二进制数字调制与解调系统的设计.
实验三2FSK调制与解调实验一、实验目的
实验三2FSK调制与解调实验一、实验目的1、了解二进制移频键控2FSK 信号的产生过程及电路的实现方法。
2、了解非相干解调器过零检测的工作原理及电路的实现方法。
3、了解相干解调器锁相解调法的工作原理及电路的实现方法。
二、实验内容1、了解相位不连续2FSK 信号的频谱特性。
2、了解2FSK(相位不连续)调制,非相干、相干解调电路的组成及工作理。
3、观察2FSK 调制,非相干、相干解调各点波形。
4、改变f1、f2的频率大小,观察不同调制指数下的调制解调效果。
(选作)5、利用实验模块的电路,设计出其它解调方法,并自行验证。
(选作)三、预习要求1)画出实验电路中2FSK调制器采用的原理框图;2)根据实验指导书的相关资料,说明本实验2FSK调制的载波频率分别是多少?用什么方法产生的?3)本实验2FSK载波是方波还是正弦波?如何实现的?4)用什么方法可以将方波变成正弦波?5)FSK调制器可以用哪两种基本方法实现?本实验用的是哪一种?6)用什么方法实现的FSK信号的相位是连续的?7)实验中,信息的码速率是多少?可以用什么方法测量?8)可以用什么方法来测量2FSK的两个载波频率?9)当用“10101010………”不断重复的信息码进行FSK调制,用计数法测量FSK调制输出信号的频率,测量得到的频率可能是多少?为什么?10)本实验中,2FSK 信号带宽是多少?如何计算的?公式中的各个量代表什么?11)本实验中,2FSK 信号的频谱会是单峰还是双峰?为什么?12)用示波器同时观测FSK调制器的输入数据、FSK调制器输出的已调信号,要能稳定的观测应该用这两个信号中的哪一个作为示波器的触发信号?13)画出2FSK过零检测解调的原理框图;14)实验中,FSK过零检测解调方案采用数字电路如何实现;15)脉冲的宽度相同,有些时刻的脉冲密一些,有些时刻的脉冲少一些,可以用什么具体的方法区分出每一个单位时刻内脉冲是多还是少?16)测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测?示波器的触发源该选哪一种信号?为什么?17)采用过零检测解调的方法时,将f1和f2倍频的电路是如何设计的?18)采用过零检测解调的方法时,解调电路中哪一点的波形是f1和f2的倍频?19)2FSK 信号经过整形变成方波2FSK 信号,频谱有什么变化?为什么?20)解调时将f1和f2倍频有何好处?如何通过仪器测量来说明?21)2FSK 信号解调时将f1和f2倍频之后,频谱有什么变化?为什么?22)解调电路各点信号的时延是怎么产生的?23)解调出的信码和调制器的绝对码之间的时延是怎么产生的?24)解调的信号为什么要进行再生?25)理论上,能否实现出一个没有时延的解调器?为什么?26)解调的信号是如何实现再生的?27)再生过程中,是什么环节会对解调的输出造成延时?为什么?28)画出2FSK 锁相PLL 解调的原理框图;29)PLL 解调2FSK 信号的原理是什么?30)为什么2FSK 锁相解调可以实现相干解调?31)要实现2FSK 锁相解调,锁相环需要工作在什么跟踪方式?为什么?32)解调电路中T31(放大出)没有信号输出,可能的原因有哪些?33)T19(2FSK 过零检测出)信号异常,如何判断故障点在哪?34)解调输出信号与发送端的数据信号对比,为什么会有延时,是哪些原理造成的?四、实验原理二进制频率调制(2FSK )是数据通信中使用较早的一种通信方式。
ASK
二进制振幅键控(ASK)调制与解调设计一、ASK 调制解调系统的原理1、ASK调制原理及其方法数字幅度调制又称幅度键控(ASK),二进制幅度键控记作 2ASK。
2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。
有载波输出时表示发送“1”,无载波输出时表示发送“0”。
借助于第3 章幅度调制的原理,2ASK 信号可表示为e0 = s(t) cos ωc t式中,c 为载波角频率, s(t ) 为单极性 NRZ 矩形脉冲序列s(t) = ∑ a n g (t - nT b )其中, g(t) 是持续时间为 Tb 、高度为 1 的矩形脉冲,常称为门函数,an 为二进制数字。
2、ASK实现有两种方法;A、乘法器实现法. a、乘法器实现法的输入是随机信息序列,经过基带信号形成器,产生波形序列,乘法器用来进行频谱搬移,相乘后的信号通过带通滤波器滤除高频谐波和低频干扰。
b、带通滤波器的输出是振幅键控信号。
c、乘法器常采用环形调制器。
B、键控法键控法是产生ASK信号的另一种方法。
二元制ASK又称为通断控制(OOK)。
典型的实现方法是用一个电键来控制载波振荡器的输出而获得。
示意图如图1所示。
图1 3、ASK 解调原理及设计方法ASK 信号解调的常用方法主要有两种:包络检波法和相干检测法。
包络检波法的原理方框图如图2 所示:带通滤波器(BPF )恰好使 2ASK 信号完整地通过,经包络检测后输出其包络。
低通滤波器(LPF )的作用是滤除高频杂波,使基带信号(包络)通过。
抽样判决器包括抽样、判决及码元形成器。
定时抽样脉冲(位同步信号)是很窄的脉冲,通常位于每个码元的中央位置,其重复周期等于码元的宽度。
不计噪声影响时,带通滤波器输出为 2ASK 信号。
经抽样、判决后将码元再生,即可恢复出数字序列{an}。
相干检测法原理方框图如图3 所示相干检测就是同步解调,要求接收机产生一个与发送载波同频同相的本地载波信号,称其为同步载波或相干载波。
实验 9:2ASK 调制与解调仿真
实验 9:2ASK 调制与解调仿真引言在通信系统中,调制和解调是非常重要的步骤。
调制是将信号转换为适合传输的形式,解调则是将传输的信号还原为原始信号。
2ASK(二进制振幅移键)是一种简单常用的数字调制技术,它通过改变信号的振幅来表示二进制数据。
本实验旨在通过仿真来了解2ASK调制与解调的过程。
实验目标•了解2ASK调制的原理•了解2ASK解调的原理•使用Matlab进行2ASK调制与解调的仿真实验步骤1.2ASK调制–生成二进制数字数据序列(如10101010)–将数字数据转换为对应的调制信号,使用高电平表示1,低电平表示0–将调制信号与载波信号相乘得到2ASK调制信号2.2ASK解调–接收2ASK调制信号–将接收到的信号与载波信号相乘,得到解调信号–使用门限比较器将解调信号转换为二进制数据3.调制与解调的仿真–使用Matlab编写代码进行2ASK调制仿真–使用Matlab编写代码进行2ASK解调仿真–绘制调制与解调的结果图形实验结果与分析在进行2ASK调制与解调的仿真实验后,得到了以下结果和分析:1.调制结果图调制结果图调制结果图在2ASK调制中,信号被转换为对应的调制信号。
