高中数学必修二第三章直线方程全套.ppt

合集下载

高中数学:3.《直线的两点式方程》课件【新人教A版必修2】PPT完美课件

高中数学:3.《直线的两点式方程》课件【新人教A版必修2】PPT完美课件
高中数学:3.2.2《直线的 两点式方程》课件(新人
教A版必修2)
§3.2.2 直线的两点式方程
课前提问:
若直线l经过点P1(1,2), P2(3,5),
求直线l的方程.
思考:
已知直线上两点P1(x1,y1), P2(x2,y2)(其中x1≠x2, y1≠y2 ),如何求出通过这两点的直线方程呢?
截距确定,所以叫做直线方程的截 距式方程;
(3)截距式适用于横、纵截距都存在且都不为0的直线.
例2、三角形的顶点是A(-5,0),B(3,-3),C(0,2),
求BC边所在直线的方程,以及该边上中线所在直 线的方程.
y
.C
.
A
. O
M
x
.
B
补充练习
下列四个命题中的真题命是( )
A.经过定点0(Px0,y0 )的直线都可以用

8.能够由具体的阅读材料进行拓展和 迁移, 联系相 关的文 学名著 展开分 析,提 出自己 的认识 和看法 ,说出 自己阅 读文学 名著的 感受和 体验。

9巧妙结合故事情节,在尖锐的矛盾冲 突中, 充分深 刻显示 人物复 杂内心 世界, 突出了 对人物 性格的 刻画, 使其有 血有肉 ,栩栩 如生。

10保尔身上的人格特征或完美的精神 操守: 自我献 身的精 神、坚 定不移 的信念 、顽强 坚韧的 意志

11把记叙、描写、抒情和议论有机地 融合为 一体, 充满诗 情画意 。如描 写百草 园的景 致,绘 声绘色 ,令人 神往。

12简·爱人生追求有两个基本旋律:富 有激情 、幻想 、反抗 和坚持 不懈的 精神; 对人间 自由幸 福的渴 望和对 更高精 神境界 的追求 。

人教版高中数学必修二3.直线的两点式方程 课件

人教版高中数学必修二3.直线的两点式方程 课件
和为2. (2)过点(5, 0),且在两坐标轴上的截距之
差为2.
人教版高中数学必修二3.直线的两点 式方程 课件
人教版高中数学必修二3.直线的两点 式方程 课件
探究
线段P1P2中P1(x1, y1), P2(x2, y2), 求线 段P1P2的中点P的坐标
y P2(x2, y2)
P1(x1, y1)
人教版高中数学必修二3.直线的两点 式方程 课件
(x0, y0)及斜率k存在) 2. 斜截式方程:
3. 两点式方程:
人教版高中数学必修二3.直线的两点 式方程 课件
人教版高中数学必修二3.直线的两点 式方程 课件
直线方程模块 1.点斜式方程: y-y0=k(x-x0) (已知定点
(x0, y0)及斜率k存在) 2. 斜截式方程:y=kx+b [已知斜率k存在

2对教育来说,阅读是最基础的教学手 段,教 育里最 关键、 最重要 的基石 就是阅 读。

3但是现在,我们的教育在一定程度上 ,还不 够重视 阅读, 尤其是 延伸阅 读和课 外阅读 。

4. “山不在高,有仙则名。水不在深 ,有龙 则灵” 四句, 简洁有 力,类 比“斯 是陋室 ,惟吾 德馨” ,说明 陋室也 可借高 尚之士 散发芬 芳
人教版高中数学必修二3.直线的两点 式方程 课件
人教版高中数学必修二3.直线的两点 式方程 课件
例1.求过下列两点的直线的两点式方程 (1) P1(2, 1),P2(0, -3); (2) A(0, 5),B(5, 0).
人教版高中数学必修二3.直线的两点 式方程 课件
人教版高中数学必修二3.直线的两点 式方程 课件
思维拓展
拓展2:已知三角形的三个顶点A(-5, 0),

