第1章 有理数-有理数综合(压轴题)
人教版七年级上册数学 第一章 有理数 数轴动点类压轴综合练习
![人教版七年级上册数学 第一章 有理数 数轴动点类压轴综合练习](https://img.taocdn.com/s3/m/ecd4fb8ca1116c175f0e7cd184254b35eefd1a5e.png)
人教版七年级上册数学第一章有理数数轴动点类压轴综合练习1.如图,在数轴上点A所表示的数是﹣5,点B在点A的右侧,AB=6;点C在AB之间,AC=2BC.(1)在数轴上描出点B;(2)求点C所表示的数,并在数轴上描出点C;(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.2.如图所示,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1.设点A,B,C所对应的数之和是m,点A,B,C所对应的数之积是n.(1)若以B为原点,写出点A,C所对应的数,并计算m的值;若以C为原点,m又是多少?(2)若原点O在图中数轴上点C的右边,且CO=4,求n的值.3.如图,点A、B、C为数轴上的点,请回答下列问题:(1)将点A向右平移3个单位长度后,点A,B,C表示的数中,哪个数最小?(2)将点C向左平移6个单位长度后,点A表示的数比点C表示的数小多少?(3)将点B向左平移2个单位长度后,点B与点C的距离是多少?4.如图,数轴上A,B两点对应的数分别﹣4,8.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动(1)当运动到第2018次时,求点P所对应的有理数.(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.5.有A、B两点,在数轴上分别表示实数a、b,若a的绝对值是b的绝对值的4倍,且A、B两点的距离是15,求a、b的值.(1)若A、B两点在原点的同侧:A、B两点都在原点的左侧时,a=,b=,A、B两点都在原点的右侧时,a=,b=.(2)若A、B两点在原点的两侧:A在原点的左侧、B在原点的右侧时,a=,b=,A 在原点的右侧、B在原点的左侧时,a=,b=.6.已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B在原点的右边.(1)请直接写出A,B两点所对应的数.(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t 的值.7.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.8.把一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端点与数轴上的A点重合,右端点与数轴上的点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端移动到点B处时,它的右端点在数轴上对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为cm.(2)图中点A表示的数为,点B表示的数为;(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,东东问爷爷的年龄,爷爷说:“我若是你现在那么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在的年龄.9.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和1的两点之间的距离是,一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于﹣2与5之间,则|a+2|+|a﹣5|的值为;(3)若x表示一个有理数,且|x﹣1|+|x+3|>4,则有理数x的取值范围;(4)若将数轴折叠,使得1表示的点与﹣3表示的点重合,此时M、N两点也互相重合.若数轴上M、N 两点之间的距离为2020(M在N的左侧),则M、N两点表示的数分别是M:;N:.10.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.11.已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+24|+|b+10|=0,又b,c互为相反数.(1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.(3)若电子蚂蚁丙从A点出发以4个单位/秒的速度向右爬行,问多少秒后蚂蚁丙到A,B,C的距离和为40个单位?12.数轴上点A表示数a,点B表示数b,点C表示数c,若规定m=||c﹣a|﹣|c﹣b||,n=|c﹣a|+|c ﹣b|(1)当a=﹣3,b=4,c=2时,则m=,n=.(2)当a=﹣3,b=4,m=3,n=7时,则c=.(3)当a=﹣3,b=4,且n=2m,求c的值.(4)若点A、B、C为数轴上任意三点,p=|a﹣b|,化简:|m﹣p|﹣|p﹣n|+2|m﹣n|13.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.14.如图,点A、B是数轴上的两个点,它们分别表示的数是﹣2和1.点A与点B之间的距离表示为AB.(1)AB=.(2)点P是数轴上A点右侧的一个动点,它表示的数是x,满足|x+2|+|x﹣1|=7,求x的值.(3)点C为6.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,请求其值.15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:①如果点A表示数﹣2,将点A向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是;②如果点A表示数5,将A点先向左移动4个单位长度,再向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;③一般地,如果A点表示的数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么终点B表示的数是,A、B两点间的距离是;④若点A表示的数为x,则当x为时,|x+1|与|x﹣2|的值相等.。
有理数章节压轴题专项训练(解析版)(人教版)-2023-2024学年七年级数学上学期期中真题分类汇编
![有理数章节压轴题专项训练(解析版)(人教版)-2023-2024学年七年级数学上学期期中真题分类汇编](https://img.taocdn.com/s3/m/85e57698ac51f01dc281e53a580216fc700a5395.png)
专题04有理数章节压轴题专项训练【分析】根据所给的操作方式,求出前面的数,再分析存在的规律,从而可求解.P ,则原点是(A .M 或NB .N 或P 【答案】B 【分析】利用数轴特点确定a 、b 的关系,然后根据绝对值的性质解答即可得出答案.【详解】因为1MN NP PR ===,所以1MN NP PR ===,(1)直接写出:线段MN的长度是,线段MN的中点表示的数为x.(1)3-和5关于2的“美好关联数”为______;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,…,40x 和41x 的“美好关联数”为1,….①01x x +的最小值为______;②12340x x x x +++⋅⋅⋅+的值为______.【答案】(1)8(2)6x =或0x =;(3)①1;②840【分析】(1)认真读懂题意,利用新定义计算即可;(2)利用新定义计算求未知数x ;(3)①读懂题意寻找规律,利用规律计算;②由①得到的规律写出含有绝对值的等式,一一分析到2、4、6、8、...40的距离和为1的时候两点表示的数的和的最小值,最后得出最小值.【详解】(1)解:|32||52|8--+-=,故答案为:8;(2)解:∵x 和2关于3的“美好关联数”为4,∴|3||23|4x -+-=,∴|3|3x -=,解得6x =或0x =;(3)解:①∵0x 和1x 关于1的“美好关联数”为1,∴01|1||1|1x x -+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当0101x x ==,时,01x x +有最小值1,故答案为:1;②由题意可知:-【答案】x y +的最大值为5,最小值为3-【分析】分4种情况讨论:(1)<2x -,3y <;(2)<2x -,3y ≥;(3)2x ≥-,3y ≥;(4)2x ≥-,3y <.分别求出每种情况x y +的最大值与最小值,最后再综合起来找出x y +的最大值与最小值即可.【详解】(1)当<2x -,3y <时,有243x y --=+-∴3x y +=-;(2)当<2x -,3y ≥时,有243x y --=-+∴9x y =-或=9y x +;∴293x y y +=--≥或295x y x +=+<(3)当2x ≥-,3y ≥时,有243x y +=-+,∴5x y +=;(4)当2x ≥-,3y <时,有243x y +=+-,∴1x y =-或1y x =+∴215x y y +=-<或233x y x +=+-≥综上,可得:x y +的最大值为5,最小值为3-.【点睛】本题主要考查了绝对值的性质,绝对值中含有未知数时要进行分类讨论,这是解题的关键.18.阅读:如图,已知数轴上有A 、B 、C 三个点,它们表示的数分别是18-,8-,8.A 到C 的距离可以用AC 表示,计算方法:C 表示的数8,A 表示的数18-,8大于18-,用()818--.用式子表示为:()81826AC =--=.根据阅读完成下列问题:(1)填空:AB =______,BC =______.(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,试探索:BC AB -的值是否随着时间t 的变化而改变?请说明理由.(3)现有动点P 、Q 都从A 点出发,点P 以每秒1个单位长度的速度向右移动,当点P 移动6秒时,点Q 才从A 点出发,并以每秒2个单位长度的速度向右移动.设点P 移动的时间为t 秒()019t ≤≤,写出P 、Q 两点间的距离(用含t 的代数式表示).【答案】(1)10,16(2)不会改变,见解析(3)t 或12t -+或12t -【分析】(1)根据数轴上两点间距离公式计算即可;(2)根据题意求出点A ,B ,C 向右移动后表示的数,然后根据数轴上两点间距离公式出表示AB ,BC 的值,最后再进行计算即可;(3)分三种情况讨论,点Q 在点A 处,点P 在点Q 的右边,点Q 在点P 的右边.【详解】(1)解:()81810AB =---=,()8816BC =--=,(2)解:不变,因为:经过t 秒后,A ,B ,C 三点所对应的数分别是18t --,84t -+,89t +,所以:()8984165BC t t t =+--+=+,()8418105AB t t t =-+---=+,所以:()1651056BC AB t t -=+-+=,所以BC AB -的值不会随着时间t 的变化而改变;(3)解:经过t 秒后,P ,Q 两点所对应的数分别是18t -+,()1826t -+-,当点Q 追上点P 时,()1818260[]t t -+--+-=,解得:12t =,①当06t <≤时,点Q 在还点A 处,所以:PQ t =,②当612t <≤时,点P 在点Q 的右边,所以:()18182612PQ t t t =-+--+-=-+⎡⎤⎣⎦,③当1219t <≤时,点Q 在点P 的右边,所以:()()18261812PQ t t t =-+---+=-,综上所述,P 、Q 两点间的距离为t 或12t -+或12t -.【点睛】本题考查了列代数式,数轴,熟练掌握用数轴上两点间距离表示线段长是解题的关键,同时渗透了分类讨论的数学思想.。