调制信号的振幅表示1或0,高电平表示1,低电平表示0。
从调制结果图中可以很明显地看出每个二进制数据的调制信号。
2.解调结果图解调结果图解调结果图在2ASK解调中,接收到的信号与载波信号相乘得到解调信号。
解调信号经过门限比较器转换为二进制数据。
从解调结果图中可以看到,解调得到的二进制数据与调制前的二进制数据完全一致,证明了解调过程的有效性。
实验结果验证了2ASK调制与解调的可行性和有效性,2ASK调制方法可以实现数字信号的传输和解析。
结论本实验通过2ASK调制与解调的仿真,展示了2ASK调制与解调的过程和结果。
实验结果验证了2ASK调制与解调的可行性和有效性。
调制与解调是通信系统中非常重要的步骤,对于数字信号的传输和解析起着至关重要的作用。
实验三 2ASK与2FSK调制解调系统仿真实验指导书
实验三:2ASK与2FSK调制解调系统仿真实验指导书2012年11月一、实验目的1)对2ASK 与2FSK 数字调制系统进行建模仿真,了解其工作原理; 2)熟悉运用simulink 搭建完整信号调制解调系统;3)对比信号基带波形与解调后的波形差异,比较两种方法的优劣。
二、实验内容运用simulink 搭建完整的2ask 与2fsk 调制解调系统。
2ASK 输入由伯努利二进制随机数产生器产生,由DSB AM 调制与解调器模拟2ASK 调制解调,用加性高斯白噪声信道,最后配上速率转换器与显示器。
如果需要,也可加入频谱仪对前后的频谱进行分析。
2FSK 输入由伯努利二进制随机数产生器产生,由基带M-FSK 调制与解调器模拟2fsk 调制解调,用加性高斯白噪声信道,最后配上速率转换器及显示器构成。
如果需要,也可以加入频谱仪对前后频谱进行分析。
三、实验原理1 2ASK 调制解调原理数字幅度调制又称幅度键控(ASK ),二进制幅度键控记作2ASK 。
2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。
有载波输出时表示发送“1”,无载波输出时表示发送“0”。
根据幅度调制的原理,2ASK 信号可表示为:式1式中,ωc 为载波角频率, s(t)为单极性NRZ 矩形脉冲序列式2其中,g(t)是持续时间为Tb 、高度为1的矩形脉冲,常称为门函数;αn 为二进制数字序列。
式32ASK 信号的产生方法(调制方法)有两种,如下图所示。
图(a )是一般的模拟幅度调制方法,这里的由式2规定;图(b )是一种键控方法,这里的开关电路受控制。
图(c )给出了及的波形示例。
二进制幅度键控信号,由于一个信号状态始终为0,相当于处于断开状态,故又常称为通断键控信号(OOK 信号)。
tt s t e c ωcos )()(0=∑-=n b n nT tg a t s )()(图1 2ASK 信号产生方法与波形示例2ASK 信号解调的常用方法主要有两种:包络检波法和相干检测法。
2PSK数字信号的调制与解调-分享版
信息对抗大作业一、实验目的。
使用 MATLAB构成一个加性高斯白噪声情况下的2psk 调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。
二、实验原理。
数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
图 1相应的信号波形的示例101数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于" 同相 " 状态;如果其中一个开始得迟了一点,就可能不相同了。
如果一个达到正最大值时,另一个达到负最大值,则称为" 反相 " 。
一般把信号振荡一次(一周)作为360 度。
如果一个波比另一个波相差半个周期,我们说两个波的相位差180 度,也就是反相。
当传输数字信号时, "1" 码控制发 0 度相位, "0" 码控制发 180 度相位。
载波的初始相位就有了移动,也就带上了信息。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK 中,通常用初始相位0 和π分别表示二进制“1”和“ 0”。
因此, 2PSK信号的时域表达式为(t)=Acos t+)其中,表示第 n 个符号的绝对相位:=因此,上式可以改写为图 22PSK信号波形解调原理2PSK信号的解调方法是相干解调法。
FSK调制与解调系统设计
FSK调制与解调系统设计FSK(Frequency Shift Keying)调制与解调是一种基于频率变化的调制解调技术,广泛应用于无线通信和数据传输系统中。
本文将介绍FSK调制与解调的基本原理和系统设计要点。
1.原理介绍FSK调制是通过改变载波信号的频率来表示数字信号的不同状态。
典型的FSK调制方案有两种:二进制FSK(BFSK)和多级FSK(MFSK)。
在BFSK中,不同的数字0和1被分配给两个不同的频率值,例如0代表低频,1代表高频;在MFSK中,n个数字状态被分配给n个不同的频率值。
随着数字信号的变化,调制后的信号频率也相应变化,从而传输了数字信号的信息。
FSK解调是指将接收到的FSK信号恢复为数字信号的过程。
解调器通过检测信号的频率来确定数字信号的值。
具体过程如下:首先,对接收到的FSK信号进行低通滤波,以去除高频成分。
然后,利用频率判决电路来判断接收到的信号频率,根据预设的频率判决阈值将频率转换为数字信号。
2.系统设计要点(1)选取合适的载波频率:在FSK调制中,载波频率的选择非常重要。
应根据传输环境和要求合理选择载波频率,以确保信号传输的稳定性和可靠性。
(2)设计合理的调制解调电路:调制电路应具有良好的线性特性和较宽的动态范围,以实现准确的调制。
解调电路应具有良好的低通滤波功能和稳定的频率判决电路,以实现准确的解调。
(3)抗噪声设计:在FSK调制解调系统设计中,抗噪声能力是非常关键的。
通过增加前端的信号增益、抑制杂散信号和加入错误检测纠错码等方法,可以提高系统的抗噪声性能。
(4)设计适当的调制解调参数:调制解调参数的选择对系统性能有重要影响。
例如,在BFSK调制中,频率偏移量和数据速率的选择应综合考虑传输距离、噪声干扰和系统复杂度等因素。
(5)误码率性能分析:在系统设计完成后,应进行误码率性能分析,通过误码率曲线来评估系统的可靠性和性能。
总结:。
2PSK信号的解调电路设计
2PSK信号的解调电路设计2PSK(二进制相移键控)信号是一种基本的数字调制方式,它将数字信息转化为两个不同相位的正弦波信号。
解调电路是将接收到的2PSK信号转换回数字信息的关键部件。