新课标人教A版高中数学必修二3. 直线的两点式方程 课件

新课标人教A版高中数学必修二3. 直线的两点式方程 课件


1应该认识到,阅读是学校教育的重要 组成部 分,一 个孩子 如果在 十多年 的教育 历程中 没有养 成阅读 的习惯 、兴趣 和能力 ,一旦 离开校 园,很 可能把 书永远 丢弃在 一边, 这样的 结果一 定是我 们所有 的教育 工作者 不想看 到的。

2对教育来说,阅读是最基础的教学手 段,教 育里最 关键、 最重要 的基石 就是阅 读。
例1 已知直线l与x轴的交点为A(a,0),与y轴的交点为 B(0,b),其中a≠0,b≠0,求直线l的方程.
解:将A(a,0),B(0,b)的坐标代
y
入两点式得:
l B(0,b)
A(a,0)
O
x
y-0 = x-a b-0 0-a
即 x + y = 1. ab
新课标人教A版高中数学必修二3. 直线的两点式方程 课件
新课标人教A版高中数学必修二3. 直线的两点式方程 课件
直线的截距式方程
直线方程由直线在x轴和y轴的截距确定,所以叫做
直线方程的截距式方程.
在x轴上 的截距
x y 1. ab
在y轴上 的截距
截距式适用于横、纵截距都存在且都不为0的直线.
新课标人教A版高中数学必修二3. 直线的两点式方程 课件
新课标人教A版高中数学必修二3. 直线的两点式方程 课件
y-2 = x-0, -3 - 2 3 -0 整理得,5x +3y - 6 = 0. 这就是BC边所在直线的方程.
新课标人教A版高中数学必修二3. 直线的两点式方程 课件
新课标人教A版高中数学必修二3. 直线的两点式方程 课件
设BC的中点为M,则M的坐标为(3 +0,-3 + 2),即(3,- 1).

高中数学第三章直线与方程3.2.2直线的两点式方程课件新人教A版必修2

高中数学第三章直线与方程3.2.2直线的两点式方程课件新人教A版必修2

ab
又过点 A,所以 4 + 2 =1
ab
因为直线在两坐标轴上的截距的绝对值相等,所以|a|=|b|
由①②联立方程组,解得
a b

6, 6,

a b

2, 2.
所以所求直线的方程为 x + y =1 或 x + y =1,
66
2 2
化简得直线 l 的方程为 x+y=6 或 x-y=2.
1.直线的两点式方程
(1)定义:如图所示,直线 l 经过点 P1(x1,y1),P2(x2,y2)(其中 x1≠x2,y1≠y2),则方程
y y1 = x x1 叫做直线 l 的两点式方程,简称两点式. y2 y1 x2 x1
解决直线与坐标轴围成的三角形面积或周长问题时,一般选择 直线方程的截距式,若设直线在 x 轴,y 轴上的截距分别为 a,b,则直线与坐标
上的截距.与坐标轴垂直和过原点的直线均没有截距式.
由直线方程的截距式得直线 l 的方程为 x + y =1,即 x+4y-8=0. 82
由①②可得 5a2-32a+48=0,
解得
a b

4, 3

a b

12 5 9. 2
,
所以所求直线的方程为 x + y =1 或 5x + 2 y =1,即 3x+4y-12=0 或 15x+8y-36=0.
则 (2)说xy 明xy:11与22坐xy22标,. 轴垂直的直线没有两点式方程.
解:由题意可设 A(a,0),B(0,b),
由中点坐标公式可得
a 0
2 2

