1,0,!)(===-k k ek X P kλλ(5)几何分布 p q k p q k X P k -====-1,2,1}{1dt t f x F x ⎰∞-=)()(则称X 为连续型随机变量,其中函数f(x)称为随机变量X 的概率密度函数, 2、分布函数的性质:(1)连续型随机变量的分布函数F(x )是连续函数。

(2)对于连续型随机变量X 来说,它取任一指定实数a 的概率均为零,即P{X=a }=0。

3、常见随机变量的分布函数 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x ex x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x ex f x 222)(21)(σμσπ⎰∞---=xt tex F d 21)(222)(σμσπN (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π2、连续型随机变量函数的分布: (1)分布函数法;(){}⎰⎰<==∈=yx g X l X yYdxx f dx x f l X P y F y)()()((2)设随机变量X 具有概率密度f X (x ),又设函数g(x )处处可导且恒有g '(x )>0 (或恒有g '(x )<0) ,则Y=g(X )的概率密度为()()[]()⎩⎨⎧<<'=其他βαy y h y h f y f XY 其中x =h(y )为y =g(x )的反函数,()()()()()()∞+∞-=∞+∞-=g g g g ,m ax ,,m in βα 3、 二维连续型随机变量(1)联合分布函数为dudvv u f y x F y x ⎰⎰∞-∞-=),(),(函数f (x ,y )称为二维向量(X ,Y )的(联合)概率密度.其中: 0),(≥y x f ,⎰⎰∞∞-∞∞-=1),(dxdy y x f(2)基本二维连续型随机向量分布均匀分布:⎪⎩⎪⎨⎧∈=其他),(1),(G y x Ay x f二维正态分布:+∞<<-∞+∞<<∞--=-+------y x ey x f y y x x ,121),(])())((2)([)1(212212222212121212σμσσμμρσμρρσπσ3、离散型边缘分布律:4、 连续型边缘概率密度 ,),()(dy y x f x f X⎰∞+∞-= dx y x f y f Y⎰∞+∞-=),()(F (x ,y )=F x (x )F Y (y ) 则称随机变量X 和Y 是相互独立的3、连续型随机变量独立的等价条件 设(X ,Y )是连续型随机变量,f (x ,y ),f x (x ),f Y (y )分别为(X ,Y )的概率密度和边缘概率密度,则X 和Y 相互独立的充要条件是等式 f (x ,y ) = f x (x )f Y (y ) 对f (x ,y ),f x (x ),f Y (y )的所有连续点成立. 五、条件分布1、离散型随机变量的条件分布律: (3)条件分布函数:2、连续型随机变量的条件分布 (1)条件分布函数⎰⎰∞-∞-==x Y Y X Y x YX du y f y u f y x F y f du y u f y x F )(),()|()(),()|(||或写成,(2)条件概率密度在Y=y 条件下X 的条件概率密度)(),()|(|y f y x f y x fY Y X =同理 X=x 条件下X 的条件概率密度)(),()|(|x f y x f x y f X X Y =六、多维随机函数的分布 1、离散型随机变量函数分布:二项分布:设X 和Y 独立,分别服从二项分布b (n 1,p ), 和b (n 2,p ),则 Z=X+Y 的分布律:Z ~b (n 1+n 2,p ).泊松分布:若X 和Y 相互独立,它们分别服从参数为21,λλ的泊松分布,则Z=X+Y 服从参数为21λλ+的泊松分布。

概率论与数理统计总结

概率论与数理统计总结

第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。

5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。

(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。

(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。

(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。

用交并补可以表示为。

(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。

8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

以下是对概率论与数理统计知识点的超详细总结。

一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

随机事件通常用大写字母 A、B、C 等来表示。

(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。

(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。

2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。

3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。

4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。

5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。

6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。

(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。

2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。

3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。

概率与数理统计学习心得模板(3篇)

概率与数理统计学习心得模板(3篇)

