初三数学PPT课件

合集下载

初三数学复习课课件

初三数学复习课课件

总结词:掌握代数方程与不等式的解题技巧。
二次根式与一元二次方程
详细描述:通过解决涉及二次根式和一元二次方程的题 目,学生可以更好地理解两者之间的关联,掌握解题方 法,提高解决复杂代数问题的能力。
几何模拟试题
三角形与四边形
详细描述:通过解决三角形与四边形的题目,学生可以 深入理解三角形与四边形的性质和判定条件,掌握解题 方法,提高解决几何问题的能力。 总结词:掌握圆的基本性质及其应用。
几何重点难点
几何变换
掌握平移、旋转和轴对称的变换性质,理解变换在几何问题中的应用。
函数重点难点
一次函数与反比例函数
01
二次函数
03
02
掌握一次函数和反比例函数的图像和性质, 理解函数图像的平移和对称变换。
04
掌握二次函数的图像和性质,理解二次函 数的顶点和对称轴。
函数的应用
05
06
掌握函数在实际问题中的应用,理解函数 的最大值和最小值的求解方法。
03
复习解题方法
代数解题方法
代数方程求解
总结了代数方程的基本 解法,包括移项、合并 同类项、去括号、解方
程等步骤。
不等式求解
介绍了不等式的基本性 质和解题技巧,包括移 项、合并同类项、去分
母等步骤。
因式分解
总结了因式分解的常用 方法和技巧,包括提公
因式法、公式法等。
分式化简
介绍了分式化简的基本 方法和技巧,包括约分 、通分、分子分母同乘
04
复习易错题解析
代数易错题解析
总结词
代数式运算错误
详细描述
学生在进行代数式运算时,常常因为对运算法则理解不透彻或粗心大意导致运算错误,如括号处理不 当、符号混淆等。

初三数学课件ppt

初三数学课件ppt

包括一元一次不等式的性质和解法, 以及不等式组的性质和解法。
函数
函数的定义和性质
包括函数的定义、函数的表示方法、函数的单调性、奇偶性和周 期性等。
一次函数和反比例函数
包括一次函数和反比例函数的定义、性质和图像,以及它们的实际 应用。
函数的应用
通过实例和问题解决,让学生了解函数在实际生活中的应用,如路 程、速度和时间的关系等。
01
点、线、面的关系
理解点、线、面在三维空间中的关系,如点在面上、线在面上、线与线
相交、线与线平行等。
02
立体图形的分类与性质
了解常见的立体图形,如长方体、正方体、球体、圆柱体等,理解其性
质和特点。
03
立体图形的表面积与体积计算
掌握立体图形的表面积和体积计算公式,理解表面积与体积的关系。
03
概率与统计初步
数据中获取有用的信息。
统计方法
常见的统计方法包括描述性统计 和推断性统计,其中描述性统计 是对数据进行整理和描述,而推 断性统计则是对数据进行推理和
预测。
统计应用
统计在各个领域都有广泛的应用 ,如经济学、社会学、医学等。
数据处理与图表
数据处理
数据处理是指对数据进行清洗、去重、排序、筛选等操作 ,以便更好地利用数据进行分析和预测。

圆的性质
掌握圆的基本性质,如圆上任一点到圆心的距离等于半径,圆心 角与圆周角的关系等。
圆的周长与面积计算
掌握圆的周长和面积计算公式,理解周长与直径、半径的关系,面 积与半径的关系。
圆与三角形、四边形的关系
理解圆与三角形、四边形在面积和周长计算中的关系,如圆内接三 角形、外切三角形等。
立体几何初步