设计一个2PSK信号的解调电路可以分为以下几个步骤:1.基带滤波器设计:接收到的2PSK信号可能经过了传输过程中的失真和噪声干扰,因此首先需要对信号进行滤波以去除高频噪声和失真。
基带滤波器通常使用低通滤波器来实现。
滤波器的设计需考虑到信号的带宽、失真和抗干扰能力等因素。
2.时钟恢复电路设计:2PSK信号中存在着相位差,因此需要在解调电路中设置时钟恢复电路,以便正确恢复接收到的信号的时钟信息。
时钟恢复电路通常采用锁相环(PLL)或相关器等技术实现。
时钟恢复电路对于解调过程中相位解调的准确性至关重要。
3.相位解调电路设计:相位解调是解调电路中最关键的部分。
相位解调的目标是从接收到的信号中恢复出数字信息。
二进制相移键控调制中使用了两个不同相位的载波信号来表示不同的数字,因此相位解调需要能够区分这两个相位并恢复出原始的数字信息。
相位解调电路通常采用鉴别器或位相锁定环等技术实现。
4.采样电路设计:在解调过程中,需要对解调后的信号进行采样,以恢复出原始的数字信息。
采样电路通常使用模拟-数字转换器(ADC)实现,将模拟信号转换为数字信号。
总结起来,设计2PSK信号的解调电路需要考虑基带滤波器、时钟恢复电路、相位解调电路和采样电路等几个关键部件。
每个部件的设计需要根据具体需求和技术限制进行综合考虑,以实现准确、稳定地将接收到的2PSK信号转换为数字信息的功能。
课程设计-基于systemview的2ask信号调制与解调
摘要现代通信系统要求通信距离远,通信容量大、传输质量好。
作为其关键技术之一的调制解调技术一直是人们研究的一个重要方向。
从最早的模拟调幅调频技术的日趋完善,到现在数字调制技术的广泛应用。
使得信息的传输更为有效和可靠。
二进制数字振幅键控是一种古老的调制方式,也是各种数字调制的基础。
本毕业设计主要是利用System View仿真软件平台,设计一个2ASK调制解调器系统,用示波器观察调制前后的信号波形,并将其记录下来,分析该系统的性能。
通过System View 的仿真功能模拟实际中的2ASK调制解调。
本课题研究的是基于System View的2ASK调制解调器设计。
文中将调制解调器分成调制与解调两个部分进行设计,对调制、解调的两种方法进行简单的介绍,进而对比,选择出合适的方法完成设计。
关键词System View,调制,解调,2ASKAbstractThe modern communication system requirements for communication distance, communication capacity, transmission quality. As one of its key technologies of modulation and demodulation techniques is an important direction for researchers. From the earliest analog AM FM technology is maturing to the extensive application of digital modulation techniques. Making transport more effective and reliable information. Binary digital amplitude shift keying is an ancient way of modulation, the basis of a variety of digital modulation.This graduation system View simulation software platform designed a 2ASK modem system, use the oscilloscope before and after the observed modulation signal waveform, and record and analyze the performance of the system. By system view simulation of2ASK modulation and demodulationOf this research project is based on the System View 2ASK modem design. Paper, the modem is divided into two parts of the modulation and demodulation design, a brief introduction on the two methods of modulation, demodulation, and then contrast, choose the appropriate method to complete the design.Keywords System View;Modulation;Demodulation;2ASK目录摘要 (I)Abstract (II)第1章绪论 0通信系统一般模型 0通信系统的分类与通信方式 (1)第2章System View的应用 (3)System View的应用 (3)System View的操作 (3)System View的特点 (3)System View的功能 (4)System View的基本使用 (5)System View的系统定时窗口 (5)第3章2ASK调制解调的基本原理 (7)2ASK的定义 (7)2ASK的调制 (7)2ASK的解调 (8)第4章基于System View的调制解调系统设计 (10)2ASK信号调制 (10)信号调制仿真图 (10)2ASK信号解调 (10)信号解调仿真图 (11)2ASK信号调制解调的功能模板分析 (11)功能介绍 (12)测试过程及结果 (15)设计总结 (19)致谢 (20)参考文献 (21)附录 (21)第1章绪论如今社会通信技术的发展速度可谓日新月异,计算机的出现在现代通信技术的各种媒体中占有独特的地位,计算机在当今社会的众多领域里不仅为各种信息处理设备被使用,而且它与通信向结合,使电信业务更加丰富。
matlab2ask信号调制与解调原理
matlab2ask信号调制与解调原理
MATLAB中2ASK(二进制振幅键控)信号的调制与解调原理如下:
1. 调制原理:基带码元d(t)和高频载波相乘实现2ASK信号的调制。
具体来说,如果基带码元为二进制信号,那么其幅度变化将控制载波信号的通断,从而实现数字信息的传递。
在MATLAB中,可以使用信号处理工具箱中的函数来生成2ASK信号。
2. 解调原理:2ASK信号经过信道传输之后,再和载波相乘,然后经过低通滤波后抽样判决恢复出原始基带码元信号。