概率与数理统计学习心得模板概率与数理统计是一门重要的数学学科,它在现代科学和工程技术中发挥着重要的作用。

在学习过程中,我从理论和实践两个方面深入学习了概率与数理统计的基本理论、方法和应用。

通过掌握了概率与数理统计的相关知识和技能,我对统计数据的分析和概率事件的评估能力得到了提升。

以下是我在学习概率与数理统计过程中的心得体会。

一、对概率的理解和应用概率是研究随机事件发生的概率大小的一种数学方法。

在学习概率的过程中,我通过学习了概率的定义、性质、基本运算法则,并了解了概率分布、随机变量等重要概念。

通过掌握了这些基本理论和方法,我能够准确地评估事件的概率。

在应用方面,概率可以帮助我们对未知事件进行预测和分析,为决策提供科学的依据。

通过学习概率与数理统计,我了解到概率在风险评估、投资分析、财务管理等领域中的应用。

例如,通过对市场走势和股票价格的概率分析,可以为投资决策提供指导;在保险业中,可以通过概率分析来确定保险赔付数额,为保险公司和投保人提供保障。

这些应用让我深刻地认识到概率在现实生活中的重要性和实用性。

二、对数理统计的理解和应用数理统计是概率论在统计实践中的应用。

在学习数理统计的过程中,我熟悉了一些重要的概念和方法,如样本、总体、估计、假设检验等。

掌握了这些知识后,我能够对收集到的数据进行分析,并对总体的特征进行推断。

在应用方面,数理统计可以帮助我们通过样本数据对总体属性进行推断。

通过学习数理统计,我了解到统计的基本过程,即数据的收集、整理、分析和解释的过程。

在实际应用中,数理统计可以应用于社会调查、市场调研、医学研究等领域。

例如,在社会调查中,可以通过对样本数据的分析,推断出总体的特征,从而为社会治理和决策提供支持;在医学研究中,可以通过对受试者的数据进行分析,推断出新药的疗效,从而为临床治疗提供依据。

这些应用使我深刻认识到数理统计在现实生活中的广泛应用。

三、理论与实践相结合在学习概率与数理统计的过程中,理论与实践是密不可分的。

概率论与数理统计学习报告

概率论与数理统计学习报告

概率论与数理统计学习报告步入大二,我们开始学习『概率论与数理统计』这门课程。

如名称所述,课程内容分为两部分:概率论和数理统计。

这两部分是有着紧密联系的。

在概率论中,我们研究的随机变量,都是在假定分布已知的情况下研究它的性质和特点;而在数理统计中,实在随机变量分布未知的前提下通过对所研究的随机变量进行重复独立的观察,并对观察值对这些数据进行分析,从而对所研究的随机变量的分布做出推断。

因此,概率论可以说是数理统计的基础。

概率论与数理统计是研究带有随机性的各类问题或模型的基础,以我个人理解,如果说微积分、线性代数只是分析数学、或是说解题的工具,那么概率论才是真正把实际问题转换为数学问题的学问,因为它解决的并非纯数学问题,不是给你一个命题让你去解决,而是恰恰是让你去构思命题,进而构建模型来想法设法解决实际问题。

基于这些基础,概率论与数理统计这门学科应用相当广泛,几乎渗透到所有科学技术领域,工业、农业、国防与国民经济的各个部门都要用到它,例如,在工业生产中人们应用概率统计方法进行质量控制、工业试验设计、产品抽样检查等等,概率论与数理统计的理论与方法也正向各基础学科、工程学科、经济学科渗透产生了各种边缘性的应用学科。

作为一名工科生学好概率论与数理统计有着深远的意义,能够帮助我们将来在生活及工作中分析问题。

概率论有着悠久的历史,它的起源虽然有点不光彩,因与赌博有关。

但正是有了赌博这一现实问题才有了概率学发展的契机。

英雄莫问出处,虽然概率学与数理统计的出身不光彩,但不可否认它在人类发展的进程中起到了不可或缺的作用。

本学期到此,我们就学了四章内容,我就深感生活处处存在概率,深感学以致用的乐趣,虽然在以前高中的时候也学过概率,但是只是浅尝辄止,仅仅满足于应付高考,但仅是不同往日,没有了高考压力,学习概率论与数理统计的兴趣更浓了,因为的确能用于生活中的方方面面,真的不想微积分一样学了,但是生活中却用不了,仅仅开阔了一下思维而已。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论1.随机试验和样本空间:随机试验是具有不确定性的试验,其结果有多个可能的取值。