2024版初三数学最新课件

2024版初三数学最新课件
了解相似变换的概念和性质,掌握相似变换在几 何图形中的应用。
05
概率统计初步认识
Chapter
概率基础概念介绍
随机事件与概率
解释随机事件的定义,阐述概率是描述随机事件发生可能 性的数值。
概率的性质
介绍概率的加法公式、乘法公式、全概率公式等基本性质。
条件概率与独立性
阐述条件概率的概念,探讨事件之间的独立性关系。
表示方法
函数可以用解析式、表格、图象等 多种形式表示。
函数三要素
定义域、值域、对应关系是构成函 数的三个基本要素。
一次函数图象和性质
1 2
一次函数图象 一次函数的图象是一条直线。
斜率与截距
直线的斜率和截距决定了一次函数的性质。
3
函数性质 一次函数具有单调性,当斜率大于0时,函数单 调递增;当斜率小于0时,函数单调递减。
二次函数基础知识
二次函数定义 形如y=ax²+bx+c(a、b、c为常数且a≠0)的函数称为 二次函数。
图象特征 二次函数的图象是抛物线,对称轴为x=-b/2a。
函数性质 二次函数的性质与开口方向、顶点坐标和对称轴有关。当 a>0时,抛物线开口向上;当a<0时,抛物线开口向下。 顶点坐标为(-b/2a, c-b²/4a),对称轴为x=-b/2a。
理解垂径定理、切线长定理等圆的性质,掌握点与圆、直线与圆的 位置关系。
圆的证明
了解证明与圆有关问题的基本方法,如利用垂径定理、切线长定理等。
几何变换初步了解
平移变换
了解平移变换的概念和性质,掌握平移变换在几 何图形中的应用。
旋转变换
了解旋转变换的概念和性质,掌握旋转变换在几 何图形中的应用。

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3

北师大版初三数学9年级下册 第1章 1.1.1 锐角三角函数(第1课时) 课件(共24张PPT)

北师大版初三数学9年级下册 第1章 1.1.1 锐角三角函数(第1课时)  课件(共24张PPT)

课堂练习
1.一个直角三角形中,如果各边的长度都扩大为原来 的2倍,那么它的两个锐角的正切值( )
A.都没有变化
B.都扩大为原来的2倍
C.都缩小为原来的一半 D.不能确定是否发生变化
2.以下对坡度的描述正确的是(
)
A.坡度是指倾斜角的度数
B.坡度是指斜坡的铅直高度与水平宽度的比
C.坡度是指斜坡的水平宽度与铅直高度的比
2. 当倾斜角确定时,其对边与邻边之比随之确定,这一比
值只与倾斜角的大小有关,而与物体的长度无关.
例题讲解 例3 如图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?
解:甲梯中,tan
4 8
1 2
.
乙梯中, tan
因为tanα>tanβ,所以甲梯更陡.
5
5
.
132 52 12
总结:(1)倾斜程度,其本意指倾斜角的大小,一般来说,倾 斜角较大的物体,就说它放得更“陡”. (2)利用物体与地面夹角的正切值来判断物体的倾斜程度,因为 夹角的正切值越大,则夹角越大,物体放置得越“陡”.
探究新知 知识点一 正切
梯子AB和CD哪个更陡?你是怎样判断的?你有几种 判断办法?
倾斜角越大——梯子越陡
A
E
B
C
F
D
问题2 如图,梯子AB和EF哪个更陡?你是怎样判断的? 当铅直高度一样,水平宽度越小,梯子越陡 当水平宽度一样,铅直高度越大,梯子越陡
乙 甲
问题3 如图,梯子AB和EF哪个更陡?你是怎样判断的?
┌ A ∠A的邻边b C
谢谢聆听
其实就是坡角的正切.
例题讲解 例4 如图所示,梯形护坡石坝的斜坡AB的坡度为1∶3,坝高 BC=2米,则斜坡AB的长是( )

