PID-采样周期及参数整定方法

合集下载

PID控制器的参数整定

PID控制器的参数整定

PID控制器的参数整定PID控制器是一种常用的闭环控制器,可以根据系统的输入和输出之间的误差来调整控制器的参数,从而实现对系统的稳定控制。

PID控制器的参数整定是指确定控制器的比例系数Kp、积分时间Ti和微分时间Td的过程。

下面将详细介绍PID控制器的参数整定方法和相关的考虑因素。

一、参数整定方法:1.经验整定法:根据经验将控制器的参数进行初步设定。

经验整定法通常通过试验或先验知识来确定参数,根据具体的应用场景不断调整,以达到较好的控制效果。

该方法常用与简单的控制系统或者无法获得系统数学模型的情况下。

2. Ziegler-Nichols整定法:Ziegler-Nichols整定法是一种基于试验的整定方法。

该方法首先暂时关闭积分和微分控制,只调整比例控制系数Kp,使系统达到临界稳定状态。

然后测量临界增益Ku和临界周期Pu,根据不同类型的控制系统(比例型、积分型和微分型),采用不同的参数整定公式确定Kp、Ti和Td的初始值,再根据系统的实际响应实时调整。

3. Ziegler-Nichols改进整定法(Chien-Hrones-Reswich法):该方法是对Ziegler-Nichols整定法的改进,可以更精确地测定控制器参数。

该方法同样通过测量系统的临界增益Ku和临界周期Pu,但是对参数的计算公式进行了修正,提高了参数整定的准确性。

4. 极点配置法(Pole Placement):极点配置法是一种基于系统数学模型的整定方法。

通过分析系统的传递函数,确定控制器的极点位置,从而使系统的闭环响应满足所需的性能指标。

该方法需要对系统的数学模型有较详细的了解,适用于相对复杂的控制系统。

5.自整定法:自整定法是一种自动寻优的整定方法,常用于智能控制器中。

该方法通过观察系统的动态性能,通过迭代寻找最优的参数组合。

自整定法通常采用优化算法(如遗传算法、粒子群算法等)来最优参数,在一定的性能和收敛速度之间进行权衡。

二、参数整定的考虑因素:1.系统的稳定性:控制器的参数整定应确保系统的闭环响应稳定。

PID控制最通俗的解释与PID参数的整定方法

PID控制最通俗的解释与PID参数的整定方法

PID控制最通俗的解释与PID参数的整定方法[ 2010/6/18 15:15:45 | Author: 廖老师] PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。

参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。

阅读本文不需要高深的数学知识。

1.比例控制有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。

下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。

假设用热电偶检测炉温,用数字仪表显示温度值。

在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。

然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。

操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。

炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。

炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。

上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。

闭环中存在着各种各样的延迟作用。

例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。

由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。

比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。

比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。

增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。

但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。

PID整定方法

PID整定方法

PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。

一般可以通过理论计算来确定,但误差太大。

目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。

各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。

若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti 就是最佳值。

如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。

由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。

显然用经验法整定的参数是准确的。

但花时间较多。

为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。

可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。

这样可大大减少现场凑试的次数。

②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB 过大,曲线漂浮较大,变化不规则,Ti 过长,曲线带有振荡分量,接近给定值很缓慢。