样本空间是随机试验所有可能结果的集合。

2.事件及其运算:事件是样本空间中满足一定条件的结果的集合。

事件之间可以进行并、交、补等运算。

3.概率的定义和性质:概率是描述随机事件发生可能性的数值。

概率具有非负性、规范性和可列可加性等性质。

4.条件概率和独立性:条件概率是在已知一事件发生的条件下,另一事件发生的概率。

事件独立表示两个事件之间的发生没有相互关系。

5.全概率公式和贝叶斯公式:全概率公式是一种计算事件概率的方法,将事件分解成互斥的多个事件的概率之和。

贝叶斯公式是一种用于更新事件概率的方法。

6.随机变量和分布函数:随机变量是样本空间到实数集的映射,用来描述试验结果的数值特征。

分布函数是随机变量取值在一点及其左侧的概率。

7.常用概率分布:常见的概率分布包括离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布)。

8.数学期望和方差:数学期望是随机变量的平均值,用于描述随机变量的中心位置。

方差是随机变量离均值的平均距离,用于描述随机变量的分散程度。

二、数理统计1.统计量和抽样分布:统计量是对样本数据进行总结和分析的函数。

抽样分布是统计量的概率分布,用于推断总体参数。

2.估计和点估计:估计是利用样本数据对总体参数进行推断。

点估计是利用样本数据得到总体参数的一个具体数值。

3.估计量的性质和评估方法:估计量的性质包括无偏性、有效性和一致性等。

评估方法包括最大似然估计、矩估计等。

4.区间估计:区间估计是对总体参数进行估计的区间范围。

置信区间是对总体参数真值的一个区间估计。

5.假设检验和检验方法:假设检验是在已知总体参数的条件下,对总体分布做出的统计推断。

检验方法包括参数检验和非参数检验。

6.正态总体的推断:当总体近似服从正态分布时,可以利用正态分布的性质进行推断。

7.方差分析和回归分析:方差分析用于比较两个或多个总体均值是否相等。

(完整版)概率论与数理统计知识点总结

(完整版)概率论与数理统计知识点总结

p k q nk
其中 q 1 p,0 p 1, k 0,1,2,, n ,
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) .
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0—1)分布,
所以(0-1)分布是二项分布的特例。
泊 松 设随机变量 X 的分布律为
1
(完整版)概率论与数理统计知识点总结
A—B,也可表示为 A—AB 或者 AB ,它表示 A 发生而 B 不发生的事
件.
A、B 同时发生:A B,或者 AB。A B=Ø ,则表示 A 与 B 不可能 同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是
互不相容的.
—A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A .它表 示 A 不发生的事件。互斥未必对立。
P(A)= (1) (2 ) (m ) = P(1) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(6)几 若随机试验的结果为无限不可数并且每个结果出现的可能性均
1
(完整版)概率论与数理统计知识点总结
何概型 匀,同时样本空间中的每一个基本事件可以使用一个有界区域 来描述,则称此随机试验为几何概型。对任一事件 A,
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) .
对于离散型随机变量, F(x) pk ; xk x x
对于连续型随机变量, F(x) f (x)dx .
概型 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用

概率论与数理统计 学习心得(4篇)

概率论与数理统计 学习心得(4篇)

