弹簧的动量和能量问题#(精选.)
高考物理弹簧模型知识点
2019高考物理弹簧模型学问点2019高考物理弹簧模型学问点弹簧模型是以轻质弹簧为载体,与详细实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。
有关弹簧的学问,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种志向化的物理模型,分析问题时不须要考虑弹簧本身的质量和重力.处理弹簧模型时,须要驾驭以下学问点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变更而变更,同时还与弹簧的劲度系数有关。
2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变更,弹簧的弹力相应地发生变更;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变更,这与绳子的受力状况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种状况下,弹力的方向相反.在分析弹簧弹力的方向时,肯定要全面考虑,假如题目没有说明是哪种形变,那么就须要考虑两种状况.(4)依据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在中学阶段不须要驾驭该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的状况下,弹性势能是相等的;一般状况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)推断弹簧与连接体的位置,分析物体的受力状况;(2)推断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变更状况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)依据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的变更须要肯定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区分的,不要混淆两者的区分,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.假如弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。
高中物理弹簧问题分类全解析
高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
高中物理经典问题---弹簧类问题全面总结解读
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
动量能量---弹簧类问题
我成功,因为我志在成功!一:形变量相同时,弹性势能相同1.如图所示,质量mB =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k =100N /m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA =1.6kg 的小球A 连接。
已知直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°。
初始时使小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的张力F 为45N 。
已知AO1=0.5m ,重力加速度g 取10m /s2,绳子不可伸长.现将小球A 从静止释放,则:(1)在释放小球A 之前弹簧的形变量;(2)若直线CO1与杆垂直,求物体A 运动到C 点的过程中绳子拉力对物体A 所做的功;(3)求小球A 运动到底端D 点时的速度。
二.两过程代换2.(20分)如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水 平地面上,弹簧的劲度系数为k ,木块A 和木块B 的质量均为m.(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高 度时,木块B 将离开水平地面.(2)若弹簧的劲度系数k 是未知的,将一物块C 从A 的正上方某位 置处无初速释放与A 相碰后,立即粘在一起(不再分离)向下运动,它 们到达最低点后又向上运动。
已知C 的质量为m 时,把它从距A 高H 处释放,则最终能使B 刚好要离开地面。
若C 的质量为2m,要使B 始终不离开地面,则释放时,C 距A 的高度h 不能超过多少? 三、完全压紧不能再压缩:3、如图6-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v0. (1)求弹簧所释放的势能ΔE.(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE ′是多少? (3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为2v0,A 的初速度v 应为多大?变式:如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为mA=1kg ,mB=1kg ,mC=2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失).现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在B 、C 之间的弹簧第一次恢复到原长时追上B ,并且与B 发生碰撞后粘在一起.求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值.四、弹簧中的临界问题:4、多过程分析(11分)在赛车场上,为了安全起见,在车道外围一定距离处一般都放有废旧的轮胎组成的围栏。
动量守恒定律的应用弹簧问题
理解:弹簧被压缩至最短时的临界条件。
4.质量分别为3m和m的两个物体, 用一根细线
相连,中间夹着一个被压缩的轻质弹簧,整个系
统原来在光滑水平地面上以速度v0向右匀速运
动,如图所示.后来细线断裂,质量为m的物体离 开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度 (2)弹簧的这个过程中做的总功.
1.注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。
连接:可以表现为拉力和压力。
不连接:只表现为压力。
3.动量问题:动量守恒。
4.能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间转化.