第一章 有理数压轴题考点训练(解析版)
![第一章 有理数压轴题考点训练(解析版)](https://img.taocdn.com/s3/m/0e310cb20875f46527d3240c844769eae109a352.png)
第一章 有理数压轴题考点训练1.设|a |=4,|b |=2,且|a +b |=-(a +b ),则a -b 所有值的和为( )A .-8B .-6C .-4D .-2【答案】A【详解】∵|a +b |=-(a +b ),∴a +b ≤0,∵|a |=4,|b |=2,∴a =±4,b =±2,∴a =-4,b =±2,当a =-4,b =-2时,a -b =-2;当a =-4,b =2时,a -b =-6;故a -b 所有值的和为:-2+(-6)=-8.故选A .2.实数,,x y z 在数轴上的对应点的位置如图所示,若z y x y +<+,则A ,B ,C ,D 四个点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点3.如图,A ,B ,C ,D 是数轴上四个点,A 点表示数为10,E 点表示的数为10010AB BC CD DE ===,,则数9910所对应的点在线段( )上.A .ABB .BC C .CD D .DE【答案】A4.计算2019202020222 1.5(1)3æö-´´-ç÷èø的结果是( )A .23B .32C .23-D .32-5.如图,在一个由六个圆圈组成的三角形里,把-1,-2,-3,-4,-5,-6这6个数分别填入图中圆圈里,要求三角形每条边上的三个数的和S 都相等,那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A 【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=-,最大三个数的和为:()()()1236-+-+-=-,,S=[(21)(6)]39-+-¸=-.填数如图:故选A .6.|x ﹣2|+|x ﹣4|+|x ﹣6|+|x ﹣8|的最小值是a ,||||||1a b c a b c ++=-,那么||||||||ab bc ac abc ab bc ac abc +++的值为( )A .﹣2B .﹣1C .0D .不确定7.若|x |=11,|y |=14,|z |=20,且|x +y |=x +y ,|y +z |=﹣(y +z ),则x +y ﹣z =_____.【答案】45或23【详解】解:∵|x |=11,|y |=14,|z |=20,∴x =±11,y =±14,z =±20.∵|x +y |=x +y ,|y +z |=﹣(y +z ),∴x +y ≥0,y +z ≤0.∵x +y ≥0.∴x =±11,y =14.∵y +z ≤0,∴z =﹣20当x =11,y =14,z =﹣20时,x +y ﹣z =11+14+20=45;当x =﹣11,y =14,z =﹣20时,x +y ﹣z =﹣11+14+20=23.故答案为:45或23.8.若|a|+|b|=|a+b|,则a 、b 满足的关系是_____.【答案】a 、b 同号或a 、b 有一个为0或同时为0【详解】∵|a|+|b|=|a+b|,∴a 、b 满足的关系是a 、b 同号或a 、b 有一个为0,或同时为0,故答案为a 、b 同号或a 、b 有一个为0,或同时为0.9.计算:11111111111111234201723420182342018æöæöæö----¼-´+++¼+-----¼-ç÷ç÷ç÷èøèøèø11112342017æö´+++¼+=ç÷_________.10.已知a ,b ,c ,d 表示4个不同的正整数,满足a +b 2+c 3+d 4=90,其中d >1,则a +2b +3c +4d 的最大值是_____.【答案】81【详解】解:∵a ,b ,c ,d 表示4个不同的正整数,且a +b 2+c 3+d 4=90,其中d >1,∴d 4<90,则d =2或3,c 3<90,则c =1,2,3或4,b 2<90,则b =1,2,3,4,5,6,7,8,9,a <90,则a =1,2,3, (89)∴4d ≤12,3c ≤12,2b ≤18,a ≤89,∴要使得a +2b +3c +4d 取得最大值,则a 取最大值时,a =90﹣(b 2+c 3+d 4)取最大值,∴b ,c ,d 要取最小值,则d 取2,c 取1,b 取3,∴a 的最大值为90﹣(32+13+24)=64,∴a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81,故答案为:81.11.如图,将一个半径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴滚动1周,点A 到达点A ¢的位置,则点A ¢表示的数是 _______;若起点A 开始时是与—1重合的,则滚动2周后点A ¢表示的数是______.【答案】 2p 或2p - 41p -或41p --【详解】解:因为半径为1的圆的周长为2p ,所以每滚动一周就相当于圆上的A 点平移了2p 个单位,滚动2周就相当于平移了4p 个单位;当圆向左滚动一周时,则A'表示的数为2p -,当圆向右滚动一周时,则A'表示的数为2p ;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41p -,若向左滚动两周,则A'表示的数为41p --;故答案为:2p ①或2p -;41p -②或41p --.12.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______.13.问题提出:学习了|a |为数轴上表示a 的点到原点的距离之后,小凡所在数学兴趣小组对数轴上分别表示数a 和数b 的两个点A ,B 之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是 ;一般的,数轴上表示数m 和数n 的两点之间距离为 .问题探究:(2)请求出|x ﹣3|+|x ﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L ,L 旁依次有3处防疫物资放置点A ,B ,C ,已知AB =800米,BC =1200米,现在设计在主干道L 旁修建防疫物资配发点P ,问P 建在直线L 上的何处时,才能使得配发点P 到三处放置点路程之和最短?最短路程是多少?(3)∵到数轴上三个点距离之和最小的点即是中间那个点,最小值是左右两边二点之间的距离,∴当配发点P 在点B 时,到三处放置点路程之和最短;即:最小距离和=AB +BC = 800米+1200米=2000米.14.如图,在数轴上A 点表示数a ,B 点表示数b ,且a 、b 满足212(6)0a b ++-=.()1求A 、B 两点之间的距离;()2点C 、D 在线段AB 上,AC 为14个单位长度,BD 为8个单位长度,求线段CD 的长;()3在()2的条件下,动点P 以3个单位长度/秒的速度从A 点出发沿正方向运动,同时点Q 以2个单位长度/秒的速度从D 点出发沿正方向运动,求经过几秒,点P 、点Q 到点C 的距离相等.15.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如,式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -=,则x = ;32x x -++的最小值是 .(2)若327x x -++=,则x 的值为;若43113x x x ++-++=,则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值,若存在,直接写出这个最小值及此时x 的取值情况;若不存在,请说明理由.。
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题
![人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题](https://img.taocdn.com/s3/m/66b11154f78a6529647d53ac.png)