解调过程中,使用一个同频同相的本地载波与要解调的信号相乘,去掉高频部分即可恢复出原始的基带码元信号。
在MATLAB中,可以使用信号处理工具箱中的函数来实现2ASK信号的解调。
需要注意的是,以上只是一种简化的2ASK调制和解调过程的描述,实际的通信系统中可能还会包括其他的信号处理过程,如信道编码、调制解调、信号同步等。
在MATLAB中进行仿真时,需要根据实际需求进行相应的设计和调整。
通信原理课程设计-2psk调制与解调
基于MATLAB-Simulink的2PSK仿真摘要:Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
本文主要是以simulink为基础平台,对2PSK信号的仿真。
首先有关通信的绪论,然后文章第一章是课程设计的要求。
第二章是对2PSK信号调制及解调原理的详细说明;第三章是本文的主体也是这个课题所要表现的主要内容2PSK信号的仿真部分,调制和解调都是simulink建模的的方法及参数设置。
本文的主要目的是对simulink的熟悉和对数字通信理论的更加深化和理解。
关键词:2PSK;调制与解调;simulink;目录第一章绪论 (1)1.1通信技术背景 (1)1.2 课程设计的目的 (1)1.3 课程设计的基本任务和要求 (1)1.4 MATLAB/Simulink的简介 (2)第二章 2psk信号的调制与解调原理 (3)2.1数字调制的基本原理 (3)2.2二进制相移键控 (3)第三章实验仿真与结果分析 (7)3.1调制部分 (7)3.1.1 Simulink中2PSK调制的模块框图 (7)3.1.2 各模块参数的设置 (7)3.1.3 调制系统中各模块的波形 (8)3.1.4结果分析 (8)3.2解调部分 (9)3.2.1解调模块框图 (9)3.2.2 各模块参数设置 (9)3.2.3 各模块的波形 (10)3.2.4结果分析 (11)3.3加入高斯白噪声的调制与解调 (11)3.3.1系统框图3-3-1 (11)3.3.2 各模块参数的设置 (11)3.3.3 示波器得到的波形 (13)3.3.4结果分析 (14)第四章结束语 (15)参考文献 (16)第一章绪论1.1通信技术背景通信就是克服距离上的障碍,从一地向另一地传递和交换消息。
基于MATLAB的2ASK数字调制与解调的系统仿真
基于MATLAB的2ASK数字调制与解调的系统仿真一、本文概述随着信息技术的飞速发展,数字通信在现代社会中扮演着日益重要的角色。
作为数字通信中的关键技术之一,数字调制技术对于提高信号传输的可靠性和效率至关重要。
在众多的数字调制方式中,2ASK (二进制振幅键控)因其实现简单、抗干扰能力强等优点而备受关注。
本文旨在通过MATLAB软件平台,对2ASK数字调制与解调系统进行仿真研究,以深入理解和掌握其基本原理和性能特点。
本文首先介绍了数字调制技术的基本概念,包括数字调制的基本原理、分类和特点。
在此基础上,重点阐述了2ASK调制与解调的基本原理和实现方法。
通过MATLAB编程,本文实现了2ASK调制与解调系统的仿真模型,并进行了性能分析和优化。
在仿真研究中,本文首先生成了随机二进制信息序列,然后利用2ASK调制原理对信息序列进行调制,得到已调信号。
接着,对已调信号进行信道传输,模拟了实际通信系统中的噪声和干扰。
在接收端,通过2ASK解调原理对接收到的信号进行解调,恢复出原始信息序列。
通过对比分析原始信息序列和解调后的信息序列,本文评估了2ASK 调制与解调系统的性能,并讨论了不同参数对系统性能的影响。
本文的仿真研究对于深入理解2ASK数字调制与解调原理、优化系统性能以及指导实际通信系统设计具有重要意义。
通过MATLAB仿真平台的运用,本文为相关领域的研究人员和实践工作者提供了一种有效的分析和优化工具。
二、2ASK数字调制技术原理2ASK(二进制振幅键控)是一种数字调制技术,主要用于数字信号的传输。
它的基本思想是将数字信号(通常是二进制信号,即0和1)转换为模拟信号,以便在模拟信道上进行传输。
2ASK调制的关键在于根据数字信号的不同状态(0或1)来控制载波信号的振幅。
在2ASK调制过程中,当数字信号为“1”时,载波信号的振幅保持在一个较高的水平;而当数字信号为“0”时,载波信号的振幅降低到一个较低的水平或者为零。
2psk调制与解调实验报告
竭诚为您提供优质文档/双击可除2psk调制与解调实验报告篇一:2psK解调实验报告实验二:2psK和QpsK(院、系)专业班课学号20XX20214420姓名谢显荣实验日期1、2psK实验一、实验目的运用mATLAb编程实现2psK调制过程,并且输出其调制过程中的波形,讨论其调制效果。
二、实验内容编写2psK调制仿真程序。
2psK二进制相移键控,简记为2psK或bpsK。
2psK信号码元的“0”和“1”分别用两个不同的初始相位0和π来表示,而其振幅和频率保持不变。
故2psK信号表示式可写为:s(t)=Acos(w0t+θ)式中,当发送“0”时,θ=0;当发送“1”时,θ=π。
或者写成:╱Acos(w0t)发送“0”时s(t)=╲Acos(w0t+π)发送“1”时由于上面两个码元的相位相反,故其波形的形状相同,但极性相反。
因此,2psK信号码元又可以表示成:╱Acosw0t发送“0”时s(t)=╲-Acosw0t发送“1”时任意给定一组二进制数,计算经过这种调制方式的输出信号。
程序书写要规范,加必要的注释;经过程序运行的调制波形要与理论计算出的波形一致。
三、实验原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(psK)基本的调制方式。
图1相应的信号波形的示例101调制原理数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。
二进制数字调制原理《通信原理》
二进制数字调制原理数字带通传输系统:包括数字调制和数字解调过程的数字传输系统。
数字调制:利用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程。
数字解调:通过解调器把带通信号还原成数字基带信号的过程。
二进制数字调制:调制信号是二进制数字基带信号的调制,其载波的幅度、频率和相位只有两种变化状态。