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧 压缩,当撤去外力后,下列说法正确的是( ) BC A.a尚未离开墙壁前,a和b组成的系统动量守恒 B.a尚未离开墙壁前,a和b组成的系统动量不守恒 C.a离开墙壁后,a和b组成的系统动量守恒 D.a离开墙壁后,a和b组成的系统动量不守恒
mA m, mB m, mC 3m,
求:(1)滑块A与滑块B碰 撞结束瞬间的速度; (2)被压缩弹簧的最大弹 性势能;
例:如图所示,A,B,C三个木块的质量 均为m。置于光滑的水平面上,B,C之间 有一轻质弹簧,弹簧的两端与木块接触而 不固连,将弹簧压紧到不能再压缩时用细 线把B和C紧连,使弹簧不能伸展,以至于 B,C可视为一个整体,现A以初速v0沿B, C的连线方向朝B运动,与B相碰并黏合在 一起,以后细线突然断开,弹簧伸展,从 而使C与A,B分离,已知C离开弹簧后的 速度恰为v0,求弹簧释放的势能。
题型二、两个物体的问题
2014高考物理二轮专题:弹簧问题
弹簧的特点和规律
4.对于只有一端有关联物体,另一端固定的弹簧, 其运动过程可结合弹簧振子的运动规律去认识, 突出过程的周期性、对称性及特殊点的应用。如 当弹簧伸长到最长或压缩到最短时,物体的速度 最小(为零),弹簧的弹性势能最大,此时,也 是关联物的速度方向发生改变的时刻。若关联物 与接触面间光滑,当弹簧恢复原长时,物体速度 最大,弹性势能为零。若关联物与接触面间粗糙, 物体速度最大时弹力与摩擦力平衡,此时弹簧并 没有恢复原长,弹性势能也不为零。若关联物同 时处在电磁场中,要注重过程分析。
四、弹簧类问题中的图像
〖例7〗 (2010福建理综第17题)如图(甲)所示,质量不计的弹 簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某 一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又 被弹起离开弹簧,上升到一定高度后再下落,如此反复。通过安装 在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的 图像如图(乙)所示,则 ( )【答案】C。 A.t1时刻小球动能最大 B.t2时刻小球动能最大
的木块a、b置于粗糙的水平地面上,中间用一轻弹簧连接, 两侧用细绳固定于墙壁。开始时a、b均静止。弹簧处于伸 长状态,两细绳均有拉力,a所受摩擦力Ffa≠0,b所受摩 答案AD 擦力Ffb=0,现将右侧细绳剪断,则剪断瞬间 ( ) A.Ffa大小不变 B.Ffa方向改变 a b C.Ffb仍然为零 D.Ffb方向向右
[点评] 要注意两物体“刚性接触” 和“弹性接触” 的区别。对于吊篮A和物块B,由于它们是刚性接触, 它们之间的相互作用力可发生突变,因此在轻绳烧断 的瞬间A和B的加速度相等。
二、轻弹簧相关联的物体平衡
〖例3〗S1和S2表示劲度系数分别为k1和k2的两根弹簧,k1>k2。 a和b表示质量分别为ma和mb的两个物块,ma>mb,将弹簧与物 块按如图所示方式悬挂起来。现要求两根弹簧的总长度最大, 则应使:( ) [答案]D A.S1在上,a在上 B.S1在上,b在上 C.S2在上,a在上 D.S2在上,b在上 [解析]上面弹簧弹力是确定的,等于ab两物体的 重力,要使上面的伸长 量大,应使劲度系数小的在上,即S2在上面;要使下面伸长量 大,应让质 量大的物体在下面,即a物体在下面。 [点评]本题是据胡克定律解题的,由F=kx知要使形变量x最大, 则必有F最大或k最小。
动量之弹簧类问题
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
弹簧 能量动量计算
图中有一个竖直固定在地面的透气圆筒,筒中有一劲度为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调.起初,滑块静止,ER流体对其阻力为0,弹簧的长度为L,现有一质量也为m的物体从距地面2L处自由落下,与滑块碰撞后粘在一起向下运动.为保证滑块做匀减速运动,且下移距离为2mgk时速度减为0,ER流体对滑块的阻力须随滑块下移而变。
试求(忽略空气阻力):(1)下落物体与滑块碰撞过程中系统损失的机械能;(2)滑块向下运动过程中加速度的大小;(3)滑块下移距离d时ER流体对滑块阻力的大小.如图所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于滑道的末端O点。