高中数学必修二课件--第3章 3.2 3.2.2 直线的两点式方程

高中数学必修二课件--第3章 3.2 3.2.2 直线的两点式方程

B )
高中数学人教版必修2课件
难点
直线的两点式方程
1.直线的两点式方程由点斜式方程导出.从两点式方程
y-y1 x-x1 = 中,可以看出 x1≠x2,y1≠y2,即直线斜率不存在 y2-y1 x2-x1
(直线方程为 x=x1)或斜率为 0 时(直线方程为 y=y1),不能用两 点式. 2.若把两点式化为(y-y1)(x2-x1)=(x-x1)(y2-y1),就可以 利用它求平面内过任意两点的直线方程.
高中数学人教版必修2课件
3.2.2 直线的两点式方程
1.过 P1(-1,-3),P2(2,4)两点的直线的方程是(
B )
y-3 x-1 A. = 4-3 2-1 y-4 x-2 C. = 3-4 1-2
y+3 x+1 B. = 4+3 2+1 y+1 x+3 D. = 2+1 4+3
高中数学人教版必修2课件
法较为简便.
高中数学人教版必修2课件
2-1.直线 l 过点(1,2)和第一、二、四象限,若直线 l 的横截
距与纵截距之和为 6,求直线 l 的方程.
解:设直线 l 的横截距为 a,由题意可得纵截距为 6-a, x y ∴直线 l 的方程为a+ =1. 6-a ∵点(1,2)在直线 l 上, 1 2 ∴a+ =1, 6-a
故所求的直线 l 为 y=8(x-3),即 8x-y-24=0.
高中数学人教版必修2课件
解法二:设 l1 上的点 A 的坐标为(x1,y1), ∵P(3,0)是线段 AB 的中点, 则 l2 上的点 B 的坐标为(6-x1,-y1),
x =11 1 3 2x1-y1-2=0 ∴ ,解得 6-x1+-y1+3=0 y1=16 3
4x0+y0+6=0 所以 -3x0+5y0-6=0

高中数学 3223直线的方程课件 新人教版A必修2

高中数学 3223直线的方程课件 新人教版A必修2

∴M52,-3, 又 BC 边上的中线经过点 A(-3,2). ∴由两点式得-y-3-22=52x----33, 即 10x+11y+8=0. 故 BC 边上的中线所在直线的方程为 10x+11y+8=0.
规律方法 ①首先要鉴别题目条件是否符合直线方程相应形式 的要求,对字母则需分类讨论;②注意问题叙述的异同,本题 中第一问是表示的线段,所以要添加范围;第二问则表示的是 直线.
2.线段的中点坐标公式
若点 P1,P2 的坐标分别为(x1,y1)、(x2,y2),设 P(x,y)是线段
P1P2
的中点,则x= y=
x1+x2 2

y1+2 y2.
试一试:若已知 A(x1,y1)及 AB 中点(x0,y0),如何求 B 点的坐 标?
提示
设 B(x,y),则由xy11+ +22 xy= =xy00, ,
【变式 1】 (2012·绍兴一中高一检测)已知△ABC 三个顶点坐标 A(2,-1),B(2,2),C(4,1),求三角形三条边所在的直线方程.
解 ∵A(2,-1),B(2,2), A、B 两点横坐标相同, ∴直线 AB 与 x 轴垂直,故其方程为 x=2. ∵A(2,-1),C(4,1), ∴由直线方程的两点式可得直线 AC 的方程为 -y-1-11=2x--44, 即 x-y-3=0. ∵B(2,2),C(4,1), ∴由直线方程的两点式可得直线 BC 的方程为2y--11=2x--44, 即 x+2y-6=0.
【变式 4】 (2012·菏泽一中高一检测)已知直线 l 的方程为 3x+ 4y-12=0,求直线 l′的方程,l′满足 (1)过点(-1,3),且与 l 平行; (2)过点(-1,3),且与 l 垂直.
解 法一 由题设 l 的方程可化为:y=-34x+3, ∴l 的斜率为-34, (1)由 l′与 l 平行, ∴l′的斜率为-34. 又∵l′过(-1,3), 由点斜式知方程为 y-3=-34(x+1), 即 3x+4y-9=0.

高中数学人教A版必修二 3.2.1 直线的点斜式方程 课件(30张)