概率论与数理统计学习心得概率论与数理统计是一门非常重要的数学课程,通过学习这门课程,我对概率论和统计学有了更深入的理解。

在学习的过程中,我遇到了不少困难和挑战,但是通过努力和坚持,我逐渐克服了这些困难,取得了一些进步。

首先,在学习概率论的时候,我发现最困难的是理解概率的概念和计算方法。

概率是描述随机事件发生可能性大小的数值,通过学习概率分布、事件独立性和条件概率等概念,我对概率的理解逐渐深入。

但是,计算概率的方法和公式很多,有时候很难确定使用哪种方法,这给我造成了一定的困扰。

为了克服这个困难,我重点学习了概率计算的常用方法,如排列组合、二项分布、泊松分布等,并且通过大量的练习加强了对这些方法的掌握。

其次,在学习数理统计的时候,我觉得最困难的是理解和应用抽样分布的概念。

抽样分布是指从总体中抽取一定数量的样本,然后对样本进行统计推断。

对于不同的总体和样本容量,抽样分布的形式和性质都不一样。

我通过学习正态分布、t分布和卡方分布等抽样分布的性质和应用,逐渐掌握了如何通过样本对总体进行推断的方法。

同时,我也通过实例分析和模拟实验等方法,加深了对抽样分布的理解和掌握。

此外,在学习数理统计的过程中,我还遇到了处理实际问题的困难。

数理统计是将概率论的方法应用到实际问题中,通过收集和分析数据,对总体进行推断和决策。

在实际问题中,要根据实际情况选择合适的方法和模型,并进行假设检验和置信区间估计。

这需要我对问题进行合理的抽象和建模,并运用数学方法进行计算和分析。

在实际问题中,往往还需要考虑数据的质量和可靠性,对数据进行清洗和处理。

通过不断的实践和探索,我逐渐提高了解决实际问题的能力。

总的来说,通过学习概率论与数理统计,我不仅掌握了其中的概念和方法,还培养了分析问题和解决问题的能力。

概率论与数理统计是一门与生活密切相关的学科,它在风险管理、市场预测、医学诊断等领域都有广泛的应用。

我相信通过将所学知识运用到实际问题中,并不断学习和实践,我可以不断提升自己在这个领域的能力,并为社会做出积极的贡献。

《概率论与数理统计》的课程学习心得

《概率论与数理统计》的课程学习心得

《概率论与数理统计》的课程学习心得《概率论与数理统计》的课程学习心得篇一:《概率论与数理统计》课程学习心得有人说:“数学来源于生活,应用于生活。

数学是有信息的,信息是可以提取的,而信息又是为人们服务的。

”那么概率肯定是其中最为重要的一部分。

巴特勒主教说,对我们未来说,可能性就是我们生活最好的指南,而概率即可能。

概率论与数理统计是现代数学的一个重要分支。

近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。

主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。

极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。

概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。

应用统计学方法的产生主要来源于实质性学科的研究活动中,例如,最小二乘法与正态分布理论源于天文观察误差分析,相关与回归分析源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究,抽样调查方法源于政府统计调查资料的搜集等等。

本研究方向在学习概率论、统计学、随机过程论等基本理论的基础上,致力于概率统计理论和方法同其它学科交叉领域的研究,以及统计学同计算机科学相结合而产生的数据挖掘的研究。

此外,金融数学也是本专业的一个主要研究方向。

它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。

生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。

第一个人去抽,他的中奖概率是25%,结果没抽到。

第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。

第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。

2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。

3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。

4.概率的性质:概率具有非负性、规范性、可列可加性等性质。

二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。

2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。

3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。

4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。

三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。

2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。

正态分布在自然界和社会现象中广泛存在。

3.其他分布:包括卡方分布、指数分布、F分布、t分布等。

四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。

2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。

包括点估计和区间估计两种方法。

3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。

包括单样本假设检验、两样本假设检验、方差分析等。

五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。

2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。

六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。

2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

2024年学习概率与数理统计总结(三篇)

2024年学习概率与数理统计总结(三篇)

2024年学习概率与数理统计总结概率与数理统计是一门研究随机现象及其规律的数学学科,广泛应用于自然科学、社会科学、工程技术等领域。

____年,我在学习概率与数理统计的过程中,深入理解了其基本概念、理论框架和应用方法,逐渐掌握了分析和解决实际问题的能力。

以下是我的总结,共____字。

第一部分:概率论基础1. 概率的基本概念1.1 随机试验与样本空间1.2 事件与事件的概率1.3 概率的性质与运算1.4 条件概率与独立性1.5 贝叶斯定理与全概率公式2. 概率分布2.1 随机变量与概率分布函数2.2 离散型随机变量与概率质量函数2.3 连续型随机变量与概率密度函数2.4 随机变量的函数的分布2.5 多维随机变量的联合分布3. 随机变量的数字特征3.1 期望、方差和标准差3.2 协方差、相关系数与独立性3.3 经典概型的数字特征4. 大数定律与中心极限定理4.1 大数定律的概念和类型4.2 中心极限定理的概念和形式第二部分:数理统计基础1. 统计推断的基本思想1.1 参数估计和假设检验的基本概念1.2 点估计与区间估计1.3 假设检验的步骤和原理2. 参数估计2.1 最大似然估计方法及其性质2.2 矩估计方法及其性质2.3 无偏估计与有效估计2.4 偏差和均方误差3. 置信区间估计3.1 单个参数的置信区间3.2 多个参数的置信区间4. 假设检验4.1 基本概念和步骤4.2 正态总体的参数假设检验4.3 非正态总体的参数假设检验4.4 假设检验中的错误和功效函数第三部分:数理统计方法1. 统计分布检验1.1 卡方分布及其检验1.2 t分布及其检验1.3 F分布及其检验2. 方差分析2.1 单因素方差分析2.2 多因素方差分析2.3 协方差分析3. 相关与回归分析3.1 相关分析3.2 简单线性回归分析3.3 多元线性回归分析4. 非参数统计方法4.1 秩和检验4.2 秩和检验4.3 秩和检验4.4 Wilcoxon检验第四部分:实际应用及案例分析1. 生物医学领域的概率与数理统计应用1.1 生物样本分析的统计方法1.2 临床试验的统计设计和分析1.3 遗传学研究中的统计方法2. 社会科学领域的概率与数理统计应用2.1 调查数据的统计分析2.2 社会行为与态度的统计分析2.3 教育统计与评估分析3. 工程技术领域的概率与数理统计应用3.1 可靠性分析与维修3.2 质量控制与工艺改进3.3 金融与风险管理的统计分析通过学习概率与数理统计,我深刻认识到其在实际问题中的重要性和应用广泛性。