这样可根据曲线形状来改变PB或Ti。

③PB 过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。

④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。

这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。

(2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。

PID参数整定方法

PID参数整定方法

2.3 PID参数整定方法参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢。

微分时间应加长;理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低。

2.3.1 工程整定法PID数字调节器的参数,除了比例系数K p,积分时间T i和微分时间T d外,还有1个重要参数即采样周期T。

1.采样周期T的选择确定从理论上讲,采样频率越高,失真越小。

但是,对于控制器,由于是依靠偏差信号来进行调节计算的,当采样周期T太小,偏差信号也会过小,此时计算机将失去调节作用;若采样周期T太长,则将引起误差。

因此采样周期T必须综合考虑。

采样周期的选择方法有两种,一种是计算法,另一种是经验法。

计算法由于比较复杂,特别是被控对象各环节时间常数难以确定,工程上较少用。

经验法是一种凑试法,即根据人们在控制工作实践中积累的经验以及被控对象的特点,先选择一个采样周期T,进行试验,再反复改变T,直到满意为止。

2.K p,T i,T d的选择方法1)扩充临界比例度法扩充临界比例度法是简易工程整定方法之一,用它整定K p,T i,T d的步骤如下。

选择最短采样周期T min,求出临界比例度S u和临界振荡周期T u。

具体方法是将T min输入计算机,只有P环节控制,逐渐缩小比例度,直到系统产生等幅振荡。

此时的比例度即为临界比例度S u,振荡周期称为临界振荡周期T u。

选择控制度为:(2-15)通常当控制度为1.05时,表示数字控制方式与模拟方式效果相当。

根据计算度,查表2-1可求出K p,T i,T d。

表2-1 扩充临界比例度法整定参数表2)扩充响应曲线法若已知系统的动态特性曲线,可以采用和模拟调节方法一样的响应曲线法进行整定,其步骤如下。

断开微机调节器,使系统手动工作,当系统在给定值处处于平衡后,给一阶跃输入。

PID参数自整定的方法及实现

PID参数自整定的方法及实现

PID参数自整定的方法及实现PID是一种常见的控制算法,其参数的正确调整对系统的稳定性和性能至关重要。

以下是几种常见的PID参数自整定方法及其实现。

1.经验法经验法是一种基于控制经验和试错法的PID参数整定方法。

通常,初始参数通过试错法手动调整,观察系统的响应,并根据响应结果进行进一步的调整。

这个过程会反复进行,直到达到所需的控制效果。

实现方法:-根据系统的特性和需求,选择初始参数。

-将初始参数应用到系统中,并记录系统的响应。

-根据响应结果,进行参数调整。

-不断重复上述步骤,直到达到所需的控制效果为止。

2. Ziegler-Nichols法Ziegler-Nichols法是一种常用的自整定方法,根据系统的响应特性,直接确定PID参数的初值。

实现方法:-将PID控制器的I和D参数设为0,并逐步增大P参数,观察系统的响应。

-当P参数达到临界值时,系统开始出现振荡。

-记录此时的P参数值,并根据振荡的周期和振幅计算出相应的PID 参数。

3.贝叶斯优化法贝叶斯优化法是一种基于概率模型的自整定方法,通过不断观察系统的响应和根据历史数据进行参数调整,以逐步优化PID参数。

实现方法:-根据系统的特性和需求,选择初始参数。

-将初始参数应用到系统中,并记录系统的响应。

-利用历史数据,建立系统响应模型。

-根据模型,计算参数的后验概率分布。

-根据概率分布,调整参数。

-不断重复上述步骤,直到达到所需的控制效果为止。

4.闭环步跃法闭环步跃法是一种通过系统的闭环响应来自整定PID参数的方法。

通过观察系统在单位步跃负载下的响应,确定PID参数的初值。

实现方法:-将PID控制器的I和D参数设为0,并逐步增大P参数,观察系统在单位步跃负载下的响应。

-记录此时的P参数值,并根据响应曲线的特性计算出相应的PID参数。

以上是几种常见的PID参数自整定方法及其实现。

根据具体的控制系统和需求,选择合适的方法可以有效提高系统的稳定性和性能。

同时,注意在实际应用中需要结合经验和试错进行进一步的调整,以达到最佳的控制效果。

PID控制最通俗的解释与PID参数的整定方法

PID控制最通俗的解释与PID参数的整定方法

P I D控制最通俗的解释与P I D参数的整定方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchPID控制最通俗的解释与PID参数的整定方法[ 2010/6/18 15:15:45 | Author:廖老师] PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。

参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。

阅读本文不需要高深的数学知识。

1.比例控制有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。

下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。

假设用热电偶检测炉温,用数字仪表显示温度值。

在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。

然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。

操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。

炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。

炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。

上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。

闭环中存在着各种各样的延迟作用。

例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。

由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。

比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。

比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。

PID整定方法与口诀

PID整定方法与口诀

3.PID参数整定⑴采样周期T符合工程准则。

(2)K p/K i/K d调试:试凑法(先比例,后积分,再微分);扩充临界比例度法;扩充响应曲线法一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。