高中数学人教A版必修二   3.2.1  直线的点斜式方程   课件(30张)
例 3 已知直线 l 过点 A(2,-3). (1)若 l 与直线 y=-2x+5 平行,求其方程; (2)若 l 与直线 y=-2x+5 垂直,求其方程.
【思路分析】 直线 y=-2x+5 的斜率 k=-2. (1)根据两直线平行与斜率的关系可得直线 l 的斜率为-2, 进而可用点斜式求解或直接设出 l 的方程为 y=-2x+b,用待定 系数法求 b. (2)根据两直线垂直与斜率的关系可得直线 l 的斜率为12,进 而用点斜式求解或直接设出 l 的斜截式方程 y=12x+c,用待定系 数法求 c.
探究 2 斜截式方程 y=kx+b 是点斜式方程的特殊情况,使 用前提也是斜率存在,用待定系数法求直线方程时,常采用此种 形式,其中 b∈R.与 l:y=kx+b 平行的直线方程可设为 y=kx +c;与 l 垂直的直线方程可设为 y=-1kx+c(k≠0),其中 c 为待 定系数,直线的斜率均存在.
【解析】 方法一:(1)∵l 与 y=-2x+5 平行,∴kl=-2. 由直线的点斜式方程知 y+3=-2(x-2), 即 l:2x+y-1=0. (2)∵直线 y=-2x+5 的斜率为 k=-2,l 与其垂直, ∴kl=12. 由直线的点斜式方程知 l:y+3=12(x-2), 即 x-2y-8=0.
(2)∵k=tan60°,∴y= 3x+5.
(3)∵k=tan150°=-
33,∴y=-
3 3 x.
思考题 2 一直线在 x 轴截距为 4,在 y 轴截距为-2.求直 线方程.
【解析】 由题意知直线过(4,0),(0,-2)点, ∴k=12,∴直线方程为 y=12x-2.
题型三 平行、垂直条件与直线方程
例 2 写出下列直线的斜截式方程. (1)斜率是 3,在 y 轴上的截距是-3; (2)倾斜角是 60°,在 y 轴上的截距是 5; (3)倾斜角是 150°,在 y 轴上的截距是 0.

【优秀课件】人教版高中数学必修二第三章3.2.2 直线的两点式方程

【优秀课件】人教版高中数学必修二第三章3.2.2 直线的两点式方程
知识回顾
直线 方程 名称 点 斜 式 斜 截 式
直线的方程
已知 条件 直线方程 使用范围
点P 0 ( x0 , y0 ) 和斜率k
y y0 k ( x x0 )
直线斜率存在
斜率k和直 线在y轴上率存在
巩固练习
1.已知直线l的方程是 x 3 y 2 0,
l

y
B(0,b)
A(a, 0)
O

x
二、直线的截距式方程
x y 我们把方程: 1(a 0, b 0) a b 叫做直线的“截距式方程”.简称“截距式” .
说明: (1)a , b 表示截距; (2)适用范围:
不能表示过原点以及与坐标轴平 行或重合的直线.
知识理解
下列四个命题中的真命题是(
方程为x y 3 0; x y 1 0
(2)当a b 0时, 直线过原点,所以直线方程为y 2 x 所以,满足条件的直线方程有三条.
课堂小结
形式
点斜式 斜截式 两点式
条件
过点( x0,y0), 斜率为k 在y轴上的截距为b, 斜率为k 过P1(x1, y1), P2(x2, y2)
B
)
A.经过定点P ( x0 , y0 )的直线, 都可用方程y y0 k ( x x0 )来表示; B.经过任意两个不同点P 1 ( x1 , y1 ),P 2 ( x2 , y2 )的直线都可以用方程 ( y y1 )( x2 x1 ) ( x x1 )( y2 y1 )来表示; x y C.不经过原点的直线都可以用方程 1来表示; a b D.经过定点的直线都可以用方程y kx b来表示.
第三章