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题1、已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.2、如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.3、如图,在数轴上有三个点A,B,C,完成下列问题:(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D;(2)在数轴上找到点E,使点E到B,C两点的距离相等,并在数轴上标出点E表示的数;(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,那么点F表示的数是.4、如图,已知数轴上两点A、B表示的数分别为﹣2、3.点P为数轴上一动点,其表示的数为x.(1)若点P是线段AB的中点,求x;(2)若点P到点A、点B的距离之和为8,求x.5、如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6、如图,点A,O,B在数轴上表示的数分别为﹣6,0,10,A,B两点间的距离可记为AB.(1)点C在数轴上的A,B两点之间,且AC=BC,则点C对应的数是;(2)点C在数轴上的A,B两点之间,且BC=3AC,则点C对应的数是;(3)点C在数轴上,且AC+BC=20,求点C对应的数.7、操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.8、如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.9、已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?10、如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.11、在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是P.(1)若以B为原点,写出点A,C所对应的数,并计算P的值;若以C为原点,P又是多少?(2)若原点O在图中数轴上点C的右边,且CO=38,求P.12、如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?13、对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,满足AB=2BC,此时点B是点A,C的“倍联点”.若数轴上点M表示﹣3,点N表示6,回答下列问题:(1)数轴上点D1,D2,D3分別对应0,3.5和11,则点是点M,N的“倍联点”,点N是这两点的“倍联点”;(2)已知动点P在点N的右侧,若点N是点P,M的倍联点,求此时点P表示的数.14、如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为15、如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.。
第1章有理数——数轴与绝对值综合专题训练(二)人教版七年级数学上册
![第1章有理数——数轴与绝对值综合专题训练(二)人教版七年级数学上册](https://img.taocdn.com/s3/m/0d8a49bde45c3b3566ec8bd8.png)
第1章有理数——数轴与绝对值综合专题训练(二)1.圆通快递公司员工小明骑车从快递公司出发,先向南骑行4km到达A单位,然后向北骑行2km到达B公司,继续向北骑行5km到达C村,最后回到快递公司.(1)以快递公司为原点,向南方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三地的位置;(2)C学校离A单位有多远?(3)小明一共骑行了多少千米?2.一辆货车从仓库出发去送货,向东走了2千米到达超市A,继续向东走了2.5千米到达超市B,然后向西走了8.5千米到达超市C,继续向西走了5千米到达超市D,此时发现车上还有距离仓库仅1千米的超市E的货还未送,于是开往超市E,最后回到仓库.(1)超市C在仓库的东面还是西面?距离仓库多远?(2)超市B距超市D多远?(3)如果货车每千米耗油0.08升,那么货车在这次送货中共耗油多少升?3.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a﹣b|.理解:(1)数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A和B之间的距离是;(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是;最小值是.应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆数.4.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为.(2)不等式|x﹣3|+|x+4|≥9的解为.5.大家知道|5|=|5﹣0|,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是;数轴上表示﹣2和﹣5的两点之间的距离是;(2)点A、B在数轴上分别表示实数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x的值.(3)直接写出代数式|x+1|+|x﹣4|的最小值及相应的x的取值范围.6.a、b、c三数在数轴上位置如图,化简+.7.化简或求值:(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:①4A﹣B;②当x=1,y=﹣2时,4A﹣B的值.(2)已知a,b,c在数轴上的位置如图所示,化简:|a+c|﹣|a+b|+|c﹣b|.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B 两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.定义:已知点A、B在数轴上分别表示有理数x、y,A、B两点到原点的距离之和叫做两点之间的原点距,记作d,容易知道原点距d=|x|+|y|.例如:有理数2,﹣5,它们在数轴上所代表的点之间的原点距d=|2|+|﹣5|=7.(1)若A,B两点的原点距为3,且点A代表的数为1,则点B代表的数字为;(2)若A点代表的数字为x(x>0),B点代表的数字为2﹣x,则AB之间的原点距为.10.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.11.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?12.如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是.(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;小朋同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?13.有理数a,b,c在数轴上的位置如图所示.(1)|a|=;|﹣2b|=;(2)|a+b|=;(3)试化简|a﹣b|﹣|2a|+|﹣b|.14.点A,B,C,O在数轴上位置如图所示,其中点O表示的数是O,点A,B,C表示的数分别是a,b,c.(1)图中共有条线段;(2)若O是BC的中点,AC=OA,AB=16,求a,b,c的值.15.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧有点P,使点P到点A、点B的距离之和为8.请直接写出x的值.x =;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?16.【思考】数轴上,点C是线段AB的中点,请填写下列表格A点表示的数B点表示的数C点表示的数2 6﹣1 ﹣5﹣3 1【发现】通过表格可以得到,数轴上一条线段的中点表示的数是这两条线段端点表示的数的;【表达】若数轴上A、B两点表示的数分别为m、n,则线段AB的中点表示的数是;【应用】如图,数轴上点A、C、B表示的数分别为﹣2x、x﹣4、1,且点C是线段AB 的中点,求x的值.17.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时匀速出发,同向而行时间/秒0 1 5A点位置﹣12 ﹣9B点位置8 18 (1)请填写表格;(2)若两只蚂蚁在数轴上点P相遇,求点P在数轴上表示的数;(3)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.18.甲、乙两辆汽车在东西走向的公路上行驶,规定向东为正,开始时甲车在西60千米的点A处,乙车在东10千米的点B处,(如图所示),甲车的速度为90千米/小时,乙车的速度为60千米/小时.(1)求甲、乙两车之间的距离(列式计算);(2)甲、乙两车同时向东行驶,甲车行驶270千米后进入服务区休息10分钟,然后继续向东行驶30千米,乙车一直向东行驶.①求此时乙车到达的位置点C所表示的数(列式计算);②甲车司机发现自己的手提包丢在服务区,立即调头来取,然后再追赶乙车,当甲车追上乙车时,求乙车到达的位置点D所表示的数(直接写出答案).。
第一章 有理数 ——数轴动点类压轴综合 人教版七年级数学上册
![第一章 有理数 ——数轴动点类压轴综合 人教版七年级数学上册](https://img.taocdn.com/s3/m/fe016084a26925c52dc5bfbd.png)
第一章有理数——数轴动点类压轴综合1.如图,在数轴上的A点表示数a,B点表示数b,a、b满足(a+2)2+|b﹣4|=0.(1)点A表示的数为,点B表示的数为.(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①t=1时,甲小球到原点的距离=;乙小球到原点的距离=.当t=3时,甲小球到原点的距离=;乙小球到原点的距离=.②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由;若能,请举例说明.2.如图,数轴上点A、B表示的有理数分别为﹣10、5,点P是射线AB上的一个动点(不与点A、B重合),点M是线段AP靠近点A的三等分点,点N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是1,那么MN的长为.(2)点P在射线AB上运动(不与点A、B重合)的过程中,MN的长是否发生改变?若不改变,请求出MN的长;若改变,请说明理由.3.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.4.一辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B 表示,小刚家用点C表示)(2)小明家与小刚家相距多远?5.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B 的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P关于A→B的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.6.在数学课上探索得到:如果点A、点B在数轴上表示的数分别是a、b,那么|a﹣b|表示A、B两点间距离.小明说:|x﹣3|表示数轴上表示数x和3的两个点的距离;小华动动脑筋说:|x+3|表示什么呢?老师:|x+3|可以化为|x﹣(﹣3)|,即|x+3|可以表示数轴上表示数x和﹣3的两个点的距离;请同学们利用以上知识或你已学过的知识解决以下问题:(1)数轴上表示﹣4的点与表示6的点相距个单位;(2)①若|x﹣5|=3,|y+2|=1,且数x、y在数轴上表示的点分别是点A、点B,求A、B两点间的距离.②若|x+4|+|x﹣6|=12,写出符合条件的x的值.7.对数轴上的点P进行如下操作:先把点P表示的数乘以m(m≠0),再把所得数对应的点沿数轴向右平移n个单位长度,得到点P'.称这样的操作为点P 的“倍移”对数轴上的点A,B,C,D进行“倍移”操作得到的点分别为A',B',C',D'.