概率论与数理统计 学习心得-概率统计总结心得

概率论与数理统计 学习心得-概率统计总结心得

—《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。

学生们在学习《概率论与数理统计》时通常的反映之一是“课文看得懂,习题做不出".概率论习题的难做是有名的.要做出题目,至少要弄清概念,有些还要掌握一定的技巧。

这句话说起来简单,但是真正的做起来就需要花费大量的力气。

不少学生在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。

这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。

这就是平时的学习过程中只知其一,不知其二,不注重对公式的理解和推导造成的。

比方说,在我们教材的第一章,有这样一个公式:A—B=bar(AB)=A—AB,这个公式让很多人迷糊,因为这个公式本身是错误的,在教材后面的例题1-15中证明利用了这个公式,很多人就用教材上这个错误的公式套用,结果看不懂.其实这个公式正确的应该是A-B=AbarB=A—AB.这是一个应用非常多的公式,而且考试的时候一般都会考的公式.在开始接触这个公式的时候就应该自己进行推导,发现这个错误,而不是看到这个公式之后,记住,然后运用到题目中去。

大家在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。

做到知其一,也知其二。

现在概率统计的考试试题难度,学员呼声不一,有的人感觉非常难,而且最让他们难以应对的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。

现在就这部分内容给大家分析一下。

说这部分是基础,本身就说明这些知识不是概率统计研究的内容,他们只是在研究概率统计的时候不可缺少的一些工具。

即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免大家在这些方面丢分.分析到这里,就要指出一些人在学习这门课的“战术失误”。

有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重新学一遍,这是不可取的。

概率论与数理统计学习心得模板(3篇)

概率论与数理统计学习心得模板(3篇)

概率论与数理统计学习心得模板学习概率论与数理统计是我大学数学系的一门重要课程,在学习过程中,我深刻体会到了概率论与数理统计对于数学理论的严谨性和实际应用的广泛性。