1.二进制振幅键控(1)2ASK的表达式2ASK信号的一般表达式其中若取则相应的2ASK信号就是OOK信号,其表达式为(2)2ASK的波形图7-1 2ASK/OOK信号时间波形(3)2ASK的产生方法①模拟调制法(相乘器法)图7-2 模拟调制法原理框图②键控法图7-3 键控法原理框图(4)2ASK的解调方法①非相干解调(包络检波法)图7-4 非相干解调法原理框图非相干解调过程的波形分析图7-5 非相干解调过程的时间波形②相干解调(同步检测法)图7-6 相干解调法原理框图(5)2ASK的功率谱密度①表达式②示意图图7-7 2ASK信号的功率谱密度示意图③特性a.2ASK信号的功率谱由连续谱和离散谱两部分组成;连续谱取决于g(t)经线性调制后的双边带谱,而离散谱由载波分量确定。
b.2ASK信号的带宽B2ASK是基带信号带宽的2倍,即其中,(码元速率)。
2.二进制频移键控(1)2FSK的表达式2FSK信号的一般表达式为式中,和分别是第n个信号码元的初始相位,在频移键控中,和不携带信息,通常令和均为0。
所以可简化为(2)2FSK的波形图7-8 2FSK信号的时间波形(3)2FSK的产生方法①模拟调频法产生的2FSK信号在相邻码元之间的相位是连续变化的,称为连续相位FSK(CPFSK)。
②键控法图7-9 键控法产生2FSK信号的原理图产生的2FSK信号相邻码元之间的相位不一定连续。
(4)2FSK的解调方法①非相干解调图7-10 非相干解调法原理框图②相干解调图7-11 相干解调法原理框图(5)2FSK的功率谱密度①表达式②示意图图7-12 相位不连续2FSK信号的功率谱示意图③特性a.相位不连续2FSK信号的功率谱由连续谱和离散谱组成;连续谱由两个中心位于f1和f2处的双边谱叠加,离散谱位于两个载频f1和f2处。
2FSK调制解调电路的设计
2FSK调制解调电路的设计引言:调频键控(Frequency Shift Keying, FSK)是一种常见的数字调制解调技术,其原理是通过改变载波频率来传输数字信号。
二进制FSK(2FSK)是最基本的FSK调制方式,其中两个不同的频率代表了二进制中的0和1、本文将介绍2FSK调制解调电路的设计。
一、2FSK调制电路1.频率可调的带通滤波器频率可调的带通滤波器用于接收输入信号,并将频率转换为两个不同的预设频率。
该滤波器通常由一个带可调中心频率的VoltageControlled Oscillator (VCO)和一个窄带滤波器组成。
输入信号经过一级放大后进入VCO,VCO将输入信号频率转换为预设频率。
滤波器用于滤除不需要的频率成分,只保留希望传输的频率分量。
2.相位锁定环路(PLL)相位锁定环路是2FSK调制电路的核心。
它由一个相频比较器(Phase-Frequency Detector, PFD)、一个环路滤波器(Loop Filter)、一个VCO和一个除频器(Divider)组成。
相频比较器用于比较参考信号和VCO输出信号的相位差,产生一个频率和相位误差的输出。
这个输出信号经过环路滤波器后,将调整VCO的输出频率,使其与参考信号的相位差最小化。
除频器将VCO输出的频率除以一个预设的常数,得到一个比输入信号低的频率,在输入信号的两种频率之间切换。
二、2FSK解调电路2FSK解调电路主要由一个鉴频器和一个比较器组成。
1.鉴频器鉴频器用于提取输入信号中的频率信息,并将其转换为与输入信号频率相同的模拟信号。
鉴频器通常由一个窄带滤波器和一个包络检波器组成。
窄带滤波器用于滤除不需要的频率成分,只保留输入信号中的目标频率分量。
包络检波器将滤波后的信号变为其包络信号,将其转换为模拟信号。
2.比较器比较器用于将模拟信号转换为数字信号,实现2FSK信号的解调。
比较器通常由一个阈值电路和一个数字信号输出端口组成。
2ASK调制解调系统课程设计(用SystemView仿真)
通信原理课程设计论文2ASK调制解调系统学号:姓名:班 级: 指导老师:日 期:2008年12月14日一、二进制幅度键控(2ASK )系统的建模与设计的分析 1、 调制方法数字调幅调制又称为幅度(ASK ),二进制幅度键控记作2ASK 。
2ASK 是利用代表数字信息“0”或“1”的基带脉冲去键控一个连续的载波,使载波时断时续的输出。
有载波输出时表示“1”。
无载波输出时表示发送“0”。
2ASK 信号可表示为:()t t s t ce ωcos )(0= (1)式子中,c ω为载波角频率。
()∑-=nn nT t g a t s )(0 (2)其中,)(t g 是持续时间为0T 、高度为1的矩形脉冲,常称为门函数;n a 为二进制数字n a =⎩⎨⎧-),出现的概率为(,出现的概率为P P 101 (3)2ASK 信号的产生方法(调制方法)有两种:相乘法;另一种是键控法.本论文使用的是相乘法。
调制原理图如下:()−→−t s 乘法器−−→−)(0t e↑ t 0cos ω相乘法2、 解调方法:想干解调;非想干解调。
本论文选择第二种。
二、仿真分析1,SystemView 软件介绍SystemView 是美国ELANIX 公司推出的,基于Windows 环境下运行的用于系统仿真分析的可视化软件工具,它使用功能模块(Token)去描述程序,无需与复杂的程序语言打交道,不用写一句代码即可完成各种系统的设计与仿真,快速地建立和修改系统、访问与调整参数,方便地加入注释。
利用System View,可以构造各种复杂的模拟、数字、数模混合系统,各种多速率系统,因此,它可用于各种线性或非线性控制系统的设计和仿真。
用户在进行系统设计时,只需从System View配置的图标库中调出有关图标并进行参数设置,完成图标间的连线,然后运行仿真操作,最终以时域波形、眼图、功率谱等形式给出系统的仿真分析结果。
2、仿真参数设置2ASK信号的中心载波频率设置为f=20HZ.由于振幅是0-1V故幅度设置为0.5V,并向上偏移0.5V.系统的时间设置:如下图3、2ASK信号调制与解调的仿真原理图4、仿真结果如下调制信号显示(t1):已调信号显示(t12):载波信号显示(t15):全波整流器显示(t13):低通滤波显示(t14):解调信号显示(t11)OverlayWaterfall(High=2.1)三、心得体会通过仿真软件SystemView学习,和对2ASK非相干解调的理解,经过多次测试最终完成设计任务。
二进制数字频带传输系统设计——2ASK知识讲解
目录1技术要求 (1)2基本原理 (1)2.1 2ASK定义 (1)2.2 2ASK的调制 (2)2.3 2ASK的解调 (3)2.4 2ASK功率谱密度 (4)2.5 眼图 (5)3 建立模型描述 (5)3.1 SystemView方案 (5)3.2 Simulink方案 (6)4 功能模块分析或源程序代码 (8)4.1 SystemView功能模块分析 (8)4.2 Simulink功能模块分析 (12)5 调试过程及结论 (13)5.1 SystemView调试过程及结论 (13)5.2 Simulink调试过程及结论 (18)6 心得体会 (20)7 参考文献 (21)二进制数字频带传输系统设计——2ASK系统1技术要求设计一个2ASK数字调制系统,要求:(1)设计出规定的数字通信系统的结构;(2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止频率等);(3)用Matlab或SystemView 实现该数字通信系统;(4)观察仿真并进行波形分析;(5)系统的性能评价。