(1)当m=,n=1时,①若点A表示的数为﹣4,则它的对应点A'表示的数为.若点B'表示的数是3,则点B表示的数为;②数轴上的点M表示的数为1,若CM=3C'M,则点C表示的数为;(2)当n=3时,若点D表示的数为2,点D'表示的数为﹣5,则m的值为;(3)若线段A'B'=2AB,请写出你能由此得到的结论.8.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如数轴上数x与5两点之间的距离等于|x﹣5|,(2)如果表示数a和﹣2的两点之间的距离是3,那么a=;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.9.如图,直径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(1)把圆片沿数轴向右滚动1周,点A到达数轴上点C的位置,点C表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第几次滚动后,A点距离原点最近?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?10.如图,数轴上,点A、B分别表示数a+b、a﹣b.(1)求A、B两点间的距离;(2)直接写出数a、b的符号;(3)判断|a|、|b|的大小关系,并说明理由.11.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;(3)当代数式|x+1|+|x﹣2|取最小值时,此时符合条件的整数x为;(4)若点A表示的数为x,则当x为时,|x+1|与|x﹣2|的值相等.12.如图,已知数轴上两点A、B表示的数分别为﹣2、3.点P为数轴上一动点,其表示的数为x.(1)若点P是线段AB的中点,求x;(2)若点P到点A、点B的距离之和为8,求x.13.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A 的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?14.如图,点O为数轴的原点,A,B在数轴上按顺序从左到右依次排列,点B表示的数为7,AB=12.(1)直接写出数轴上点A表示的数.(2)动点P、Q分别从A、B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒个单位长度的速度沿数轴向右匀速运动.①经过多少秒,点P是线段OQ的中点?②在P、Q两点相遇之前,点M为PO的中点,点N在线段OQ上,且QN=OQ.问:经过多少秒,在P、M、N三个点中其中一个点为以另外两个点为端点的线段的三等分点?(把一条线段分成1:2的两条线段的点叫做这条线段的三等分点)15.【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)①一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)②若线段AB=20,C是线段AB的“二倍点”,则BC=(写出所有结果)【深入研究】如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A 运动,当点M到达点A时停止运动,运动的时间为t秒.(2)问t为何值时,点M是线段AB的“二倍点”;(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M 同时停止.请直接写出点M是线段AN的“二倍点”时t的值.。
第1章有理数——数轴与绝对值综合专题训练(一)人教版七年级数学上册
![第1章有理数——数轴与绝对值综合专题训练(一)人教版七年级数学上册](https://img.taocdn.com/s3/m/422ec7fbba1aa8114531d9f6.png)
第1章有理数——数轴与绝对值综合专题训练(一)1.如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.2.已知:数轴上表示数a的点A与表示数﹣2的点之间的距离为3,表示数b的点B与表示数2的点之间的距离为6,点A、点B分别表示什么数?A、B两点之间的距离是多少?3.如图,数轴上的三点A、B、C分别表示有理数a、b、c.则:a﹣b0,a+c0,b﹣c0.(用<或>或=号填空)你能把|a﹣b|﹣|a+c|+|b﹣c|化简吗?能的话,求出最后结果.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.5.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.6.在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.7.如图,在数轴上点A表示数a,点C表示数c且|a+10|+(c﹣20)2=0 (1)求a、c的值;(2)已知点D为数轴上一动点,且满足CD+AD=32,直接写出点D表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C的速度分别为每秒3个单位长度、每秒4个单位长度,运动时间为t 秒.①若点A 向右运动,点C 向左运动,AB =BC ,求t 的值;②若点A 向左运动,点C 向右运动,2AB ﹣m ×BC 的值不随时间变化而改变,请求出m 的值.8.已知A ,B 两点在数轴上分别示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a ﹣b |.已知数轴上A ,B 两点对应的数分别为﹣1,3,P 为数轴上一动点,A ,B 两点之间的距离是 .设点P 在数轴上表示的数为x ,则点P 与﹣4表示的点之间的距离表示为若点P 到A ,B 两点的距离相等,则点P 对应的数为若点P 到A ,B 两点的距离之和为8,则点P 对应的数为现在点A 以2个单位长度/秒的速度向右运动,同时点B 以0.5个单位长度/秒的速度向右运动,当点A 与点B 之间的距离为3个单位长度时,求点A 所对应的数是多少?9.对于数轴上的A 、B 、C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A 、B 、C 所表示的数分别为1、3、4,则点B 是点A 、C 的“至善点”.(1)若点A 表示数﹣2,点B 表示数2,下列各数、0、1、6所对应的点分别C 1、C 2、C 3、C 4,其中是点A 、B 的“至善点”的有 (填代号);(2)已知点A 表示数﹣1,点B 表示数3,点M 为数轴上一个动点:①若点M 在点A 的左侧,且点M 是点A 、B 的“至善点”,求此时点M 表示的数m ; ②若点M 在点B 的右侧,点M 、A 、B 中,有一个点恰好是其它两个点的“至善点”,求出此时点M 表示的数m .10.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.11.思考下列问题并在横线上填上答案.(1)数轴上表示﹣3的点与表示4的点相距个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是.(4)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是,最小距离是.(5)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,经过秒三个点聚于一点,这一点表示的数是,点C在整个运动过程中,移动了个单位.12.邮递员骑摩托车从邮局出发,向东走了3千米到达小明家,继续向东走了1.5千米到达小亮家,然后向西走了9.5千米到达小刚家,最后回到邮局.(1)若以邮局为原点O,以向东方向为正方向,用1个单位长度表示1千米,你在数轴上表示出小刚家,小明家和小亮家的位置.(2)小刚家距离小明家有多远?(3)如果邮递员所骑的摩托车油耗为4升/百公里,摩托车行驶的路程消耗了多少升油?13.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为(2)当t=时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.14.已知:|b|=1,b>0,且a,b,c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a,b,c的值(2)a,b,c在数轴上所对应的点分别为A、B、C,在上标出A、B、C(3)点P为一移动的点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(写出化简过程).15.一只蚂蚁从原点O出发,它先向左爬行3个单位长度到达A点,再向左爬行2个单位长度到达B点,再向右爬行7个单位长度到达C点.(1)写出A、B、C三点表示的数,并将它们的位置标注在数轴上;(2)根据C点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?。
专题01 有理数 压轴题(十一大题型)(原卷版)
![专题01 有理数 压轴题(十一大题型)(原卷版)](https://img.taocdn.com/s3/m/ef8bec2cce84b9d528ea81c758f5f61fb73628ab.png)