通过系统的课程学习和大量的习题练习,我对于概率论与数理统计的基本概念、方法和应用有了较为扎实的理解,并在此过程中培养了一定的数学思维能力和问题解决能力。

一、概率论学习心得概率论是研究随机事件发生的规律性的数学理论,它广泛应用于自然科学、社会科学和工程技术等领域。

学习概率论的过程中,我深刻体会到了概率概念与实际问题之间的联系,以及概率论在解决实际问题中的重要性。

首先,概率论的基本概念对于理解和描述随机事件发生的规律性起着重要作用。

在学习中,我了解了概率的三种基本定义:经典概率、统计概率和主观概率。

通过这些定义,我明白了概率是一种数值度量,表示事件的可能性大小,可以通过大量试验或者统计推断来得到。

其次,概率计算方法的学习使我深入理解了概率问题的具体解决办法。

在学习中,我学会了计算概率的基本方法,包括组合方法、排列方法、条件概率和贝叶斯定理等。

通过练习习题和解析概率问题,我提高了自己的计算能力和分析问题的能力,学会了灵活应用各种概率计算方法。

最后,概率论的应用实例的学习使我认识到概率论在实际问题中的重要性。

在课程中,我学习了常见的概率分布(如伯努利分布、二项分布、泊松分布、正态分布等),并学会了利用这些分布解决实际问题(如随机变量、极限定理、抽样分布等)。

通过应用实例的学习,我意识到概率论能够帮助我们分析和预测实际问题的发生概率和规律性,对于风险评估、决策分析等具有重要的参考作用。

二、数理统计学习心得数理统计是研究随机事件的规律性和数据的分析与应用的数学理论,广泛应用于社会科学、生物科学和工程技术等领域。

学习数理统计的过程中,我深刻体会到了数据分析与应用过程中的问题和方法,以及数理统计在实际问题中的重要性。

首先,数理统计的基本概念对于理解和描述数据规律性起着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计学习报告学院学号:姓名:概率论与数理统计学习报告通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。

我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。

先简单地介绍一下概率论与数理统计这门学科。

概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。

数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。

概率论与数理统计是研究随机现象及其规律性的一门数学学科。

研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的随机因素作用下,发生随机现象。

这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。

至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。

它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。

概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。

概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。

而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。

因此掌握它特有的学习方法是很重要的。

在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些思考,或许解答得并不全面甚至还可能是不正确的,但确实是自己的一点思考,提出来以后逐步地去解决完善吧。

<一>随机事件及其概率问题:(1)事件A=Φ,那么(=PΦ⇒A))(对吗?P0=A=⇒A解析:此种说法不对。

概率论里说了不可能事件的发生概率是0,但0概率事件可能发生.比如在宇宙中抽一个人,抽到你的概率。

这就是一个0概率事件可能发生的例子!随机变量分连续和离散两种,它们各自的分布描述是不同的。

对于离散随机变量,如果它的事件域是有限个事件,则可以认为概率为0的事件一定不会发生,概率为1的事件必然发生。

但若事件是无限的,则还要具体分析。

既然0概率事件都是有可能发生的,那么概率趋近于零的事件果然有可能发生,只不过我们平时在处理问题的时候,把概率趋近于零的事件算作0概率事件,只是算作,不是绝对的是。

对于连续性随机变量,单个具体点的概率密度值为一有界常数,这个值可以是任意的(包括0和1),但因为点是没有长度的,所以该点的概率密度积分为0(因为该点概率密度值有界),即该点所对应的事件发生的概率为0,但这个事件仍然是可能发生的,因为这个事件在事件域内。

也就是说,概率为0的事件并不一定不会发生。

同理,某个点的概率密度值为1,但该点的概率密度积分仍为0,所以概率为1的事件也不一定必然发生。

总之,对于连续性随机变量,讨论单个点的概率是没有意义的(都为0),我们讨论的是,这个随机变量落在一个区间内的概率。

(2)事件A 、B 、C ,它们两两独立,是否A 、B 、C 一定是相互独立?解析:不一定。

举一个反例:某一个袋中有4个球,一个白色,一个黑色,一个红色,一个为这三色,现任取一个球观察颜色。

可知:设事件A,B,C,A=(有红色),B=(有白色),C=(有黑色)。

21)()()(===C P B P A P ,)()()()()()(212141)()()(C P B P C P A P B P A P BC P AC P AB P ===⨯====⇒A 、B 、C 两两独立,又⇒=⨯⨯≠=)()()(21212141)(C P B P A P ABC P A 、B 、C 不是相互独立。

所以几个事件两两独立不一定它们就是相互独立。

(对于此反例,有一个问题就是2121)()()()()()(41)()()⨯======C P B P C P A P B P A P BC P AC P AB P ,(,虽然在数值上相等,但会是一个数值上的巧合吗?)()()(B P A P AB P =一定成立吗?)(3)独立与互不相容的关系:(独立条件:)()()(B P A P AB P =,互不相容条件:0)(=AB P )解析:若1)(0,1)(0<<<<B P A P ,则a :A 、B 独立,⇒>=0)()()(B P A P AB P A 、B 相容。

b: A 、B 不独立,⇒=0)(AB P A 、B 互不相容;⇒>≠0()()()B P A P AB P A 、B 相容(4)A 与B 互相独立,B C ⊂, A 、C 是否一定互相独立?解析:A 、C 不一定独立。