已知在OM段,物块A与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块速度滑到O点时的速度大小;(2)弹簧为最大压缩量d时的弹性势能(设弹簧处于原长时弹性势能为零)(3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少?质量均为m 的小球B 与小球C 之间用一根轻质弹簧连接.现把它们放置在竖直固定的内壁光滑的直圆筒内,平衡时弹簧的压缩量为0x ,如图所示,设弹簧的弹性势能与弹簧的形变量(即伸长量或缩短量)的平方成正比.小球A 从小球B 的正上方距离为30x 的P 处自由落下,落在小球B 上立刻与小球B 粘连在一起向下运动,它们到达最低点后又向上运动.已知小球A 的质量也为m 时,它们恰能回到0点(设3个小球直径相等,且远小于0x 略小于直圆筒内径),求:小球A 与小球B 一起向下运动时速度的最大值.如图所示,半径分别为R 和r (R>r )的甲乙两光滑圆轨道安置在同一竖直平面内,两轨道之间由一条光滑水平轨道CD 相连,在水平轨道CD 上一轻弹簧a 、b 被两小球夹住,同时释放两小球,a 、b 球恰好能通过各自的圆轨道的最高点,求:(1)两小球的质量比.(2)若m m m b a ==,要求a b 都能通过各自的最高点,弹簧释放前至少具有多少弹性势能。
动量与能量综合问题归类分析
量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0
①
设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J
③
⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。
或
v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:
弹簧类动量守恒机械能守恒类习题精练
弹簧类机械能守恒动量守恒1.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但不连接,该整体静止在光滑水平地面上,并且C被锁定在地面上.现有一滑块A从光滑曲面上离地面h高处由静止开始下滑,与滑块B发生碰撞并粘连在一起压缩弹簧,当速度减为碰后速度一半时滑块C解除锁定.已知mA=m,mB=2m,mC="3m." 求:被压缩弹簧的最大弹性势能.2.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x,如图所示,一物块从钢板正上方距离为3x的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达最高点O点的距离.3.如图所示,在光滑水平面上,质量为m的小球A和质量为m的小球B通过轻弹簧连接并处于静止状态,弹簧处于原长;质量为m的小球C以初速度v沿AB连线向右匀速运动,并与小球A发生弹性碰撞. 在小球B的右侧某位置固定一块弹性挡板(图中未画出),当弹簧恢复原长时,小球B与挡板发生正碰并立刻将挡板撤走. 不计所有碰撞过程中的机械能损失,弹簧始终处于弹性限度内,小球B与挡板的碰撞时间极短,碰后小球B的速度大小不变,但方向相反。
在小球A向右运动过程中,求:(1)小球B与挡板碰撞前,弹簧弹性势能最大值;(2)小球B与挡板碰撞时,小球A、B速度分别多大?(3)小球B与挡板碰撞后弹簧弹性势能最大值。
4..(10分)如图所示,三个可视为质点的滑块质量分别为mA =m,mB=2m,mC=3m,放在光滑水平面上,三滑块均在同一直线上.一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,B、C均静止。
现滑块A以速度v=与滑块B发生碰撞(碰撞时间极短)后粘在一起,并压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平面上匀速运动,求:①被压缩弹簧的最大弹性势能②滑块C脱离弹簧后A、B、C三者的速度5.如图所示,质量为m=1kg的滑块A从光滑圆弧h=0.9m处由静止开始下滑,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上,B滑块与A滑块的质量相等,弹簧处在原长状态.滑块从P点进入水平导轨,滑行S=1m后与滑块B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回水平导轨的左端P点并停止.滑块A和B与水平导轨的滑动摩擦因数都为μ=0.1,g=10m/s求:(1)滑块A 与滑块B 碰撞前的速度(2)滑块A 与滑块B 碰撞过程的机械能损失 (3)运动过程中弹簧最大形变量 x .6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H=5m 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h=1.8m 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知m A =1kg ,m B =2kg ,m C =3kg ,g=10m/s 2,求: (1)滑块A 与滑块B 碰撞结束瞬间的速度; (2)被压缩弹簧的最大弹性势能;(3)滑块C 落地点与桌面边缘的水平距离.7. (II)如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静置在光滑水平面上.现有一滑块A 从光滑曲面上离水平面h 高处由静止开始滑下,与滑块B 发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C 向前运动,经过一段时间,滑块C 脱离弹簧,继续在水平面上做匀速运动.已知m A =m B =m ,m C =2m ,求: (1)滑块A 与滑块B 碰撞时的速度v 1大小;(2)滑块A 与滑块B 碰撞结束瞬间它们的速度v 2的大小; (3)滑块C 在水平面上匀速运动的速度的大小.8. 如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。