此时PID调节器的比例度为临界比例度6 k,被调参数的工作周期为为临界周期Tk。

O —■■值O -Utsu临界比例度法整定PID参数具体操作如下:1、被控系统稳定后,把PID调节器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。

2、通过外界干扰或使PID调节器设定值作一阶跃变化,观察由此而引起的测量值振荡。

3、从大到小逐步把PID调节器的比例度减小,看测量值振荡的变化是发散的还是衰减的,如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。

4、连续重复2和3步骤,直至测量值按恒定幅度和周期发生振荡,即持续4-5 次等幅振荡为止。

此时的比例度示值就是临界比例度6 k。

5、从振荡波形图来看,来回振荡1次的时间就是临界周期Tk,即从振荡波的第一个波的顶点到第二个波的顶点的时间。

如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰-峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk如果是DCS控制或使用无纸记录仪,在趋势记录曲线中可直接得出Tk。

临界比例度法PID参数整定经验公式调节规律调节器参数6、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。

多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。

衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。

纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度6s,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示4:1衰减曲线法整定PID参数具体操作如下:1、在闭合的控制系统中,将PID调节器变为纯比例作用,比例度放在较大的数值上。

PID整定方法与口诀

PID整定方法与口诀

3.PID参数整定(1)采样周期T符合工程准则。

(2)K p / K i / K d调试:试凑法(先比例,后积分,再微分);扩充临界比例度法;扩充响应曲线法一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。

此时PID调节器的比例度为临界比例度δk,被调参数的工作周期为为临界周期Tk。

临界比例度法整定PID参数步骤临界比例度法整定PID参数具体操作如下:1、被控系统稳定后,把PID调节器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。

2、通过外界干扰或使PID调节器设定值作一阶跃变化,观察由此而引起的测量值振荡。

3、从大到小逐步把PID调节器的比例度减小,看测量值振荡的变化是发散的还是衰减的,如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。

4、连续重复2和3步骤,直至测量值按恒定幅度和周期发生振荡,即持续4-5次等幅振荡为止。

此时的比例度示值就是临界比例度δk。

5、从振荡波形图来看,来回振荡1次的时间就是临界周期Tk,即从振荡波的第一个波的顶点到第二个波的顶点的时间。

如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰-峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk;如果是DCS控制或使用无纸记录仪,在趋势记录曲线中可直接得出Tk。

临界比例度法PID参数整定经验公式6、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。

多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。

衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。

衰减曲线法整定调节器参数纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度δs,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示4:1衰减曲线法整定PID参数步骤4:1衰减曲线法整定PID参数具体操作如下:1、在闭合的控制系统中,将PID调节器变为纯比例作用,比例度放在较大的数值上。

PID控制中如何整定PID参数

PID控制中如何整定PID参数

PID控制中如何整定PID参数PID控制器是一种常用的自动控制算法,它根据被控对象的误差和误差的变化率来调整控制量,以实现对被控对象的稳定控制。

PID参数的选择对控制系统的性能和稳定性至关重要。

在本文中,将介绍PID参数整定的基本方法和几种常用的整定方法。

1. 要素模型法(Ziegler-Nichols法)要素模型法是一种基于试控法的PID参数整定方法。

该方法通过微调比例增益Kp,使系统产生持续且稳定的振荡,然后根据振荡的周期和幅值来计算PID参数。

具体步骤如下:步骤1:将积分时间Ti和微分时间Td先设为0。

步骤2:增加比例增益Kp,直至系统开始产生持续的振荡。

步骤3:记录振荡的周期P,以及振荡的峰值值(或两个连续峰值之间的差值)A。

步骤4:根据P和A计算出合适的PID参数:-比例增益Kp=0.6*(A/P)-积分时间Ti=0.5*P-微分时间Td=0.125*P要素模型法整定PID参数的优点是简单易行,但是该方法只适用于二阶系统,对于高阶系统或非线性系统不适用。