2基本原理2.1 2ASK定义振幅键控是正弦载波的幅度随着数字基带信号而变化的数字调制,当数字基带信号为二进制时,则为二进制振幅键控.。
设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立。
该二进制符号序列可表示S(t)=其中:⎩⎨⎧=P P a n -出现概率为出现概率为110Ts 是二进制基带信号时间间隔,g(t)是持续时间为Ts 的矩形脉冲:则二进制振幅键控信号可表示为:t nT t g a t S c n s n ASK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑t t S c ωcos )(= 二进制振幅键控信号时间波型如图2-1所示,可以看出2ASK 信号的时间波形S2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK 信号)。
图2-1 2ASK 信号时域波形2.2 2ASK 的调制二进制振幅键控信号的产生方法有两种。
2FSK调制解调原理及设计
一.2FSK调制原理:1、2FSK信号的产生:2FSK是利用数字基带信号控制在波的频率来传送信息。
例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。
故其表示式为{)cos()cos(21122)(θωθωϕ++=tAtAFSKt时发送时发送"1"""式中,假设码元的初始相位分别为1θ和2θ;112fπ=ω和222fπ=ω为两个不同的码元的角频率;幅度为A为一常数,表示码元的包络为矩形脉冲。
2FSK信号的产生方法有两种:(1)](2)模拟法,即用数字基带信号作为调制信号进行调频。
如图1-1(a)所示。
(3)键控法,用数字基带信号)(tg及其反)(tg相分别控制两个开关门电路,以此对两个载波发生器进行选通。
如图1-1(b)所示。
这两种方法产生的2FSK信号的波形基本相同,只有一点差异,即由调频器产生的2FSK信号在相邻码元之间的相位是连续的,而键控法产生的2FSK信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。
(a) (b)…2FSK信号产生原理图由键控法产生原理可知,一位相位离散的2FSK信号可看成不同频率交替发送的两个2ASK信号之和,即)cos(])([)cos(])([)cos(·)()cos()()(221122112θωθωθωθωϕ+-++-=+++=∑∑∞-∞=∞-∞=tnTtgatnTtgattgttgtnsnnsnFSK其中)(tg 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。
({P,0P 11概率,概率-=n a {P 1,0P 1-=概率,概率n a其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。
2、2FSK 信号的频谱特性:由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即)]()()()([]|)(||)(||)(||)([|)()()(2211161222221211622221f f f f f f f f T f f Sa T f f Sa T f f Sa T f f Sa f S f S f S S S S S TASK ASK FSK S ++-+++-+++-+++-=+=δδδδππππ,2FSK 信号带宽为 s s FSK R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。
基于FPGA的BPSK调制解调器设计与实现
基于FPGA的BPSK调制解调器设计与实现随着通信技术的不断发展,调制解调器在无线通信系统中扮演着重要角色。
本文将探讨基于FPGA的二进制相移键控(BPSK)调制解调器的设计与实现。
BPSK调制技术是一种数字调制技术,常用于低速率无线通信系统,在诸多应用中被广泛采用。
一、调制解调器设计原理1. BPSK调制原理BPSK调制是一种基于相移调制的调制技术,其原理是将数字比特流与载波信号相位相互关联。
对于二进制输入信号,0表示正相位,1表示负相位。
因此,BPSK调制技术将数字信号转换为载波信号的相位,实现信号的调制。
2. BPSK解调原理BPSK解调过程是调制的逆过程。
通过比较解调器接收到的信号相位与参考相位,可以恢复出原始的数字信号。
解调原理可以通过相位差检测、锁相环等技术实现。
二、FPGA在BPSK调制解调器中的应用FPGA是一种可编程逻辑器件,具有并行处理能力和灵活的硬件资源配置。
在BPSK调制解调器设计中,FPGA可以承担信号处理、调制解调等任务,提高系统性能和灵活性。
1. FPGA的优势FPGA具有高度的并行性和灵活性,可以快速实现信号处理算法。
通过灵活配置硬件资源,可以满足不同调制解调算法的需求。
此外,FPGA还具有低功耗、低延迟和容错性强等优势。
2. FPGA的设计流程FPGA的设计流程包括系统建模、算法设计、逻辑设计、综合与布局布线、仿真验证等步骤。
在BPSK调制解调器设计中,首先需要将系统和算法进行建模,然后通过逻辑设计实现相应硬件电路,最后进行综合布局布线和仿真验证。
三、基于FPGA的BPSK调制解调器设计实现步骤1. 系统建模与算法设计根据BPSK调制解调器的原理,将系统进行建模,并设计相应的算法来实现调制和解调过程。
这一步骤需要考虑信号的采样率、滤波器设计、相位恢复等关键问题。
2. 逻辑设计与实现将系统建模和算法设计转化为相应的硬件电路。
利用FPGA的硬件资源进行逻辑设计,并将信号处理算法转化为硬件描述语言(如VHDL或Verilog)进行实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二进制数字调制与解调系统的设计MATLAB 及SIMULINK 建模环境简介MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和SIMULINK 两大部分。