高中物理压轴题04 用动量和能量的观点解题(解析版)
压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于动量和能量的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。
考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。
3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。
4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。
研究过程既可以是全过程,也可以是全过程中的某一阶段。
(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。
(3)规定正方向。
(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。
以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。
微专题一动量守恒之弹簧模型
一、弹簧模型
1.对于光滑水平面上的弹簧类问题,在作用过程中,系统所受合外力为零,
满足动量守恒条件;
2.系统只涉及弹性势能、动能,因此系统机械能守恒;
3.弹簧压缩至最短或拉伸到最长时,弹簧连接的两物体共速,此时弹簧的弹
性势能最大。
4.弹簧从原长到最短或最长相当于完非,从原长再到原长相当于完弹。
1
解得 v3= v1=1 m/s
6
由机械能守恒定律有
1
1
2
Ep=2(mA+mB)v2 -2(mA+mB+mC)v32
解得Ep=3 J
被压缩弹簧再次恢复自然长度时,滑块C脱离
弹簧,设此时滑块A、B的速度为v4,滑块C的
速度为 v5 ,由动量守恒定律和机械能守恒定
律有
(mA+mB)v2=(mA+mB)v4+mCv5
5.具体过程及规律如下:
vB′是滑块B全程最大的速度,若A未与弹簧连接,则3状态是滑块A脱离弹
簧的时刻,脱离时的速度为vA′,其大小方向如何由mA、mB决定。
6.A、B运动过程的v-t图像如图所示。
1.A、B 两小球静止在光滑水平面上,用轻质弹簧相连接,A、B 两球
的质量分别为 mA 和 mB(mA <mB)。若使A球获得初速度 v (图甲),弹
C.两物块的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
3.如图所示,质量为2m的小球B与轻质弹簧连接后静止于光滑水平面上,质量为m的小球A
以初速度v0向右运动逐渐压缩弹簧,A,B通过弹簧相互作用一段时间后A球与弹簧分离。若
以水平向右为正方向,且A球与弹簧分离时A,B小球的动量分别为pA和pB,运动过程中弹簧
有关弹簧的动量问题
单击此处添加大标题 内容
如图所示,在足够长的光滑水平轨道上静止三个小木块A,B,C,质量分别为mA=1kg,mB=1kg, mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶 炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药, 若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹 簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。求:
单击添加大标题
E 车 Ep=mgR
2m2gR M2 Mm
四. 质量为M 的小车置于光滑水平面上, 小车的上表面由 光滑的1/4 圆弧和光滑平面组成, 圆弧半径为R , 车的 右端固定有一不计质量的弹簧.现有一质量为m 的滑块 从圆弧最高处无初速下滑(如图) ,与弹簧相接触并压缩 弹簧, 求: 1. 弹簧具有的最大的弹性势能; 2. 当滑块与弹簧分离时小车速度.
恢复到原长时A,B的速度各是多少?
由能量守恒得
1 2m V 0 201 2m V A 21 2m V B 2
2.已知A、B、C质量均为m,C的初速度为v0,碰撞后 B、C粘在一起,地面光滑。求弹簧的最大弹性势能EP
解:C与B碰撞动量守恒 mV0=2mV1
碰后到压缩弹簧到最短达共同速度V2,弹性势能达最大EP.