高中数学《第三章直线与方程3.3直线的交点坐标与距离公式3.3.4两条平行线间的距离》889PPT课件

高中数学《第三章直线与方程3.3直线的交点坐标与距离公式3.3.4两条平行线间的距离》889PPT课件
解:由两点间距离公式有: (1) | AB | (2 3)2 (3 1)2 (5 4)2 6; (2) | AB | (6 3)2 (0 5)2 (1 7)2 70.
2、在Z轴上求一点M,使点M到点A(1,0,2)与点 B(1,-3,1)的距离相等.
解:设M点的坐标为(0, 0, a). 由题意可知:| MA || MB |,
D` A`
C`
B` M
连 接BN
O
Cy
在BCN中 ,
NБайду номын сангаас
A
B
| BN | | BC |2 | CN |2 2 | BC | | CN | cxos45 5 a
3
小结
(1) 在空间直角坐标系中,任意两点 P1(x1,y1,z1)和P2(x2,y2,z2)间的距离:
| P1P2 | ( x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
即:(0 1)2 (0 0)2 (a 2)2
(0 1)2 (0 3)2 (a 1)2 , 解得:a 3. 所以点M的坐标为(0, 0, 3).
练习
3、求证:以A(10,-1,6),B(4,1,9),C(2,4,3)三点 为顶点的三角形是等腰三角型.
证明 根据空间两点间距离公式,
得|AB|= 10-42+-1-12+6-92=7, |BC|= 4-22+1-42+9-32=7, |AC|= 10-22+-1-42+6-32= 98. 因为|AB|2+|BC|2=|AC|2,且|AB|=|BC|, 所以△ABC 是等腰直角三角形.
4.3.2 空间中两 点的距离公式
两点间距离公式
平面:| P1P2 | (x1 x2 )2 ( y1 y2 )2
类比 猜想

高中数学 第三章 直线与方程 3.2 直线的方程 3.2.3 直线的一般式方程课件 新人教A版必修2

高中数学 第三章 直线与方程 3.2 直线的方程 3.2.3 直线的一般式方程课件 新人教A版必修2

() A.2,3
B.-2,-3
C.-2,3
D.2,-3
解析:-x2+-y3=1 为直线的截距式,在 x 轴,y 轴
上的截距分别为-2,-3.
答案:B
4.直线 l 过点(-1,2)和点(2,5),则直线 l 的方程 为______________.
解析:由题意直线过两点,由直线的两点式方程可得:
y-2 x-(-1)
[典例 1] 已知 A(-3,2),B(5,-4),C(0,-2), 在△ABC 中,求:
(1)BC 边的方程; (2)BC 边上的中线所在直线的方程.
பைடு நூலகம்
[自主解答] (1)BC 边过两点 B(5,-4),C(0,-2),
y-(-4) x-5
由两点式得,
= ,即 2x+5y+10=0,
-2-(-4) 0-5
2.直线方程的一般式
(1)直线与二元一次方程的关系. ①在平面直角坐标系中,对于任何一条直线,都可 以用一个关于 x、y 的二元一次方程表示. ②每个关于 x、y 的二元一次方程都表示一条直线. (2)直线的一般方程的定义. 我们把关于 x、y 的二元一次方程 Ax+Bx+C=0(其 中 A、B 不同时为 0)叫做直线的一般式方程,简称一般式.
(1)求边 BC 所在直线的方程; (2)求边 BC 上的中线 AM 所在的直线方程. 解:(1)直线 BC 过点 B(3,-3),C(0,2),由两点式, 得2y++33=x0--33,整理得 5x+3y-6=0,所以边 BC 所在 的直线方程为 5x+3y-6=0.
(2)因为 B(3,-3),C(0,2),所以由中点坐标公式 可得边 BC 上的中点 M 的坐标为3+2 0,-32+2,即 32,-12,可得直线 AM 的方程为-y-12-00=x32--((--55)), 整理得直线 AM 的方程为 x+13y+5=0.

人教版高中数学必修2第三章第2节《直线的两点式方程》ppt参考课件2

人教版高中数学必修2第三章第2节《直线的两点式方程》ppt参考课件2
y2 x0 3 2 3 0
整理得:5x+3y-6=0
中点坐标公式:
若P1 ,P2坐标分别为( x1 ,y1 ), (x2 ,y2) 且中点M的坐标为(x,y).
x x1 x2

2
y y1 y2 2
∵B(3,-3),C(0,2)

M

30, 2
3 2
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
y2 y1 x2 x1
不是!当x1 =x2或y1= y2时,直线P1 P2没有两点
式方程.( 因为x1 =x2或y1= y2时,两点式的分母为 零,没有意义)
那么两点式不能用来表示哪些直线的 方程呢?
注意: 两点式不能表示平行于坐标轴
或与坐标轴重合的直线.
若点P1 ( x1 , y1 ),P2( x2 , y2) 中有x1 =x2 ,或y1= y2,此时过这两点 的直线方程是什么?
2
思考题:
已知直线l 2x+y+3=0,求关于点A(1,2)对称的 直线l 1的方程。
解:当x=0时,y=3.
(0,-3)在直线l上,关于(1,2)的对称点为(2,7). 当x=-2时,y=1.
(-2,1)在直线l上,关于(1,2)的对称点为(4,3).