Simulink 是MATLAB 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink 。
Simulink 是MATLAB 中的一种可视化仿真工具, 是一种基于MATLAB 的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
Simulink 可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。
为了创建动态系统模型,Simulink 提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
数字通信系统的基本模型从消息传输角度看,该系统包括了两个重要交换,即消息与数字基带信号之间的交换,数字基带信号与信道信号之间的交换.通常前一种交换由发收端设备完成.而后一种交换则由调制和解调完成.数字通信系统模型一、2ASK 调制解调基本原理2ASK 是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。
其信号表达式为: ,S (t)为单极性数字基带信号。
t t S t e cωcos )()(0⋅=2ASK幅移键控幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进数码而已。
幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。
由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号"1时,传输载波;当调制的数字信号为"0"时,不传输载波。
由图可以看出2ASK信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化。
所以又被称为通断键控信号2ASK信号的产生方法通常有两种:模拟调制法和键控法。
模拟调制法使用乘法器实现键控法使用开关电路实现2ASK的调制方法2ASK有两种基本解调方法:相干解调法(同步检测法)和非相干解调法(包络检波法)。
相干解调需要将载频位置的已调信号频谱重新搬回原始基带位置,因此用相乘器与载波相乘来实现。
为确保无失真还原信号,必须在接收端提供一个与调制载波严格同步的本地载波,这是整个解调过程能否顺利完好进行的关键。
相干解调非相干解调2ASK信号非相干解调过程的时间波形振幅键控是利用载波的幅度变化来传递数字信息,而频率和初始相位保持不变。
在2ASK中:S2ask=m(t)*cos(2*pi*f*t),其中m(t)为数字信号,后者为载波。
载波在二进制基带信号控制下通断变化,所以又叫通-断键控(OOK)。
2ASK的产生方法有两种:模拟调制和键控法而解调也有两中基本方式:非相干解调(包络检波)和相干解调(同步检测法)DS2ask=s(t)*cos(2*pi*f*t)=0.5*m(t)+0.5*m(t)*cos(2*wc*t)乘以相干载波后,只要滤去高频部分就可以了本次仿真使用相干解调方式:2ask信号→带通滤波器与→与载波相乘→低通滤波器→抽样判决→输出以下就是matlab的仿真结果极其频谱图(省去了带通filter)可以看到解调后的信号与信源有一定的延时。
通过观察频谱图,用放大镜可以清楚的看到,2ask实现了频谱的搬移,将基带信号搬移到了fc=150hz的频率上,而且若只计频谱的主瓣则有:B2ask=2fs,fs=1/Ts其中Ts为一个码元宽度即:2ask信号的传输带宽是码元传输速率的2倍Matlab程序实现clc;clear all;close all;%信源a=randint(1,15,2);t=0:0.001:0.999;m=a(ceil(15*t+0.01));subplot(511)plot(t,m);axis([0 1.2 -0.2 1.2]);title('信源');%载波f=150;carry=cos(2*pi*f*t);%2ASK调制st=m.*carry;subplot(512);plot(t,st)axis([0 1.2 -1.2 1.2])title('2ASK信号')%加高斯噪声nst=awgn(st,70);%解调部分nst=nst.*carry;subplot(513)plot(t,nst)axis([0 1.2 -0.2 1.2]);title('乘以相干载波后的信号')%低通滤波器设计wp=2*pi*2*f*0.5;ws=2*pi*2*f*0.9;Rp=2;As=45;[N,wc]=buttord(wp,ws,Rp,As,'s'); [B,A]=butter(N,wc,'s');%低通滤波h=tf(B,A); %转换为传输函数dst=lsim(h,nst,t);subplot(514)plot(t,dst)axis([0 1.2 -0.2 1.2]);title('经过低通滤波器后的信号'); %判决器k=0.25;pdst=1*(dst>0.25);subplot(515)plot(t,pdst)axis([0 1.2 -0.2 1.2]);title('经过抽样判决后的信号')%频谱观察%调制信号频谱T=t(end);df=1/T;N=length(st);f=(-N/2:N/2-1)*df;sf=fftshift(abs(fft(st)));figure(2)subplot(411)plot(f,sf)title('调制信号频谱')%信源频谱mf=fftshift(abs(fft(m)));subplot(412)plot(f,mf)title('信源频谱')% 乘以相干载波后的频谱mmf=fftshift(abs(fft(nst))); subplot(413)plot(f,mmf)title('乘以相干载波后的频谱') %经过低通滤波后的频谱dmf=fftshift(abs(fft(dst))); subplot(414)plot(f,dmf)title('经过低通滤波后的频谱');二、2FSK 调制解调频移键控是利用载波的频率来传递数字信号,在2FSK 中,载波的频率随着二进制基带信号在f1和f2两个频率点间变化,频移键控是利用载波的频移变化来传递数字信息的。
在2FSK 中,载波的频率随基带信号在f1和f2两个频率点间变化。
故其表达式为:{)cos()cos(212)(n n t A t A FSK t e ϕωθω++=典型波形如下图所示。
由图可见。
2FSK 信号可以看作两个不同载频的ASK 信号的叠加。