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

九年级上册数学ppt课件

九年级上册数学ppt课件
一、教材分析
(一)教材所处的地位及作用。 本节课是九年级上册(人教版)
第二十三章第二节 中心对称的第一课 时。它是初中数学的一项重要内容。 它与轴对称、轴对称图形、旋转有着 密不可分的联系,实际生活中也随处可 见中心对称的应用。
(二)教学目标
1 、知识目标:
(1)理解并掌握中心对称的概念和性质。
2.动手操作
学生在教师的引导下动手操作, 旋转三角板,画出关于点O对称的 两个三角形,在学生画出两个中心 对称的三角形后,及时展开中心对 称性质的研究。
设计意图
通过学生动手操作、合作交流, 来获取知识,这样设计有利于突破 难点,也让学生体会到观察、猜想、 归纳的数学思想及学习过程,提高 学生分析问题和解决问题的能力。
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你又有什么发现?
O
重合
B
(2) C
重合
设计意图
鼓励学生通过观察、思考 和讨论,用自己的语言来描述 这些图案的共同特征,初步感 受中心对称的概念。这种以实 际问题为切入点导入新课,不 仅自然,而且也反映了数学来 源于生活,学习数学是为了服 务于生活。
3、归纳验证
归纳:通过动手操作、合作交流,探索 中心对称的性质,让学生在整个学习过 程中感受学习数学的乐趣,使学生学会 “文字语言”与“数学语言”这两种表 达方式。
验证:学生在探究过程中进行了画图、 旋转还有证明等活动,引导学生从中体 会到数形结合和从特殊到一般的数学思 想,而且这一过程也有利于培养学生严 谨、科学的学习态度。
教法
数学是一门培养人的思维,发展 人的思维的重要学科,因此在教学中, 不仅要使学生“知其然”,而且还要 使学生“知其所以然”。针对初三年 级学生的认知结构和心理特征,本节 课可选择“引导探索法”,引导学生 自主探索,合作交流,这种教学理念 紧随新课改理念,也反映了时代精神。

人教版初三数学9年级下册 第26章(反比例函数)26.1.1 反比例函数 课件(共17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)26.1.1  反比例函数 课件(共17张ppt)
复习回顾
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均

初三数学ppt课件

初三数学ppt课件
1.二次函数的图象有着丰富的内涵,解决二次函数 的题目应尽可能地画出大致的抛物线图象,结合图 形,解决问题.利用a、b、c的值可判断二次函数的 大致位置情况;反之,若已知二次函数的大致位 置,也可以判断出一些特殊关系式或字母的取值 范围等. 2.二次函数还与一元二次方程的知识紧密联系.利 用方程根的性质、根的判别式,可判定抛物线与x 轴交点的情况;反之,可以求某些字母的取值范 围. 3.要准确辨析条件,选用适当的形式求二次函 数解析式,即已知任意三点坐标选用一般式; 已知顶点坐标、对称轴或最值常可选用顶点式; 已知抛物线与x轴的两个交点坐标常选用交点式.
C.2a+b>0
D.4a-2b+c<0
a﹥0 b﹤0 c﹤0 X= - b/2a<1 ∴-b<2a ∴2a+b>0
当x=-2时, y=4a-2b+c >0
8
10、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是( D)
A.a>0
B.a>- 4/9
C.a> 9/4 D.a<9/4且a≠0
轴交于A、B两点,与y轴交于点C,且OB= 3,
CB=2 3,∠CAO=30°,求抛物线的解析式和它
的顶点坐标.
OC= 3
OA= 3 3
y 1 x2 4 3x 3 33
顶点坐标为( 2 3,1)
13
挑恭 战喜 成你 功
把你的喜悦和大家一起分享, 也请把你的收获告诉你的同桌吧!
14
四、方法小结
2m1时图象过原点另一个交点坐标为103当m1且m3时抛物线的顶点在第四象限轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论13如图所示已知抛物线yaxcb2cao30求抛物线的解析式和它的顶点坐标

圆 初三 ppt课件ppt课件

圆 初三 ppt课件ppt课件

CHAPTER
06
圆的综合题解题思路
圆的综合题解题方法
利用圆的性质
根据圆的性质,如圆周 角定理、垂径定理等, 推导出其他相关条件或
结论。
数形结合
将圆的性质与代数方程 相结合,通过代数运算
解决问题。
构造辅助线
在解题过程中,根据需 要构造辅助线,以连接 圆上的点或与其他图形
建立联系。
运用相似三角形
在解题过程中,通过构 造相似三角形,利用相 似三角形的性质解决问
THANKS
感谢观看
详细描述
圆的一般方程是$x^{2} + y^{2} + Dx + Ey + F = 0$,其中$D, E, F$是三个系数 。这个方程表示所有满足这个方程的点都在圆上。通过解这个方程,可以得到圆 上三个点的坐标。
圆的参数方程
总结词
圆的参数方程是一种基于三角函数的描述圆的方式,它通过 角度和半径来描述圆上的点。
题。
圆的综合题解题技巧
寻找隐含条件
在题目中寻找隐含条件,这些条件可 能对解题起到关键作用。
化复杂为简单
将复杂的问题分解为多个简单的问题 ,逐一解决,最后再综合起来。
利用特殊到一般的思路
先考虑特殊情况,再推广到一般情况 ,这样有助于找到解题思路。
注意图形的变化
在解题过程中,注意图形的变化,如 角度、长度等的变化,并利用这些变 化解决问题。
VS
详细描述
根据圆的对称性质,我们可以利用已知圆 上的任意一点或直径两端点来作出一个与 已知圆相切或重合的新圆。具体操作包括 通过圆心和已知圆上一点作圆,以及通过 两个已知圆的中心和它们之间的距离作圆 。
利用已知点作圆