高中数学人教A版必修二第三章3.2.2直线的两点式方程课件(1)

高中数学人教A版必修二第三章3.2.2直线的两点式方程课件(1)
可以!
例1. 已知直线l与x轴的交点为A(a,0),与y轴的 交点为B(0,b)其中a≠0,b≠0,求这条直线l的方程.
解:将A(a,0),B(0,b)代入两点式得:
y0 xa b0 0a
y
l
B(0,b)
即 x y 1. ab
O
A(a,0) x
直线的截距式方程
x y 1 ab
在x轴上 的截距
5 5
kl 2 3 2
将A(3,-5),k=-2代入点斜式,得
y-(-5) =-2(x-3)
【问题2】 设直线l经过两点P1(x1,y1),P2(x2,y2),
(其中x1≠x2,y1≠y2 ),你能写出直线l的方程吗?

x1
x2
时,k
y2 x2
y1 x1பைடு நூலகம்
取 P( x1, y1 ),代入点斜式方程得
x
y
1.
aa
巩固提高
1.求经过点A(-3,4)且在两坐标轴上截距互为 相反数的直线方程.
2.∆ABC的三个顶点为A(-3,0),B(2,1),C(-2,3).求: (1)AC边所在直线的方程; (2)BC边的垂直平分线所在直线方程.
课堂小结
1.直线的两点式方程
y y1 y2 y1
x x1 x2 x1
不是!
与坐标轴平行的直线没有两点式方程!
【问题4】若点P1 (x1 , y1 ),P2( x2 , y2)中有x1 =x2 或y1= y2 ,此时过这两点的直线方程是什么?
当x1 =x2 时方程为: x =x1
当 y1= y2时方程为: y = y1
【问题5】 经过任意两点P1( x1, y1 ),P2 ( x2 , y2 )的直线方程都 可以表示为( y y1 )( x2 x1 ) ( x x1 )( y2 y1 )?

人教版高中数学必修2(A版) 3.2.3 直线的一般式方程 PPT课件

人教版高中数学必修2(A版) 3.2.3 直线的一般式方程  PPT课件
§3.2.3直线的一般式方程
复习引入
1、写出前面学过的直线方程的各种不同形式, 并指出其局限性:
直线方程 点斜式 斜截式 两点式 截距式 形式 限制条件
复习引入
2、 问题一:上述四种直线方程的表示形式都有其 局限性,是否存在一种更为完美的代数形式可 以表示平面中的所有直线? 提 示:上述四种形式的直线方程有何共同特 征?能否整理成统一形式? (这些方程都是关于x、y的二元一次方程)
新课讲授
1、 探究直线和二元一次方程的关系:
问题二①:平面内任意一条直线是否都可以用形如 Ax+By+C=0(A、B不同时为0)的方程来表示?
结论:在平面直角坐标系中,任意一条直线都可以用 二元一次方程Ax+By+C=0(A、B不同时为0)来表示。
新课讲授
问题二②:方程Ax+By+C=0(A、B不同时为0) 是否可以表示平面内任意一条直线?
例题精讲
4 例5、已知直线经过点A(6,- 4),斜率为 , 3
求直线的点斜式和一般式方程。
注意
对于直线方程的一般式,一般作如下约定:x的 系数为正,x,y的系数及常数项一般不出现分数,一般按 含x项,含y项、常数项顺序排列。
例题精讲
例6、把直线l的方程x–2y+6=0化成斜截式,求出 直线l的斜率和它在x轴与y轴上的截距,并画图.
则直线PB的方程是(
A.2y-x-4=0
)
B.2x-y-1=0
C.x+y-5=0Leabharlann D.2x+y-7=0
3、设直线的方程为 (m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列 条件确定m的值: (1)直线在X轴上的截距是-3; (2)斜率是-1。