专题01有理数压轴题(十一大题型)目录:(1)如图①,勤学小组的同学将数轴对折,使表示2的点与表示2-的点重合.①对折后表示5的点与表示________的点重合;②对折后表示m的点与表示________的点重合.(用含m的代数式表示)②如图2,在工厂的一条流水线上有三个加工点A,B,C,要在流水线上设一个材料供应点点输送材料,材料供应点P应设在才能使P到A,B,C三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A,B,C,D工点输送材料,材料供应点P应设在才能使P到A,B,C,(3)结论应用(填空):(1)如图1,PB,则P的值x=__________;①若=5++-=__________;|2||1|x x题型3:数轴上动点-单动点问题8.如图,在数轴上点A表示1,现将点A沿13149.如图,在数轴上点A表示的有理数为8-,点B长度的速度在数轴上沿由A到B方向运动,当点t=时,点P表示的有理数是______(1)当2(2)当点P与点B重合时,t=______;(3)①在点P由点A到点B的运动过程中,点【综合运用】(1)运动开始前,A,B两点的距离为(2)点A运动t秒后所在位置的点表示的数为(1)求点B和点D分别表示的数;(1)若点P到点A,点B的距离相等,则点(2)数轴上是否存在点P,使得点P明理由.(3)点P以每秒5个单位长度的速度从点点B以每秒3个单位长度的速度向右匀速运动,它们同时出发,几秒后点14.如图,O是数轴的原点,A、B是数轴上的两个点,5AC(1)求C点对应的数;(2)动点M从A点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,当点M到达然后继续按原速沿数轴向右匀速运动到B点后停止.在点M从A点出发的同时,动点秒1个单位长度的速度沿数轴匀速向左运动,一直运动到A点后停止.设点N的运动时间为请用上面的知识解答下面的问题:如图,在数轴上点A表示数a,点B表示数b,点(1)=a,b=,c=;(2)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.5=⑤;12⎛⎫-=⎪⎝⎭⑩.(1)从中取出2张卡片,使这2张卡片上数字的和最小,则和的最小值为(2)从中取出2张卡片,使这2张卡片上数字的差最大,则差的最大值为2根据第n 次分割图可得等式:2311111122222n n ++++=- .探究二:计算1111++++ .3根据第n 次分制图可得等式:2322221133333n n++++=- ,111111解决问题.计算2311119999n ++++ .(在图②中只画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空(1)按此方式,将二进制(1001)(10101)+(111)= (2)计算:22表示).(1)根据表格,按程序计算,完成填空:(2)运算步骤①为_____;随着x的值增大,程序_____的输出值先超过500.27.计算机的运算编程与数学原理是密不可分的,相对简单的运算编程就是数值转换机,(1)如图,A同学设置了一个数值转换机,若输入a的值为1-,则输出的结果为________(2)如图,B同学设置了一个数值转换机,若输出结果为0,则输入的x=________(3)C同学也设置了一个计算装置示意图,A、B是数据入口,C是计算结果的出口,计算过程是由A,B分别输入自然数m和n,经过计算后的自然数k由C输出,此种计算装置完成的计算满足以下三个性质:①若A、B分别输入1②若B输入1,A输入自然数增大③若A输入任何固定自然数不变,()(==-k C m n C m n,,问:当A输入自然数7。
第一章 有理数压轴题考点训练(解析版)(人教版)
![第一章 有理数压轴题考点训练(解析版)(人教版)](https://img.taocdn.com/s3/m/d2e2d0680a4c2e3f5727a5e9856a561253d3210a.png)
第一章有理数压轴题考点训练在数轴正半轴上,较大的数表示的点离原点较远,故③错误;3的相反数为-3,-3的倒数为0的相反数等于0,0的绝对值等于故选D.【答案】3【分析】此题需要寻找规律:每4个数一组,分别与¸4,看是第几组的第几个数.①如果点A 所表示的数是5-,那么点B 所表示的数是②请在图1中标出原点O 的位置;(3)如图3,数轴上标出若干个点,其中点A ,B ,C 所表示的数分别为出的若干个点中每相邻两点相距1个单位(如1AB =),且28c a -=.①试求a 的值;②若点D 也在这条数轴上,且3CD =,设D 点所表示的数为d ,求d 的值.【答案】(1)①5;②见解析(2)画图见解析,4(3)①2a =-;②1或7【分析】(1)①根据相反数的定义可得点B 表示的数,②根据A 、B 的位置可得原点的位置;(2)根据A 、B 所表示的数可得单位长度表示3,进而可得原点的位置和点C 表示的数;(3)①由数轴可得6c a -=,再结合28c a -=可得a 的值;②根据a 的值可得c ,根据3CD =可得3c d -=或3d c -=,即可求出答案.【详解】(1)解:①点A 所表示的数是5-,点A 、点B 所表示的数互为相反数,所以点B 所表示的数是5,故答案为:5;②在图1中表示原点O 的位置如图所示:(2)原点O 的位置如图所示,点C 所表示的数是4.故答案为:4;(3)①由题意得:6AC =,∴6c a -=,又∵28c a -=,∴2a =-;②设D 表示的数为d ,∵6c a -=,2a =-,∴4c =,∵3CD =,∴3c d -=或3d c -=,∴1d =或7d =.(1)若点A表示数-2, 点B表示的数如图,当点1P在点A左侧时,1PB则30-x=2(-10-x),则30-x=2(x+10),解得x=10.则x+10=2(30-x),解得x=50.﹣|×【答案】(1)a=-8,b=12;(2)7;(3)1.2;1.8;3;4.【详解】试题分析:(1)根据偶次方以及绝对值的非负性即可求出。
七年级数学有理数压轴题
![七年级数学有理数压轴题](https://img.taocdn.com/s3/m/1443dee1e43a580216fc700abb68a98271feacee.png)
七年级数学有理数压轴题一、有理数的概念与分类。
1. 把下列各数填在相应的大括号里:- - 5,(1)/(3),0.62,4,0,-1.1,(7)/(6),-6.4,-7,(22)/(7)- 正整数集合:{4};- 负整数集合:{-5,-7};- 分数集合:{(1)/(3),0.62,(7)/(6), - 1.1,-6.4,(22)/(7)};- 非负数集合:{(1)/(3),0.62,4,0,(7)/(6),(22)/(7)}。
- 解析:正整数是大于0的整数;负整数是小于0的整数;分数包括有限小数和无限循环小数;非负数是正数和0的统称。
2. 下列说法正确的是()- A. 整数就是正整数和负整数。
- B. 分数包括正分数、负分数。
- C. 正有理数和负有理数组成全体有理数。
- D. 一个数不是正数就是负数。
- 答案:B。
- 解析:A选项,整数包括正整数、0和负整数;C选项,有理数包括正有理数、0和负有理数;D选项,一个数还可能是0。
二、有理数的大小比较。
3. 比较大小:-(2)/(3)与-(3)/(4)。
- 答案:-(2)/(3)>-(3)/(4)。
- 解析:先求出两个数的绝对值,|-(2)/(3)|=(2)/(3)=(8)/(12),|-(3)/(4)|=(3)/(4)=(9)/(12),因为(8)/(12)<(9)/(12),根据两个负数比较大小,绝对值大的反而小,所以-(2)/(3)>-(3)/(4)。
4. 有理数a,b在数轴上的位置如图所示,比较a,- a,b,-b的大小。
- (数轴上a在原点左侧,b在原点右侧,且| a|>| b|)- 答案:a < - b < b < - a。
- 解析:因为a是负数,所以-a是正数,b是正数,所以-b是负数,又因为| a|>| b|,所以a离原点的距离比b离原点的距离远,所以a < - b < b < - a。
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题
![人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题](https://img.taocdn.com/s3/m/66b11154f78a6529647d53ac.png)
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题1、已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.2、如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.3、如图,在数轴上有三个点A,B,C,完成下列问题:(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D;(2)在数轴上找到点E,使点E到B,C两点的距离相等,并在数轴上标出点E表示的数;(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,那么点F表示的数是.4、如图,已知数轴上两点A、B表示的数分别为﹣2、3.点P为数轴上一动点,其表示的数为x.(1)若点P是线段AB的中点,求x;(2)若点P到点A、点B的距离之和为8,求x.5、如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6、如图,点A,O,B在数轴上表示的数分别为﹣6,0,10,A,B两点间的距离可记为AB.(1)点C在数轴上的A,B两点之间,且AC=BC,则点C对应的数是;(2)点C在数轴上的A,B两点之间,且BC=3AC,则点C对应的数是;(3)点C在数轴上,且AC+BC=20,求点C对应的数.7、操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.8、如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.9、已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?10、如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.11、在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是P.(1)若以B为原点,写出点A,C所对应的数,并计算P的值;若以C为原点,P又是多少?(2)若原点O在图中数轴上点C的右边,且CO=38,求P.12、如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?13、对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,满足AB=2BC,此时点B是点A,C的“倍联点”.若数轴上点M表示﹣3,点N表示6,回答下列问题:(1)数轴上点D1,D2,D3分別对应0,3.5和11,则点是点M,N的“倍联点”,点N是这两点的“倍联点”;(2)已知动点P在点N的右侧,若点N是点P,M的倍联点,求此时点P表示的数.14、如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为15、如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.。
《有理数》压轴题训练(含答案)
![《有理数》压轴题训练(含答案)](https://img.taocdn.com/s3/m/3f63c6debb4cf7ec4afed06e.png)