因此2FSK 信号的时域表达式又可以写成:)cos()]([)cos(])([)(2_12n s nn n ns n FSK t nT t g a t nT t g a t s ϕωθω+-++-=∑∑1111tak s 1(t)cos (w1t+θn ) s 2(t) s 1(t) co s(w1t +θn )cos (w2t+φn)s 2(t) cos (w2t+φn)2FSK 信号tttttt2FSK 数字系统的调制原理2FSK 调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。
可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。
如下原理图:载波 f12FS K输出信号载波 f2二进制数据2FS K的调制原理图2FSK的解调方式2FSK的解调方式有两种:相干解调方式和非相干解调方式.下面我们将详细的介绍:1 非相干解调经过调制后的2FSK数字信号通过两个频率不同的带通滤波器f1、f2滤出不需要的信号,然后再将这两种经过滤波的信号分别通过包络检波器检波,最后将两种信号同时输入到抽样判决器同时外加抽样脉冲,最后解调出来的信号就是调制前的输入信号。
其原理图如下图所示:带通滤波器 F1包络检波器输入输出抽样脉冲抽样判决器带通滤波器 F2包络检波器非相干方式原理图2 相干解调根据已调信号由两个载波f1、f2调制而成,则先用两个分别对f1、f2带通的滤波器对已调信号进行滤波,然后再分别将滤波后的信号与相应的载波f1、f2相乘进行相干解调,再分别低通滤波、用抽样信号进行抽样判决器即可。
原理图如下:输入带通滤波器 F1带通滤波器 F2cos2π f1t相乘器低通滤波器低通滤波器抽样脉冲抽样判决器输出cos2π f2t相乘器相干方式原理图Matlab程序实现Fc=150; %载频Fs=40; %系统采样频率Fd=1; %码速率N=Fs/Fd;df=10;numSymb=25;%进行仿真的信息代码个数M=2; %进制数SNRpBit=60;%信噪比SNR=SNRpBit/log2(M);%60seed=[12345 54321];numPlot=15;x=randsrc(numSymb,1,[0:M-1]);%产生25个二进制随机码figure(1)stem([0:numPlot-1],x(1:numPlot),'bx');%显示15个码元,杆图,从x的前十五个随机数中选取title('二进制随机序列')xlabel('Time');ylabel('Amplitude');%调制y=dmod(x,Fc,Fd,Fs,'fsk',M,df);%数字带通调制numModPlot=numPlot*Fs; %15*40t=[0:numModPlot-1]./Fs;%数组除法(仿真时间)figure(2)plot(t,y(1:length(t)),'b-');axis([min(t) max(t) -1.5 1.5]);title('调制后的信号')xlabel('Time');ylabel('Amplitude');%在已调信号中加入高斯白噪声randn('state',seed(2)); %生成-2到+2之间的随机数矩阵y=awgn(y,SNR-10*log10(0.5)-10*log10(N),'measured',[],'dB');%在已调信号中加入高斯白噪声figure(3)plot(t,y(1:length(t)),'b-');%画出经过信道的实际信号axis([min(t) max(t) -1.5 1.5]);title('加入高斯白噪声后的已调信号')xlabel('Time');ylabel('Amplitude');%相干解调figure(4)z1=ddemod(y,Fc,Fd,Fs,'fsk/eye',M,df);title('相干解调后的信号的眼图')%带输出波形的相干M元频移键控解调figure(5)stem([0:numPlot-1],x(1:numPlot),'bx');hold on;stem([0:numPlot-1],z1(1:numPlot),'ro');hold off;axis([0 numPlot -0.5 1.5]);title('相干解调后的信号原序列比较')legend('原输入二进制随机序列','相干解调后的信号')xlabel('Time');ylabel('Amplitude');%非相干解调figure(6)z2=ddemod(y,Fc,Fd,Fs,'fsk/eye/noncoh',M,df);title('非相干解调后的信号的眼图')%带输出波形的非相干M元频移键控解调figure(7)stem([0:numPlot-1],x(1:numPlot),'bx');hold on;stem([0:numPlot-1],z2(1:numPlot),'ro');hold off;axis([0 numPlot -0.5 1.5]);title('非相干解调后的信号')legend('原输入二进制随机序列','非相干解调后的信号')xlabel('Time');ylabel('Amplitude');%误码率统计[errorSym ratioSym]=symerr(x,z1);figure(8)simbasebandex([0:1:5]);title('相干解调后误码率统计')[errorSym ratioSym]=symerr(x,z2);figure(9)simbasebandex([0:1:5]);title('非相干解调后误码率统计')%滤除高斯白噪声Delay=3;R=0.5;PropD=0; %滞后3s[yf,tf]=rcosine(Fd,Fs,'fir',R,Delay); %升余弦函数[yo2,to2]=rcosflt(y,Fd,Fs,'filter',yf);%加入高斯白噪声后的已调信号和经过升余弦滤波器后的已调信号t=[0:numModPlot-1]./Fs;figure(10)plot(t,y(1:length(t)),'r-');hold on;plot(to2,yo2,'b-');%滤出带外噪声hold off;axis([0 30 -1.5 1.5]);xlabel('Time');ylabel('Amplitude');legend('加入高斯白噪声后的已调信号','经过升余弦滤波器后的已调信号') title('升余弦滤波前后波形比较')eyediagram(yo2,N);%眼图title('加入高斯白噪声后的已调信号的眼图')仿真结果三、2psk信号调制解调2psk信号的调制不能采用包络检测的方法,只能进行相干解调,其原理框图如下:不考虑噪声时,带通滤波器输出可以表示为y(t)=cos(wct+Φn)式中Φn为2psk信号某一码元的初相。