人教A版高中数学必修二3.2.3 直线的一般式方程 课件

人教A版高中数学必修二3.2.3 直线的一般式方程 课件

∴ m=- 2.
练一练
直线Ax+By+C=0通过第一、二、三象限,则( )
(A) A·B>0,A·C>0
(B) A·B>0,A·C<0
(C) A·B<0,A·C>0
(D) A·B<0,A·C<0
一般式方程
l1 : A1x B1 y C1 0
l2 : A2 x B2 y C2 0
l1 // l2
• 问:所有二元一次方程都表示直线吗?
①当B≠0时
y AxC BB
是以- A 为斜率, C 为截距的直线
B
B
②当B=0时
x C A
y
l
是垂直于x轴的一条直线
O C
x
A
• 所有的直线都可以用二元一次方程表示 • 所有二元一次方程都表示直线
Ax By C 0
(其中A,B不同时为0)
一般式
合作探究
一般式方程 Ax By C 0
• 问:所有的直线都可以用二元一次方程表示? ①倾斜角α≠90°,K存在
y y0 k(x x0 )
kx y ( y0 kx0 ) 0
A=k B=-1Cຫໍສະໝຸດ ②倾斜角α=90°,k不存在
x x0 0 即x 0 y x0 0
A=1 B=0 C
一般式方程 Ax By C 0
m2- 2m- 3≠ 0

解:
(1)由题意可得, 2m-6 m2- 2m-
=- 3
3,

由①可得 m≠-1,m≠3.
由②得 m=3 或 m=-53.∴m=-53.
2m2+ m- 1≠ 0,

(2)由题
意得-m2m2-2+2mm- -

高中数学必修二:3.2.1直线的方程课件

高中数学必修二:3.2.1直线的方程课件

栏 目
为 x=x1 ;当斜率为 k 时,直线方程为 y-y1=k(x-x1) ,
开 关
该方程叫做直线的点斜式方程.
3.方程 y=kx+b 叫做直线的斜截式方程,其中 b 叫做直
线在 y 轴上的截距.
4.对于直线 l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔ k1=k2 且 b1≠b2 ;l1⊥l2⇔ k1k2=-1 .
3.2.1
小结 由点斜式写直线方程时,由于过 P(x0,y0)的直线有无数条,
本 大致可分为两类:(1)斜率存在时方程为 y-y0=k(x-x0);(2)斜率
课 时不存在时,直线方程为 x=0.栏目开

研一研·问题探究、课堂更高效
3.2.1
跟踪训练 1 一条直线经过点 P(-2,3),斜率为 2,求这条直线的
研一研·问题探究、课堂更高效
3.2.1
本 [问题情境]
课 时
给出一定点 P0 和斜率 k,直线就可以唯一确定了.如果设
栏 目
点 P(x,y)是直线上的任意一点,那么,如何建立 P 和 P0
开 关
点的坐标之间的关系呢?本节我们就来研究这个问题.
研一研·问题探究、课堂更高效
3.2.1
探究点一 直线的点斜式方程
P0(x0,y0)且平行于 x 轴的直线方程? 答 由于 x 轴过坐标原点(0,0),且倾斜角为 0°,即 k=tan 0°
=0,将点(0,0)及 k=0 代入直线的点斜式得 y=0;因所求直
本 课
线 l 平行于 x 轴,所以 k=tan 0°=0,将(x0,y0)及 k=0 代入
时 栏 目
直线的点斜式得 y-y0=0,即 y=y0. 问题 6 y 轴所在的直线方程是什么?如何求过点 P0(x0,y0)

(人教A版)必修2课件:第三章 直线与方程

(人教A版)必修2课件:第三章 直线与方程

BC:x-4y-1=0,AC:x-y+2=0.
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
专题三 两条直线的位置关系 (1)已知直线的斜截式方程:l1:y=k1x+b1,l2:y=k2x+ b2,则l1∥l2⇔k1=k2,且b1≠b2; l1⊥l2⇔k1k2=-1; l1与l2相交⇔k1≠k2.
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
有|2x0-y0+3|= 5
52·|x0+y20-1|,
即|2x0-y0+3|=|x0+y0-1|, ∴x0-2y0+4=0或3x0+2=0;
由于P在第一象限,∴3x0+2=0不可能.
联立方程2x0-y0+123=0和x0-2y0+4=0,
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
由题意,得|AB|=5,
∴(
3k-2 k+1