《有理数》压轴题训练(1)1.如图,四个有理数在数轴上的对应点分别为.若点表示的有理数互为相,,,M P N Q ,M N 反数,则表示的数的绝对值最小的点是( )A.点B.点C.点D.点M N P Q2. 是有理数,它们在数轴上的对应点的位置如图所示,把按照,a b ,,,,,a a b b a b a b --+-从小到大的顺序排列,正确的是( )A. a b b a a a b b -<-<<-<+<B. b a b a a b a b -<-<<-<<+C. a b a b a b a b -<<-<+<-<D. b a a b a b a b-<<-<-<<+3.若与互为相反数.则= .2x +5y -x y -4. 是不为1的有理数,我们把称为的差倒数.如:2的差倒数是,-1的差倒a 11a -a 1112=--数是.已知,是的差倒数,是的差倒数, 是的差倒111(1)2=--113a =-2a 1a 3a 2a 4a 3a 数……依此类推.则=.2018a 5.在解决数学问题的过程中,我们常用到 “分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题. 【提出问题】三个有理数满足,求的值.,,a b c 0abc >a b c abc++【解决问题】解:由题意,得三个有理数都为正数或其中一个为正数,另两个为负数.,,a b c ①都是正数,即时,则;,,a b c 0,0,0a b c >>>1113a b c a b cabca b c++=++=++= ②当中有一个为正数,另两个为负数时,不妨设,则,,a b c 0,0,0a b c ><<.1(1)(1)1a b c a b c abca b c --++=++=+-+-=-综上所述,值为3或-1.a b c ab c++【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数满足,求的值;,,a b c 0abc <a b c abc++(2)若为三个不为0的有理数,且,求的值.,,a b c 1a b c a b c ++=-abcabc6.我们知道,表示数对应的点到原点的距离,这是绝对值的几何意义.进一步地,数轴a a 上两个点分别表示数,那么.利用此结论,回答下列问题:,A B ,a b AB a b =- (1)数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ; (2)数轴上表示和-1的两点之间的距离是 ,如果=2,那么的值x ,A B AB x 为;(3)写出表示的几何意义:,该式的最小值为;12x x +++ (4)求的最小值.1232019x x x x -+-+-+⋅⋅⋅+- (2)1.四个各不相等的整数,满足,则的值为.,,,a b c d 9abcd =a b c d +++A.无法确定 B. 4 C. 10 D. 02. 8月是新学期开学准备月,东风和百惠两家书店才学习用品和工具书实施优惠销售活动.优惠方案分别是:若在东风书店购买学习用品或工具书累计花费超过60元,超出部分按50%收费;若在百惠书店购买学习用品或工具书累计花费超过50元,超出部分按60%收费.李明同学准备买价值300元的学习用品和工具书,比较优惠的书店是( ) A.东风书店 B.百惠书店 C.两家一样 D.无法确定3.观察下列等式: 试猜想的个位12345633,39,327,381,3243,3729======⋅⋅⋅⋅⋅⋅20163数字是.4.为了求的值,可令,则2310013333++++⋅⋅⋅+2310013333M =++++⋅⋅⋅+,因此,,所以.234101333333M =++++⋅⋅⋅+101331M M -=-101312M -=即.1012310031133332-++++⋅⋅⋅+=仿照以上的过程,计算: = .23201515555++++⋅⋅⋅+5.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数.某日下午的运货记录如下(单位:吨):+ 5. 5,-4. 6,-5. 3, +5. 4,-3. 4 ,+ 4. 8,-3. (1)仓库该日上午存货60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么该日下午货车司机共得运费多少元?6.观察下列各式:,322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯⋅⋅⋅⋅⋅⋅回答下列问题:(1)猜想 =(直接写出结果).33333123(1)n n +++⋅⋅⋅+-+(2)利用你得到的(1)中的结论,计算: .3333312399100+++⋅⋅⋅++ (3)计算: .3333311121399100+++⋅⋅⋅++参考答案(1)1.C2.A3.-74.345.(1) ①当都是负数,=-3,,a b c a b c a b c++②当中有一个为负数,另两个为正数时,=1,,a b c a b c abc++(2)=1abcabc6.(1) 253,2(5)3,1(3)4-=---=--= (2) ;或-3.1x +1x = (3)数轴上表示的点分别到表示-1和-2两点的距离和.当取-2与-1之间的任意一个值x x 时,该代数式取值最小,为1.(4) =1019090.1232019x x x x -+-+-+⋅⋅⋅+-(2)1.D2.A3. 14.2016514-5.(1)下午运完货物后存货59.4吨?(2)该日下午货车司机共得运费320元?6.(1) .22(1)4n n +(2) =25502500.3333312399100+++⋅⋅⋅++ (3) =25499475.3333311121399100+++⋅⋅⋅++。
人教版七年级数学上册第一章 有理数-数轴压轴题专项训练试题(无答案)
![人教版七年级数学上册第一章 有理数-数轴压轴题专项训练试题(无答案)](https://img.taocdn.com/s3/m/5dde1c78050876323012121a.png)
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题1、已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.2、如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.3、如图,在数轴上有三个点A,B,C,完成下列问题:(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D;(2)在数轴上找到点E,使点E到B,C两点的距离相等,并在数轴上标出点E表示的数;(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,那么点F表示的数是.4、如图,已知数轴上两点A、B表示的数分别为﹣2、3.点P为数轴上一动点,其表示的数为x.(1)若点P是线段AB的中点,求x;(2)若点P到点A、点B的距离之和为8,求x.5、如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6、如图,点A,O,B在数轴上表示的数分别为﹣6,0,10,A,B两点间的距离可记为AB.(1)点C在数轴上的A,B两点之间,且AC=BC,则点C对应的数是;(2)点C在数轴上的A,B两点之间,且BC=3AC,则点C对应的数是;(3)点C在数轴上,且AC+BC=20,求点C对应的数.7、操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.8、如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.9、已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?10、如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.11、在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是P.(1)若以B为原点,写出点A,C所对应的数,并计算P的值;若以C为原点,P又是多少?(2)若原点O在图中数轴上点C的右边,且CO=38,求P.12、如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B 落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?13、对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,满足AB=2BC,此时点B是点A,C的“倍联点”.若数轴上点M 表示﹣3,点N表示6,回答下列问题:(1)数轴上点D1,D2,D3分別对应0,3.5和11,则点是点M,N的“倍联点”,点N是这两点的“倍联点”;(2)已知动点P在点N的右侧,若点N是点P,M的倍联点,求此时点P表示的数.14、如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为15、如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.。
人教版七年级上册数学作业课件 第一章 有理数 综合滚动练习:数轴相反数绝对值及其综合
![人教版七年级上册数学作业课件 第一章 有理数 综合滚动练习:数轴相反数绝对值及其综合](https://img.taocdn.com/s3/m/db3fd52a03020740be1e650e52ea551810a6c918.png)
11.(2021·宜昌中考)用正负数表示气温的变化量, 上升为正,下降为负.登山队攀登一座山峰,每 登高 1 km 气温的变化量为-6 ℃,攀登 2 km 后, 气温下降 12 ℃.
12.如图,在数轴上点
B
表数是
5 3
.
13.当 a= 1 时,|a-1|+5 的值最小.
A: 1 ,B: -2.5 ;(4 分) (2)观察数轴,与点 A 的距离为 4 的点表示的数是
5 或-3 ;(6 分)
(3)若将数轴折叠,使得点 A 与-3 对应的点重合,则 点 B 与数 0.5 对应的点重合.(8 分)
16.(10 分)把下列各数表示在数轴上,并用“<”号连
接起来:
-9,-(-5),-0.5,0,-|-3|,+7,-(+2).
所以共耗油 18×2.5÷100=0.45(升).(11 分) 答:摩托车耗油 0.45 升.(12 分)
14.在数轴上点 A 对应的数为-2,点 B 是数轴上的一 个动点,当动点 B 到原点的距离与到点 A 的距离之和 为 6 时,则点 B 对应的数为 -4 或 2 .
三、解答题(共 52 分) 15.(8 分)根据如图所示的数轴,解答下面的问题:
(1)请你根据图中 A,B(在-3 和-2 的正中间)两点的位 置,分别写出它们所表示的有理数.
2
2
解:把各数表示在数轴上,如图所示.(4 分)
则-92<-|-3|<-(+2)<-0.5<0<+72<-(-5).(10 分)
17.(10 分)如图,图中数轴的单位长度为 1.请回答下列 问题: (1)如果点 A,B 表示的数互为相反数,那么点 C,D 表 示的数是多少? (2)如果点 D,B 表示的数互为相反数,那么点 C,D 表 示的数分别是多少?