A
v0
B2 m
⑵设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。
系统动量守恒: m0vmAv2mBv
mAv2mBv3m共 v
B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同 (设为v共)时,弹簧势能最大,为Em,则:
1 2m02v1 23m共 2vEm
弹簧问题中的能量与动量
弹簧问题中的能量与动量教学目的:1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况;2.物理答题规范的培养与指导;3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。
教学重难点:1.物理情景的分析方法2.分析过程中突出的物理问题中的“三变”教学方法:讲授、讨论、多媒体演示教学过程:在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。
在力学主干知识的考查中,能量与动量又永远是考查的重中之重。
一.弹簧基础知识弹簧类弹力:大小:F=kx (在弹性限度以内);方向:沿弹簧轴线而指向弹簧的恢复原状的方向二.弹簧问题中的能量与动量分析请学生看物理教材(必修加选修)第二册第10页“思考与讨论”: 在如图1所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。
若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒?机械能是否守恒?说明理由。
例1:如图1所示,若木块的质量为M,子弹的质量为m,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。
求弹簧可能具有的最大弹性势能。
分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。
运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。
对子弹A和木块B 构成的系统,在子弹A 射入木块B的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有:10)(v m M mv +=①对子弹A、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有:()21max 21v m M E P +=②图1联立①②两式得:弹簧具有的最大弹性势能为()m M v m E P +=2202max小结:例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
有关弹簧问题的例析
可弹簧问题的例析“弹簧”是高中物理学习过程中常见的一种理想模型,在高考物理试卷中频频出现。
2005年高考理综Ⅰ卷又出了一道该类的综合性题目,这类题综合性强、出题方式灵活。
因此,有关弹簧的试题也就成了高考命题的重点、难点、热点。
有关弹簧的考点一共有两个,一个是“形变和弹力、胡克定律”这是一个Ⅱ要求的知识点;另一个是“弹性势能”是一个Ⅰ要求的知识点,高考出题也正是从这两个方面着手的。
(一)考查弹簧弹力的特点,特别是弹簧的弹力和绳子的弹力的区别问题,这类问题实际上也就是胡克定律的定性考查,关健是要理解定律中x是“形变量”一根弹簧只有长度发生了新的变化才会发生弹力的变化,即弹簧弹力大小和方向不能发生“突变”例1、(2001上海)如图A所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态。
现将l2线剪断,求剪断瞬时物体的加速度。
(14分)(l)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在这三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mgtgθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。
因为mg tgθ=ma,所以加速度a=g tgθ,方向在T2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图B所示,其他条件不变,求解的步骤和结果与(l)完全相同,即a=g tgθ,你认为这个结果正确吗?请说明理由。
解析:该题是一道直接考绳和弹簧的区别的题目。
解:(1)结果错误。
因为L2被剪断的瞬间,L1上的张力大小突然变化为零。
实际上此瞬间应有:沿绳方向上T1=mgcosθ沿绳切线方向上 ma =mgsin θ即 a =gsin θ(2)结果正确。
因为L 2被剪断的瞬间,弹簧l 1的长度末及发生变化,其产生力的大小和方向都不变。
高考弹簧问题专题详解
高考弹簧问题专题详解高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧的动量和能量问题
班级__________ 座号_____ 姓名__________ 分数__________
一、知识清单
1.弹性势能的三种处理方法
弹性势能E P=½kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种:
①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能;
②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零;
③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。
二、例题精讲
2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小;
(2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原长时弹性势能为零).
3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:
(1)从释放C到物体A刚离开地面时,物体C沿斜面下滑的距离;
(2)物体C的质量;
(3)释放C到A刚离开地面的过程中细线的拉力对物体C做的功.
4.(2014•珠海二模)如图甲,光滑的水平面上有三个滑块a、b、c;a、b的质量均等于1kg;b、c被一根轻质弹簧连接在一起,处于静止状态;在t=0时,滑块a突然以水平向右的速度与b正碰,并瞬间粘合成一个物体(记为d);此后运动过程中弹簧始终处于弹性限度内,d的速度随时间做周期性变化,如图乙.则:(1)求滑块a的初速度大小以及a、b正碰中损失的机械能△E;
(2)求滑块c的质量;
(3)当滑块c的速度变为v x瞬间,突然向左猛击一下它,使之突变为﹣v x,求此后弹簧弹性势能最大值E p 的表达式,并讨论v x取何值时,E p的最大值E pm.
5.如图所示,劲度系数为k的轻质弹簧上端固定,下端挂一个质量为m的物体。
现用一块木板将物体托起,使弹簧恢复原长,然后让木板由静止开始以加速度a(a<g)向下做匀加速运动。
试求:
(1)木板开始运动时,物体对木板的压力为多少?
(2)木板运动至与物体刚分离时经历的时间为多少?
6. (2016·全国卷Ⅰ) 如图1-,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A
处,另一端位于直轨道上B 处,弹簧处于自然状态,直轨道与一半径为5
6R 的光滑圆弧轨道相切于
C 点,AC
=7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画
出),随后P 沿轨道被弹回,最高到达F 点,AF =4R ,已知P 与直轨道间的动摩擦因数μ=1
4
,重力加速度大
小为g .(取sin 37°=35,cos 37°=4
5)
(1)求P 第一次运动到B 点时速度的大小. (2)求P 运动到E 点时弹簧的弹性势能.
(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好
通过G 点.G 点在C 点左下方,与C 点水平相距7
2R 、竖直相距R ,求P 运动到D 点时速度的大小和改变后P
的质量.