2.建模法(模型整定法)建模法是一种基于模型的PID参数整定方法。

该方法需要对被控对象进行实验或建立数学模型,并根据模型参数来选择合适的PID参数。

具体步骤如下:步骤1:通过实验或数学建模,得到被控对象的数学模型。

步骤2:分析模型的稳定裕度和相应性能要求,如超调量、调节时间等。

步骤3:根据模型参数,选择合适的PID参数。

常用的方法有经验法、频域法和根轨迹法等。

经验法是基于经验或规则的PID参数整定方法,根据系统的动态特性、稳定性要求和超调量要求等,选择合适的PID参数。

例如,对于快速响应的系统,通常选用较大的比例增益和积分时间,较小的微分时间;对于需要减小超调量的系统,通常减小比例增益和微分时间,增大积分时间。

频域法是基于频率响应的PID参数整定方法,通过分析系统的开环频率响应曲线,选择合适的相位裕度和增益裕度,从而得到合适的PID参数。

PID控制中如何整定PID参数

PID控制中如何整定PID参数

PID控制中如何整定PID参数PID参数主要包括比例系数(Kp)、积分系数(Ki)和微分系数(Kd)。

这些参数的选择可以通过试错法、经验法、模拟法和优化算法等多种方法来进行。

1. 试错法(Ziegler-Nichols法):这种方法是PID参数整定中最常用的方法之一、它通过改变比例系数、积分系数和微分系数,观察系统的响应曲线并进行调整,直到获得最佳的性能指标。

-首先,将积分和微分系数设为0,增大比例系数,观察系统的响应曲线。

如果系统出现震荡并且周期明显,则比例系数选取为临界增益(Ku)。

-然后,根据比例系数的大小,选择合适的积分时间(Tu/2)和微分时间(Tu/8),其中Tu为周期。

- 最后,根据Ziegler-Nichols公式计算PID参数,比例系数为Kp=0.6Ku,积分系数为Ki=1.2Ku/Tu,微分系数为Kd=0.075KuTu。

2.经验法:这种方法是基于经验公式进行参数整定的方法。

根据系统的特性和经验公式,选择合适的参数。

-对于比例系数,可以根据系统类型进行选择。

常用的经验值如下:-传统型控制系统:Kp=0.1~0.2;-开环较稳定系统:Kp=0.2~0.4;-开环不稳定系统:Kp=0.4~0.7-对于积分系数,可以根据系统的稳定性进行选择。

如果系统相对较稳定,可以选择较小的Ki值;如果系统相对不稳定,则可以选择较大的Ki值。

-对于微分系数,可以根据系统的时间响应进行选择。

如果系统响应较快,则可以选择较小的Kd值;如果系统响应较慢,则可以选择较大的Kd值。

3.模拟法:这种方法使用数学模型来模拟系统的动态特性,并通过模拟结果来选择合适的参数。

-首先,通过系统的数学模型得到系统传递函数,根据传递函数进行模拟。

-然后,通过观察模拟结果,选择合适的PID参数,使系统的响应曲线尽量接近期望曲线。

4.优化算法:这种方法基于优化算法来自动选择合适的PID参数,以最大化系统的性能指标。

-首先,定义性能指标,如超调量、稳态误差、响应时间等。

PID-采样周期及参数整定方法

PID-采样周期及参数整定方法

数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。

在选择数字PID参数之前,首先应该确定控制器结构。

对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。

对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。

一般来说,PI、PID和P控制器应用较多。

对于有滞后的对象,往往都加入微分控制。

控制器结构确定后,即可开始选择参数。

参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。

工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。

这些要求,对控制系统自身性能来说,有些是矛盾的。

我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。

PID控制器的参数整定,可以不依赖于受控对象的数学模型。

工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。

采样周期的选择采样周期:采样一数据控制系统中,设采样周期为T S,采样速率为1/T S,采样角频率为采样周期T S是设计者要精心选择的重要参数,系统的性能与采样周期的选择有密切关系。