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

初三数学圆PPT课件

初三数学圆PPT课件
第1页/共32页
点的轨迹
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半 径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线 的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到 两条直线距离都相等的一条直线
第2页/共32页
三种位置关系
点与圆 直线与圆 圆与圆
第3页/共32页
点与圆的位置关系
点在圆内 d<r 内
点C在圆
点在圆上 d=r 圆上
点在此圆外 d>r 第4页/共32页
点B在
A
d
r B
O d
C
点A在圆
直线与圆的位置关系
• 直线与圆相离 d>r 无交点 • 直线与圆相切 d=r 有一个交点 • 直线与圆相交 d<r 有两个交点
第31页/共32页
感谢您的观看!
第32页/共32页
B
O
A
圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 D C
对的弧是等弧
即:在⊙O中,∵∠C、∠D都是所对的圆周角
B
O
∴∠C=∠D
A
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆, C
所对的弦是直径
即:在⊙O中,∵AB是直径 或∵∠C=90°

《用列举法求概率》九年级初三数学上册PPT课件

《用列举法求概率》九年级初三数学上册PPT课件
2.两次结果点数的和是9,
6
36
1.满足条件的可能有6种,P(两次结果点数相同)=
2.满足条件的可能有4种,P(两次结果点数和为9)=
3.至少有一次结果的点数为2。
=
4
36
=
3.满足条件的可能有11种,P(至少一次结果点数为2)=
解:通过题意可以画出如下树状图,可能出现的36种结果,并且它们出现的概率是相同的。
时间:20XX
3.满足条件的可能有2种,即“正反”“反正”
P(两枚硬币正面和反面朝上各一枚)=
2 1
=
4 2
观察这两个问题,抛掷方法改变后,
试验产生的结果一样吗?
情景引入
观察这两个问题,抛掷方法改变后,得到的结果一样吗?为什么?
把一枚质地均匀的骰子投两次,观察向上一面的点数,求下列事件的概率.
1.两次结果的点数相同,
时间:20XX
前言
学习目标
1.用列举法(包括列表、画树状图)计算简单事件发生的概率。
2.能画“两级”树状图求简单事件概率。
3.通过观察列举法的结果是否重复和遗漏。
重点难点
重点:能够运用列表法和树状图法计算简单事件发生的概率。
难点:不重复不遗漏的列出所有可能的情况。
情景引入
【分析】在一次试验中,如果可能出现的结果
I H
I
H
I H
I H
I
A A A A A A B B B B B B
C C D D E E C C D D E E
H I H I H I H I H I H I
① ② ① ② ② ③ 辅 ① 辅 ① ① ②
1
2)全是辅音有2种可能,P(1个元音)=6