37°
R
P
7R/2G
D
C
F
B
A
图1-
7. 如图2所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.8 m 的圆环剪去了左上角135°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离也是R .用质量m 1=0.4 kg 的物块a 将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点.用同种材料、质量为m 2=0.2 kg 的物块b 将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系式为x =6t -2t 2,物块飞离桌面后由P 点沿切线落入圆弧轨道.g 取10 m/s 2,求:
图2
(1)B 、P 间的水平距离;
(2)通过计算,判断物块b 能否沿圆弧轨道到达M 点; (3)物块b 释放后在桌面上运动的过程中克服摩擦力做的功.
8.如图5-2-9所示,轻弹簧左端固定在竖直墙上,右端点在O位置。
质量为m的物块A(可视为质点)以初速度v0从距O点右方x0的P点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O′点位置后,A又被弹簧弹回。
A离开弹簧后,恰好回到P点。
物块A与水平面间的动摩擦因数为μ。
求:
图5-2-9
(1)物块A从P点出发又回到P点的过程,克服摩擦力所做的功。
(2)O点和O′点间的距离x1。
(3)若将另一个与A完全相同的物块B(可视为质点)与弹簧右端拴接,将A放在B右边,向左压A、B,使弹簧右端压缩到O′点位置,然后从静止释放,A、B共同滑行一段距离后分离。
分离后物块A向右滑行的最大距离x2是多少?
9.(2016·乐山市三诊)利用弹簧弹射和皮带传动装置可以将工件运送至高处。
如图4所示,已知传送轨道平面与水平方向成37°角,倾角也是37°的光滑斜面轨道固定于地面且与传送轨道良好对接,弹簧下端固定在斜面底端,工件与皮带间的动摩擦因数μ=0.25。
皮带传动装置顺时针匀速转动的速度v=4 m/s,两轮轴心相距L=5 m,B、C分别是传送带与两轮的切点,轮缘与传送带之间不打滑。
现将质量m=1 kg的工件放在弹簧上,用力将弹簧压缩至A点后由静止释放,工件离开斜面顶端滑到皮带上的B点时速度v0=8 m/s,A、B间的距离x=1 m。
工件可视为质点,g取10 m/s2。
(sin 37°=0.6,cos 37°=0.8)求:
(1)弹簧的最大弹性势能;
(2)工件沿传送带上滑的时间。
图4
10.如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数为μ=43
,轻弹簧下端固定在斜面底
端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为m A =4kg ,B 的质量为m B =2kg ,初始时物体A 到C 点的距离为L=1m .现给A 、B 一初速度v 0=3m/s 使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g=10m/s 2,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求此过程中: (1)物体A 沿斜面向下运动时的加速度大小; (2)物体A 向下运动刚到C 点时的速度大小; (3)弹簧的最大压缩量和弹簧中的最大弹性势能.
11.(2015·江苏卷)一转动装置如图所示,四根轻杆OA 、OC 、AB 和CB 与两小球及一小环通过铰链连接,轻杆长均为l ,球和环的质量均为m ,O 端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O 与小环之
间,原长为L.装置静止时,弹簧长为3
2L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,
忽略一切摩擦和空气阻力,重力加速度为g.求: (1)弹簧的劲度系数k ;
(2)AB 杆中弹力为零时,装置转动的角速度ω0;
(3)弹簧长度从32L 缓慢缩短为1
2
L 的过程中,外界对转动装置所做的功W.
13.如图所示,A、B两个矩形木块用轻弹簧相接静止在水平地面上,弹簧的劲度系数为k,木块A和木块B的质量均为m.
(1)若用力将木块A缓慢地竖直向上提起,木块A向上提起多大高度时,木块B将离开水平地面.
(2)若弹簧的劲度系数k是未知的,将一物体C从A的正上方某位置处无初速释放,C与A相碰后立即粘在一起(不再分离)向下运动,它们到达最低点后又向上运动.已知C的质量为m时,把它从距A高为H处释
m,要使B始终不离开地面,则释放时,C距A的高度h不放,则最终能使B刚好离开地面.若C的质量为
2
能超过多少?
最新文件仅供参考已改成word文本。
方便更改如有侵权请联系网站删除。