需要考虑的因素:采样周期的选择受多方面因素的影响,主要考虑的因素分析如下。

(1)香农(Shannon)采样定理(Wmax--被采样信号的上限角频率)给出了采样周期的上限。

满足这一定理,采样信号方可恢复或近似地恢复为原模拟信号,而不丢失主要信息。

在这个限制范围内,采样周期越小,采样-数据控制系统的性能越接近于连续-时间控制系统。

(2)闭环系统对给定信号的跟踪,要求采样周期要小。

(3)从抑制扰动的要求来说,采样周期应该选择得小些。

(4)从执行元件的要求来看,有时要求输入控制信号要保持一定的宽度。

(5)从计算机精度考虑,采样周期不宜过短。

(6)从系统成本上考虑,希望采样周期越长越好。

PID参数整定方法

PID参数整定方法

2.3 PID参数整定方法2.3.1 工程整定法PID数字调节器的参数,除了比例系数K p,积分时间T i和微分时间T d外,还有1个重要参数即采样周期T。

1.采样周期T的选择确定从理论上讲,采样频率越高,失真越小。

但是,对于控制器,由于是依靠偏差信号来进行调节计算的,当采样周期T 太小,偏差信号也会过小,此时计算机将失去调节作用;若采样周期T太长,则将引起误差。

因此采样周期T必须综合考虑。

采样周期的选择方法有两种,一种是计算法,另一种是经验法。

计算法由于比较复杂,特别是被控对象各环节时间常数难以确定,工程上较少用。

经验法是一种凑试法,即根据人们在控制工作实践中积累的经验以及被控对象的特点,先选择一个采样周期T,进行试验,再反复改变T,直到满意为止。

2.K p,T i,T d的选择方法1)扩充临界比例度法扩充临界比例度法是简易工程整定方法之一,用它整定K p,T i,T d的步骤如下。

选择最短采样周期T min,求出临界比例度S u和临界振荡周期T u。

具体方法是将T min输入计算机,只有P环节控制,逐渐缩小比例度,直到系统产生等幅振荡。

此时的比例度即为临界比例度S u,振荡周期称为临界振荡周期T u。

选择控制度为:(2-15)通常当控制度为1.05时,表示数字控制方式与模拟方式效果相当。

根据计算度,查表2-1可求出K p,T i,T d。

表2-1 扩充临界比例度法整定参数表控制度控制规律参数T K p T i T d1.05PIPID0.03T u0.014T u0.53S u0.63S u0.88T u0.49T u/0.14T u1.2PIPID 0.05T u0.43T u0.49S u0.47S u0.91T u0.47T u/0.16T u1.5PIPID 0.14T u0.09T u0.42S u0.34S u0.99T u0.43T u/0.20Tu2.0PIPID 0.22T u0.16T u0.36S u0.27S u1.05T u0.4T u/0.22T u2)扩充响应曲线法若已知系统的动态特性曲线,可以采用和模拟调节方法一样的响应曲线法进行整定,其步骤如下。

PID参数整定调节方法

PID参数整定调节方法

PID参数如何设定调节内容:PID参数如何设定调节PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。

PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

PID-采样周期及参数整定方法

PID-采样周期及参数整定方法

数字P I D控制器控制参数的选择,可按连续-时间P I D参数整定方法进行。

在选择数字PID参数之前,首先应该确定控制器结构。

对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。

对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。

一般来说,PI、PID和P控制器应用较多。

对于有滞后的对象,往往都加入微分控制。

控制器结构确定后,即可开始选择参数。

参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。

工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。

这些要求,对控制系统自身性能来说,有些是矛盾的。

我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。

PID控制器的参数整定,可以不依赖于受控对象的数学模型。

工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。

采样周期的选择采样周期:采样一数据控制系统中,设采样周期为T S,采样速率为1/T S,采样角频率为采样周期T S是设计者要精心选择的重要参数,系统的性能与采样周期的选择有密切关系。

需要考虑的因素:采样周期的选择受多方面因素的影响,主要考虑的因素分析如下。

(1)香农(Shannon)采样定理(Wmax--被采样信号的上限角频率)给出了采样周期的上限。

满足这一定理,采样信号方可恢复或近似地恢复为原模拟信号,而不丢失主要信息。

在这个限制范围内,采样周期越小,采样-数据控制系统的性能越接近于连续-时间控制系统。

(2)闭环系统对给定信号的跟踪,要求采样周期要小。

(3)从抑制扰动的要求来说,采样周期应该选择得小些。

(4)从执行元件的要求来看,有时要求输入控制信号要保持一定的宽度。

(5)从计算机精度考虑,采样周期不宜过短。

(6)从系统成本上考虑,希望采样周期越长越好。

如何整定PID参数

如何整定PID参数

如何整定PID参数一、说明调节系统投自动:往往在控制方案确定后,最关键的是P、I、D参数如何整定,根据我的工作经验,谈谈如何整定调节系统的P、I、D参数,请大家在工程中参考。