第一章-有理数全章综合测试(含答案)(1)
![第一章-有理数全章综合测试(含答案)(1)](https://img.taocdn.com/s3/m/70de99925901020207409ccb.png)
第一章《有理数》全章综合测试一、选择题:(每题2分,计30分)1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一2 D.123.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a <b B.a>b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升l0米和下降7米C.超过0.05mm与不足0.03m D.增大2岁与减少2升7.下列说法正确的是()A.-a一定是负数;B.a定是正数;C.a一定不是负数;D.-a一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1m的大小关系是()A.m<m2<1mB.m2<m<1mC.1m<m<m2D.1m<m2<m11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×106 12.下列各项判断正确的是()A.a+b一定大于a-b B.若-ab<0,则a、b异号C.若a3=b3,则a=b D.若a2=b2,则a=b13.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对二、填空题(每题3分,计27分)1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。
人教版七年级上册第1章《有理数》章末综合训练题 word版,含答案
![人教版七年级上册第1章《有理数》章末综合训练题 word版,含答案](https://img.taocdn.com/s3/m/a12ac7b0804d2b160b4ec0f7.png)
人教版七年级上册第1章《有理数》章末综合训练题一、选择题1.2020-的相反数是( )A .2020B .2020-C .12020D .12020- 2.如果80 m 表示向东走80 m ,则-60 m 表示( ).A .向东走60 mB .向西走60 mC .向南走60 mD .向北走60 m 3.我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为27500亿立方米,人均占有淡水量居世界第110位,因此我们要节约用水,其中27500用科学记数法表示为( ) A .275×102 B .2.75×104C .2.75×105D .27.5×103 4.有理数()()2201922102-------,,,,中,负数的个数有( )A .2个B .3个C .4个D .5个5.在1,-2,0,23这四个数中,最大的数是( ) A .-2 B .0 C .23 D .16.由四舍五入法得到的近似数8.16万,下列说法正确的是( )A .精确到万位B .精确到百位C .精确到千分位D .精确到百分位7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 8.下面说法正确的有( )①π的相反数是-3.14;①符号相反的数互为相反数;① -(-3.8)的相反数是-3.8;①一个数和它的相反数不可能相等;①正数与负数互为相反数.A .0个B .1个C .2个D .3个 9.已知,a b 表示两个非零的实数,则a ab b +的值不可能是( ) A .2 B .–2 C .1 D .010.有理数a 、b 在数轴上的位置如图所示,现有下列结论:①0a b +<;①0b a ->;①11b a>-;①30a b ->①0a b -->.其中正确的有( )A .①①①B .①①①C .①①①①D .①①①①二、填空题11.有限小数和无限循环小数统称________________数.12.某市某日的最高气温为 7①,最低气温为-5①,那么这天的最高气温比最低气温高_____①.13.化简:34ππ-+-=________.14.若数轴上的点A 所对应的数是﹣2,那么与点A 相距3个单位长度的点所表示的数是_____.15.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有_____个.16.观察下面一列数,按规律在横线上填写适当的数:1357,,,261220--,______,________. 三、解答题17.把下列各数填入它所属的括号内:15,−19,-5,512,0,-5.32,37% (1)分数集合{ …};(2)整数集合{ …}.18.计算:(1)154924523⎛⎫⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()11124326⎛⎫-⨯-+ ⎪⎝⎭19.计算:253()12(2)|1|64-⨯÷-+- .20.用数轴表示下列各数:0,()4-+,132,()2--,3-,()5+-,并用“<”号连接.21.已知不相等的两数,a b 互为相反数,,c d 互为倒数,3m =,求a+b -cd -m 的值.22.已知|a |=2,|b |=5(1)求a +b ; (2)若又有a >b ,求a +b .23.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:6+7=6+7, 6776,-=- 7676,6767.-=---=+根据上面的规律,把下列各式写成去掉绝对值符号的形式:(1)721-=________;(2)10.82-+=________; (3)771718-=________; (4)23.2 2.83--=_____________________; (5)用合理的方法计算:115015011.555755722-+---24.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知前三天共卖出_____斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______斤;(3)若冬季每斤按7元出售,每斤冬枣的运费平均2元,那么小明本周一共收入多少元?参考答案1.A【分析】直接利用相反数的定义得出答案.【详解】解:-2020的相反数是:2020.故选:A.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.B【解析】试题分析:由题意可知:把向东走记为正数,则向西走记为负数,所以-60m表示向西走60m.故选B.考点:用正负数表示具有相反意义的量.3.B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,所以:27500 = 2.75×104,故选B.4.B【分析】计算出每个式子的值,再进行判断即可.【详解】--=-,是负数;2019222-表示20192的相反数,是负数;-(-1)=1,是正数;0既不是正数也不是负数;()224--=-,是负数.所以负数的个数是3个.故选:B【点睛】本题考查的是有理数的分类,掌握绝对值、相反数、平方的定义及化简方法是关键.5.D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】由正数大于零,零大于负数,得:﹣2<032<<1.最大的数是1.故选D .【点睛】本题考查了有理数的大小比较,注意两个负数比较大小,绝对值大的数反而小.6.B【分析】利用近似数的精确度进行判断,看数字6在哪一位即可.【详解】解:由四舍五入法得到的近似数8.16万,精确到了0.01万位,也就是精确到了百位,故选B .【点睛】本题考查了近似数和有效数字:精确到第几位和有几个有效数字是精确度的两种常用的表示形式,它们的实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对精确一些.7.C【详解】试题分析:①点M ,N 表示的有理数互为相反数,①原点的位置大约在O 点,①绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.8.B【分析】两数互为相反数,它们的和为0.本题可对5个选项进行一一分析进而得出答案即可.【详解】解:①根据π的相反数是-π;故①错误;①符号相反的数不一定互为相反数;故①错误;①-(-3.8)=3.8,3.8的相反数是-3.8;故①正确;①一个数和它的相反数有可能相等;如0的相反数等于0,故①错误; ①正数与负数不一定互为相反数,如2与-1,故①错误;故正确的有1个,故选:B .【点睛】本题考查的是相反数的概念,根据两数互为相反数,它们的和为0得出是解题关键.9.C【详解】①当0a >时,1a a a a ==;当0a <时,1a a a a-==-; 当0b >时,1b b b b ==;当0b <时,1b b b b-==-; ①①当00a b >>,时,112a b a b+=+=; ①当00a b <<,时,()112a b a b+=-+-=-; ①当00a b ><,时,()110a b a b+=+-=; ①当00a b ,时,110a b a b+=-+=; ①综上所述,a b a b +的值可能为2,-2,0,不可能为1. 故选C.点睛:(1)正数的绝对值是它本身,负数的绝对值是它的相反数;(2)分情况讨论时,虽然①①两种情况在本题中的计算结果是一样的,但在分类讨论时,还是要分为两种.10.D【分析】根据有理数a 、b 在数轴上的位置判断出a 、b 的取值范围,进而根据有理数的大小关系计算即可得出结论.【详解】由图可知0a >,0b a b <<,, +0<000a b b a a b a b ∴<-->-->,,3,,11b a>- 因此①错误,①①①①正确故选:D .【点睛】本题考查实数与数轴、有理数的大小比较等知识,是基础考点,难度较易,掌握相关知识是解题关键.11.有理数【解析】如果将整数看成小数部分为零的特殊小数,那么有限小数和无限循环小数可以与整数和分数相互转化. 由于整数和分数统称有理数,所以有限小数和无限循环小数统称有理数.故本题应填写:有理.12.12【分析】最高气温减去最低气温即可得到答案.【详解】①最高气温为 7①,最低气温为-5①①最高气温-最低气温高()=7--5=7+5=12①故答案为:12.【点睛】本题考查了有理数加减法的知识;求解的关键是熟练掌握有理数加减法的性质,从而完成求解.13.1【分析】根据绝对值的定义即可得出答案,去掉绝对值再计算.【详解】解:|π-3|+|4-π|=π-3+4-π=1,故答案为:1.【点睛】本题主要考查了绝对值的定义,解题的关键是熟记求绝对值的法则.14.﹣5或1【分析】画出数轴,找出A对应的数,向左向右移动3个单位即可得到结果.【详解】如图:在点A左侧距离点A3个单位长度的点是-5,在点A右侧距离点A3个单位长度的点是1.故答案为-5或1.【点睛】此题考查了数轴,画出相应的数轴是解本题的关键.15.3【分析】根据实数与数轴的对应关系,先确定被污染部分的取值范围,继而求出整数解.