举一反例:如图:B C B P A P AB P ⊂≠⨯=,0)()()( )()C P 所以A 、C 不独立。

<二>随机变量及其分布问题:概率论中引入随机变量,从而使研究对象由随机事件扩大为随机变量,对于随机变量的分布函数,我们能够用微积分为工具进行研究,强有力的数学分析工具大大地增强了我们研究随机现象的手段——<三>随机变量数字特征与极限定理:我们都知道随机变量的概率分布能够完整地描述随机变量的统计规律,但在许多的实际问题中,求概率分布并不容易,另一方面,有时不需要知道随机变量的概率分布,而只需要知道他的某些数字特征就够了。

数字特征虽然不像概率分布那样完整地描述了随机变量的统计规律,但它能集中地反映随机变量的某些统计特性,而且许多重要分布中的参数都与数字特征有关,因而数字特征在概率论与数理统计中占有重要地位。

我们也学习了几种常见的分布的数字特征,包括期望、方差、协方差、相关系数以及矩等。

(1)不相关与独立之间的关系:解析:不相关的等价命题:1。

0ρ2。

cov(x,y)=0 3。

=E(XY)=E(X)E(Y) 4。

D(X+Y)=D(X)+D(Y)EX(YEEXY))有数字特征)不相关独立⇒=(⇒)((结论:(1)X与Y独立,则X与Y一定不相关(2)X 与Y 不相关,则X 与Y 不一定独立证明:(1)由于X 与Y 独立,所以f(xy)=f(x)f(y),(f 为概率密度函数)于是:E(XY)=∫∫f(xy)dxdy=∫∫[f(x)*f(y)]dxdy=∫f(x)dx*∫f(y)dy=E(X)E(Y) 所以:E(XY)=E(X)E(Y),即X ,Y 不相关。

(2)反例:X=cost,Y=sint ,其中t 是(0,2π]上的均匀分布随机变量。

易得X 和Y 不相关,因为:E(XY)=E(cost sint)=(1/2π)*∫sint cost dt = 0E(X)=(1/2π)* ∫cost dt = 0,E(Y)=(1/2π)* ∫sint dt = 0所以E(XY)=E(X)E(Y)。

但是他们是不独立的。

因为:X 和Y 各自的概率密度函数在(-1,1)上有值,但是XY 的联合概率密度只在单位圆内有值,所以f(XY)不等于f(x)*f(y),两者不独立。

(2)切比雪夫不等式:[]2)()(εεX D X E X P ≤≥-切比雪夫不等式给出了在随机变量X 的分布未知的情况下,利用)(X E 和)(X D 对X 的概率分布进行估计的方法,有很广泛的应用。

(3) 注意一些应用中的独立条件:1。

概率密度Y X f x f y x f )(),(=(y );2。

卷积公式 .=)(z f Z dx x z x f Y X )()f (-⎰+∞∞-;3。

N 个独立正态分布之和仍然是正态分布),(1211∑∑∑===→ni i n i i n i i N Xσμ;4。

)()()(Y E X E XY E =,)()()(Y D X D Y X D +=+<四>数理统计与参数估计:数理统计以概率论为理论基础,根据试验或观测到的数据,研究如何利用有效的方法对这些已知的数据进行整理、分析和推断,从而对研究对象的性质和统计规律作出合理科学的估计和判断。

然而在实际问题中,所研究的总体分布类型往往是已知的,但依赖于一个或几个的未知参数,如何从样本估计总体的未知参数就成为数理统计的基本问题之一。

通过学习,简单地了解了一些关于点估计和区间估计的问题,能够解决一些简单的实际问题。

(1)如何推导出的样本方差:)(11)(1121222X n x n X x n S n i i i --=--=∑∑= 推导过程:X~N ),(2σμ,X ~N ),(2n σμ。

(注意独立条件)1,---=-∑≠=n x n x x X x n i j i j j i i i =11,1---∑≠=n x x n n n i j j ji ~N ))1(134,1(2223σμ-++--n n n n n n 由2S 是)(X D 的无偏估计从,中随机抽取n 个样本,是样本均值,是样本方差。

那么为什么样本方差是除以而不是n 呢?对于一个随机变量,分别表示其数学期望和方差,从中随机抽取n 个样本,是样本均值,记为的方差和期望。

概率论与数理统计与生活实际问题有着很密切的联系。

它能将生活中的一些问题建立成一种数学模型,并且教给我们一些收集、分析、处理试验数据能力,使我们能够利用学过的成熟的数学工具和方法来研究随机现象解决生活实际问题。

相关文档
最新文档