在整定调节系统的P、I、D参数前,要保证一个闭环调节系统必须是负反馈,即Ko*Kv*Kc >0,调节对象Ko:阀门、执行器开大,测量PV增加,则Ko>0;反之,则Ko<0;调节阀门Kv:伐门正作用(气开、电开),则Kv>0;伐门反作用(气关、电关),则Kv<0;Ko、Kv的正负由工艺对象和生产安全决定,根据Ko、Kv的正负和Ko*Kv*Kc >0,我们可以确定Kc的正负,调节器Kc:若Kc>0,则调节器为反作用;若Kc<0,则调节器为正作用;软件组态中要设置正确。

在整定调节系统的P、I、D参数前,要保证测量准确、阀门动作灵活;在整定调节系统的P、I、D参数时,打好招呼,要求用户工艺操作密切注意生产运行状况,确保安全生产;在整定调节系统的P、I、D参数时,先投自动后串级,先投副环后主环,副环粗主环细,改变给定值SP或输出值OP,给出一个工艺允许的阶跃信号,观察测量值PV变化和趋势图,不断修定PID参数,往往反复几次,直至平稳控制。

二、经验PID整定参数对介质为流体(气体、液体)情况,经验PID整定参数参考如下,(在出所前最好在软件组态中要设置好,到现场再细调或不动):1、对流量调节(F):一般P=120~200%,I=50~100S,D=0S;对防喘振系统:一般P=120~200%,I=20~40S,D=15~40 S;2、对压力调节(P):一般P=120~180%,I=50~100S,D=0S;对放空系统:一般P=80~160%,I=20~60S,D=15~40S;3、对液位调节(L):1]、大个容器(直径4米、高2米以上塔罐):一般P=80~120%,I=200~900S,D=0S;2]、中个容器(直径2--4米、高1.5--2米塔罐):一般P=100~160%,I=80~400S,D=0S;3]、小个容器(直径2米、高1.5米以下塔罐):一般P=120~300%,I=60~200S,D=0S;4、对温度调节(T):一般P=120~260%,I=50~200S,D=20~60S;上述参数是经验性的东西,不是绝对的。

PID控制最通俗的解释与PID参数的整定方法

PID控制最通俗的解释与PID参数的整定方法

PID控制最通俗的解释与PID参数的整定方法[ 2010/6/18 15:15:45 | Author: 廖老师 ] PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。

参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。

阅读本文不需要高深的数学知识。

1.比例控制有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。

下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。

假设用热电偶检测炉温,用数字仪表显示温度值。

在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。

然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。

操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。

炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。

炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。

上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。

闭环中存在着各种各样的延迟作用。

例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。

由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。

比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。

比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。

增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。

但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。

PID参数的整定

PID参数的整定

PID参数的含义: 比例系数P:增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。

积分时间Ti:增大积分时间Ti有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。

微分时间Td:增大微分时间Td有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。

PID参数整定:1.在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤;2.首先整定比例部分。

将比例参数由小变大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线;3.如果系统没有静差或静差已经小到允许范围内,并且对响应曲线已经满意,则只需要比例调节器即可;4.如果在比例调节的基础上系统的静差不能满足设计要求,则必须加入积分环节。

在整定时先将积分时间设定到一个比较大的值,然后将已经调节好的比例系数略为缩小(一般缩小为原值的0.8),然后减小积分时间,使得系统在保持良好动态性能的情况下,静差得到消除。

在此过程中,可根据系统的响应曲线的好坏反复改变比例系数和积分时间,以期得到满意的控制过程和整定参数;5.如果在上述调整过程中对系统的动态过程反复调整还不能得到满意的结果,则可以加入微分环节。