初三反比例函数ppt课件ppt课件

初三反比例函数ppt课件ppt课件

反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。

初三数学ppt课件

初三数学ppt课件
详细描述:立体几何是研究空间几何形状和物体位置关系的学科,涉及平面、直线、体积等概念和定 理,如平行线、垂直线、勾股定理等,需要培养学生的空间思维和想象力。
04 专题部分
运动问题
总结词:掌握运动问题的解题思路和数学模型,了解物理 运动和数学运动的概念和关系。
详细描述
1. 定义运动的概念和分类。
2. 分析匀速运动和变速运动的特征和公式。
一元二次方程
定义
一元二次方程是一个整式方程,它的一般形式是ax^2 + bx + c = 0,其中a、b、c是常数且a≠0 。
解法
配方法、公式法、因式分解法
应用
解决实际问题,如计算面积、体积等
函数与图像
定义
函数是数学表达式的集合,它的 一般形式是y = f(x),其中x是自 变量,y是因变量。图像是函数的
日常生活应用
初三数学中的许多概念和原理在日常生活中都有广泛的应用 。
初三数学的学习方法
01
制定学习计划
合理安排时间,设
定学习目标,保持
02
一定的学习节奏。
多做练习
通过大量的练习, 加深对知识点的理
解和记忆。
04
及时总结
定期对所学内容进
03
行总结和回顾,查
漏补缺。
积极思考
主动思考和解决问 题,不依赖他人,
不逃避困难。
初三数学的教学目标
掌握初中数学基础知识
确保学生掌握初中数学的基本概念、 原理和算法。
提高应用能力
为学生进入高中后的数学学习打下坚 实的基础。
培养数学思维
通过解决问题和分析案例,培养学生 的逻辑思维和分析能力。
为高中数学打下基础
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)填空:在由原方程得到方程①的过程中,利用_________法 达到了降次的目的,体现了_________的数学思想.
(2)已知实数x,y满足(x2+y2)(x2+y2-1)=6,求x2+y2的值
2021/3/7
CHENLI
10
课堂小结:
一元二次方程有三个特征: (1)只含有一个未知数; (2)未知数的最高次数为2; (3)是整式方程。
一元二次方程的一般形式是ax2+bx+c=0,值 得注意的条件a≠0.
解一元二次方程时应注意方程的特征,选择恰 当的方法.
2021/3/7
CHENLI
11
2021/3/7
CHENLI
12
CHENLI
2
指出下列方程的二次项、一次项系数和常数项. (1) 2x2 +x -5 =0
(2) 3x2 = 7(x+1) -5
(3) 关于x的方程: kx2+2kx=x2-k-3 (k≠1).
2021/3/7
CHENLI
3
知识点小结:
只含有 一个 未知数,且未知数的最高次数为2 的 整式 方程叫做一元二次方程.
一元二次方程复习(一)
2021/3/7
CHENLI
1
课堂练习
下列方程中,哪些是一元二次方程?
(1) (x+3)(x-3)=0; (2) (2x-1)(x+3)=2x2+1; (3) 2x2-y+2=0
(4) x2+ 1 -2=0 x
(5) ax2+bx+c=0(a、b、c是常数).
2021/3/7
(3x-1)2=2(3x-1) 解为两个一次因式的积
2021/3/7
CHห้องสมุดไป่ตู้NLI
6
用恰当的方法解下列方程
(1) (x+1)2-2=0 (2) x2+8x-9=0 (3) 3x2-2x-1=0 (4) 3x(x+4)=5(x+4) (5) (x+3)(x-1)=5
2021/3/7
CHENLI
7
例题讲析:
CHENLI
9
拓展练习:
请同学们认真阅读下面的一段文字材料,然后解答题目中提出的 有关问题.
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整 体,然后设x2-1=y,则原方程可化为y2-5y+4=0 ①
易解得y1=1,y2=4. 当y=1时,x2-1=1,∴x2=2,x=± 2 . 当y=4时,x2-1=4,∴x2=5,x=± 5 . ∴原方程的解为x1= 2 ,x2=- 2 ,x3= 5 ,x4=- 5 . 解答问题:
一元二次方程的一般形式是 ax2+bx+c=0 (a≠0); 其中a是 二次项系数,b是一次项系数 ,c是 常数 项.
2021/3/7
CHENLI
4
想一想:怎样解下列方程
(1) 3x2-48=0 (2) (x+7)2=225 (3) x2+8x-4=0 (4) 2x2-x=5 (5) (3x-1)2=2(3x-1)
2021/3/7
CHENLI
5
知识点小结:
解一元二次方程的方法:
1、直接开平方法 适于(x+h)2=k (k≥0)
(x+7)2=225
2、配方法
关键是两边都加上一次
x2+8x-4=0 项系数一半的平方
3、公式法
2x2-x=5
xbb24a(cb24a c0) 2a
4、因式分解法
方程一边是0,另一边分
1、m为何值时,代数式m2-1的值比2m+1的 值大1
2、对于任意实数x,多项式x2-4x+7的值是 () A.负数 B.非正数 C.正数 D.无法确定
2021/3/7
CHENLI
8
练一练:
已知等腰三角形的底边长为8,腰长是方程 x2-9x+20=0的一个根,求等腰三角形的周长。
2021/3/7
相关文档
最新文档