【详解】设被污染的部分为a,由题意得13-<<,在数轴上这一部分的整数有:0,1,2,a∴被污染的部分共有3个整数,故答案为:3.【点睛】本题考查数轴,是重要考点,难度容易,掌握相关知识是解题关键.16.93011 42 -【分析】根据所给的数得出分子都相差2,分母分别相差4,6,8,10,12,…,并且第奇数个数是正数,第偶数个数是负数,即可得出答案.【详解】解:因为从所给数的分子可以看出,它们分别是1,3,5,7,9,11,所以第五个数的分子是9,第六个数的分子是11,因为从分母可以看出2到6相差4,6到12相差6,12到20相差8,所以分别相差4,6,8,10,12,可以得出第五个数的分母是30,第六个数的分母是42,从所给的符号可以看出,第奇数项是正数,第偶数项是负数,所以第五个数是:930,第六个数是:1142-,故答案为:930,1142-.【点睛】此题考查了数字的变化类,解题的关键是通过观察,分析、归纳找出数字之间的变化规律,再利用规律得出答案.17.(1)分数集合{−19,512,-5.32,37%…};(2)整数集合{15,-5,0,…}.【分析】(1)按照有理数的分类找出分数即可;(2)按照有理数的分类找出整数即可.【详解】解:(1)分数集合{−19,512,-5.32,37%…};(2)整数集合{15,-5,0,…}.【点睛】本题考查了有理数的分类,解题关键是明确分数和整数的定义,准确进行分类.18.(1)0;(2)0【分析】(1)先算乘法,再算加减法;(2)利用乘法分配律计算.【详解】解:(1)154924523⎛⎫⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=33-=0;(2)()11124326⎛⎫-⨯-+ ⎪⎝⎭ =()()()111242424326-⨯--⨯+-⨯=8124-+-=0【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序,注意运算律的运用.19.34【分析】先利用乘法的分配率和乘方的意义计算,再算除法,后算加减.【详解】解:原式=53(1212)(4)|1|64⨯-⨯÷-+-=(109)(4)1-÷-+ =114-+ =34.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.20.见解析,()5+-<()4-+<0<()2--<3-<132【分析】将原数化简,然后先在数轴上表示出各个数,再利用数轴比较大小即可.【详解】解:()4=4-+-,()2=2--,3=3-,()5=5+--数轴如下:①()5+-<()4-+<0<()2--<3-<132【点睛】本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大. 21.-4或2【分析】根据相反数之和为0,倒数之积等于1,可得a +b =0,cd =1,再根据绝对值的性质可得m =±3,然后代入计算即可.【详解】解:由题意可得:a +b =0,cd =1,m =±3,当m =3时,a +b -cd -m =0-1-3=-4,当m =-3时,a +b -cd -m =0-1-(-3)=2.【点睛】此题主要考查了代数式求值,关键是掌握相反数之和为0,倒数之积等于1. 22.(1)7或-3或3或-7,(2)-3或-7【分析】(1)先根据绝对值求出a 、b 的值,再计算a +b ;(2)根据a >b ,确定a 、b 的值,再计算a +b .【详解】解:(1)①|a |=2,|b |=5,①a =±2,b =±5,当a =2,b =5时,a +b =2+5=7;当a =2,b =-5时,a +b =2+(-5)=-3;当a =-2,b =5时,a +b =-2+5=3;当a =-2,b =-5时,a +b =-2+(-5)=-7;(2)①|a |=2,|b |=5,a >b ,①a =±2,b =-5,当a =2,b =-5时,a +b =2+(-5)=-3;当a =-2,b =-5时,a +b =-2+(-5)=-7.【点睛】本题考查了绝对值和有理数的加法,解题关键是明确绝对值的意义,准确进行计算.23.(1)217-;(2)10.82-;(3)771718-; (4)2 3.2 2.83-+;(5)1.5- 【分析】(1)知21>7即可,(2)知10.82>即可,(3)知771718>即可, (4)知22.83.23+>即可,(5)知15011150,55752557>>即可. 【详解】()1721217-=-;故答案为217-;()1120.80.822-+=-,故答案为10.82-; ()7777317181718-=-,故答案为771718-; ()224 3.2 2.8 3.2 2.833--=-+,故答案为2 3.2 2.83-+; ()5原式150111501557525572=-+--15=-. 【点睛】本题考查有理数的混合运算的题目,解题关键在于掌握正数的绝对值等于本身,负数的绝对值等于它的相反数.24.(1)296 ;(2)31; (3)3575.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格差解答即可.【详解】解:(1)4-3-5+300=296(斤).答:根据记录的数据可知前三天共卖出296斤.(2)23+8=31(斤).答:根据记录的数据可知销售量最多的一天比销售量最少的一天多销售31斤.(3)①+4-3-5+10-8+23-6=15>0,①一周收入=(15+100×7)×(7-2)=715×5=3575(元).答:小明本周一共收入3575元.故答案为296;31;3575元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.(2014-2015南宁期末)如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.
(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是;
第一章 有理数
有理数的综合题型
1.(南宁外国语月考)一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A、B是数轴上的点,完成下列各题:
(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是________,A、B两点间的距离是_______.
2.(2014-2015三美期考)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础,结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示1和4的两点之间的距离是;表示﹣3和2的两点之间的距离是;表示a和﹣2的两点之间的距离是3,那么a=;一般地,数轴上表示数m和数n的两点之间的距离等于。
(1)求动点A,B运动的速度,并在数轴上标出A,B两点分别从原点出发运动3秒所到达的位置;
(2)若A,B两点分别从(1)中标出的位置同时向数轴负方向运动,问经过几秒后,原点恰好处在这两个动点的正中间(即:原点为线段AB的中点)?
6.(2019-2020南宁三中期中)如图, , 分别为数轴上 两点, 点对应的数为-20, 点对应的数为100.
(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是,A,B两点间的距离为;
(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A、B两点间的距离是;
(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?
(1)请写出 中点 所对应的数;
(2)现有一只电子蚂蚊 从 点出发,以6单位秒 速度向左运动,同时另一只电子蚂蚁 恰好从 点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的 点相遇,求 点对应的数.
(3)若当电子蚂蚁 从 点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁 恰好从 点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的 点相遇,求 点对应的数.
(2)如果点A表示的数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是______,A、B两点间的距离是_________.
(3)一般的,如果点A表示的数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是_________,A、B两点间的距离是_____________.
(3)点A和点B分别以2个单位长度/秒、1个单位长度/秒的速度向右运动,同时点P以5个单位长度/秒的速度从点O向左运动,当遇到A时,点P立即以同样的速度(5个单位/秒)向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
5.(2015-2016西乡塘区期考)已知点A,B是如图11所示的数轴上两个动点,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正反向运动。若动点A,B的速度比为1:4(速度单位:每秒1个单位长度),那么3秒后,A,B两点相距15个单位长度.
8.(2019-2020南宁二中段考)已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点ห้องสมุดไป่ตู้右边,从点A走到点B,要经过32个单位长度.
(1)求A、B两点所对应的数;
(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;
(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,若点P到点N的距离与点P到原点O距离相等,则点P到原点O的距离与点A到点M的距离与值是否变化?若不变,求其值.
4.(2016-2017西大附中段考)如图所示,已知数轴上两点A、B对应的数分别为-2、4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,点B的距离相等,请直接写出点P对应的数x的值;
(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请直接写出x的值,若不存在,请说明理由;
7.(2017-2018新民期中)如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.
(1)用1个单位长度表示1cm,请你在数轴上表示出A、B、C三点的位置;
(2)把点C到点A的距离记为CA,则CA=cm.
(3)若点B以每秒2cm的速度向左移动,同时A、C点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.