首先把微分时间D设置为0,在上述基础上逐渐增加微分时间,同时相应的改变比例系数和积分时间,逐步凑试,直至得到满意的调节效果。

PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。

一般可以通过理论计算来确定,但误差太大。

目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。

各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。

若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。

在选择数字PID参数之前,首先应该确定控制器结构。

对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。

对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。

一般来说,PI、PID和P控制器应用较多。

对于有滞后的对象,往往都加入微分控制。

控制器结构确定后,即可开始选择参数。

参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。

工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。

这些要求,对控制系统自身性能来说,有些是矛盾的。

我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。

PID控制器的参数整定,可以不依赖于受控对象的数学模型。

工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。

采样周期的选择
采样周期:
采样一数据控制系统中,设采样周期为T S,采样速率为1/T S,采样角频率为
采样周期T S是设计者要精心选择的重要参数,系统的性能与采样周期的选择有密切关系。

需要考虑的因素:
采样周期的选择受多方面因素的影响,主要考虑的因素分析如下。

(1)香农(Shannon)采样定理
(Wmax--被采样信号的上限角频率)
给出了采样周期的上限。

满足这一定理,采样信号方可恢复或近似地恢复为原模拟信号,而不丢失主要信息。

在这个限制范围内,采样周期越小,采样-数据控制系统的性能越接近于连续-时间控制系统。

(2)闭环系统对给定信号的跟踪,要求采样周期要小。

(3)从抑制扰动的要求来说,采样周期应该选择得小些。

(4)从执行元件的要求来看,有时要求输入控制信号要保持一定的宽度。

(5)从计算机精度考虑,采样周期不宜过短。

(6)从系统成本上考虑,希望采样周期越长越好。

综合上述各因素,选择采样周期,应在满足控制系统的性能要求的条件下,尽可能地选择低的采样速率。

经验选择
工业控制中,大量的受控对象都具有低通的性质。

下面图3-12给出了选择采样周期的经验。

表3-1给出了常用被控量的经验采样周期。

试凑方法
采样周期的选择,要根据所设计的系统的具体情况,用试凑的方法,在试凑过程中根据各种合理的建议来预选采样周期,多次试凑,选择性能较好的一个作为最后的采样周期
实验凑试法的整定步骤为"先比例,再积分,最后微分"。

(1)整定比例控制
将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。

(2)整定积分环节
若在比例控制下稳态误差不能满足要求,需加入积分控制。

先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。

然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。

(3)整定微分环节
若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。

先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。

以下是PID控制系统的仿真程序,试调整控制器增益(Kpt)和积分分离值(ei)这两个参数,看一下它们对系统输出响应的影响。

P I D参数对控制质量的影响不十分敏感。

因而不同的比例、积分、微分的组合,可能达到相近的控制效果。

实际应用中,只要受控过程或受控对象的主要指标达到设计要求,相应的控制器参数即可作为有效的控制参数。

实验经验法调整PID参数的方法中较常用的是扩充临界比例度法,其最大的优点是,参数的整定不依赖受控对象的数学模型,直接在现场整定、简单易行。

扩充比例度法适用于有自平衡特性的受控对象,是对连续-时间PID控制器参数整定的临界比例度法的扩充。

扩充比例度法整定数字PID控制器参数的步骤是:
(1)预选择一个足够短的采样周期TS。

一般说TS应小于受控对象纯延迟时间的十分之一。

(2)用选定的TS使系统工作。

这时去掉积分作用和微分作用,将控制选择为纯比例控制器,构成闭环运行。

逐渐减小比例度,即加大比例放大系数KP,直至系统对输入的阶跃信号的响应出现临界振荡(稳定边缘),将这时的比例放大系数记为Kr,临界振荡周期记为Tr。

(3)选择控制度。

控制度,就是以连续-时间PID控制器为基准,将数字PID控制效果与之相比较。

通常采用误差平方积分
作为控制效果的评价函数。

定义控制度
采样周期TS的长短会影响采样-数据控制系统的品质,同样是最佳整定,采样-数据控制系统的控制品质要低于连续-时间控制系统。

因而,控制度总是大于1的,而且控制
度越大,相应的采样-数据控制系统的品质越差。

控制度的选择要从所设计的系统的控制品质要求出发。

(4)查表确定参数。

根据所选择的控制度,查表3一2,得出数字PID中相应的参数TS,KP,TI和TD。

(5)运行与修正。

将求得的各参数值加入P I D控制器,闭环运行,观察控制效果,并作适当的调整以获得比较满意的效果。

相关文档
最新文档