3k-7 k+1
)2+(-
4k-1 k+1

9k-1 k+1
)2=52,解得k=0.
∴所求直线l的方程为y=1.
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
[解析] 设AB、AC边的中线分别为CD、BE,其中D、E 为中点,
∵点B在中线y-1=0上, ∴设点B的坐标为(xB,1). ∵点D为AB的中点,又点A的坐标为(1,3), ∴点D的坐标为(xB+2 1,2). ∵点D在中线CD:x-2y+1=0上, ∴xB+2 1-2×2+1=0,∴xB=5.
[剖析] 直线的点斜式方程是以直线斜率存在为前提的, 当直线斜率不存在时,不能建立和使用直线的点斜式方 程.在错解中,设直线l的方程为y=k(x-3)+1,已经默认了 直线l的斜率存在,从而漏去了直线l斜率不存在的情况,而本 题中过P点且斜率不存在的直线恰好符合题意,所以错解丢掉 了一个解.

高中数学 第三章 直线与方程 3.1.1 倾斜角与斜率课件 新人教A版必修2

高中数学 第三章 直线与方程 3.1.1 倾斜角与斜率课件 新人教A版必修2

K12课件
3
三、核心素养 通过本章学习学生经历如下的过程:首先将几何问题代数化,用代数的语言 描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题; 分析代数结果的几何含义,最终解决几何问题.帮助学生不断地体会“数形 结合”的思想方法.
K12课件
4
3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率
答案:(2) 3 -1 0°<α <90° 90°<α <180°
K12课件
时,α =60°;当 ;当k<0时,α 的范
14
方法技巧 (1)根据定义求直线的倾斜角的关键是根据题意画出草图,则 直线向上的方向与x轴的正方向所成的角,即为直线的倾斜角. (2)直线的斜率k随倾斜角α增大时的变化情况: ①当0°≤α<90°时,随α的增大,k在[0,+∞)范围内增大; ②当90°<α<180°时,随α的增大,k在(-∞,0)范围内增大.
(A)-1
(B) 1 2
(C)1
(D) 3 2
K12课件
11
3.(由两点计算斜率)过两点A(1, 3 ),B(4,2 3 )的直线的倾斜角为( A ) (A)30° (B)60° (C)120° (D)150°
4.(倾斜角与斜率)已知M(a,b),N(a,c)(b≠c),则直线MN的倾斜角
.
答案:90°
K12课件
15
即时训练1-1:(1)已知一条直线过点(4,-2)与点(1,-2),则这条直线的倾斜 角为( ) (A)0° (B)45° (C)60° (D)90°
(2)已知直线l过点O(0,0),A(1,1),将l绕点O逆时针方向旋转75°,得到直线
l′,则直线l′的倾斜角为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点的坐标来表示,而不需要求出直线的倾斜角 (3) 当x1=x2时,公式不适用,此时α=90o
1.当直线P1P2平行于x轴或与x轴重合时,用上述公 式求斜率. 由y1=y2,得 k=0
2.当直线P1P2平行于y轴或与y轴重合时,上述公式 还适用吗?为什么?由x1=x2,分母为零,斜率k不存在
例1 、如图,已知A(4,2)、B(-8,2)、C(0,-2),
x
l2 o
l1
x
y
ol y
x
o ox
o
x
x
l
规定:当直线与x轴平行或重合时,它的倾斜角为0o
平面直角坐标系内,任何一条直线都有倾斜角, 倾斜角表示平面坐标系内一条直线的倾斜程度.
在平面直角坐标系中,已知直线上一点不能
确定一一次条函直数线y的位x,置y 900 )时,k随 增大而增大,且k 0 (2)当 (900 ,1800 )时,k随 增大而增大,且k<0
注意: 900时,k不存在
y
o
x
关于直线的倾斜角和斜率,其中D_E_F说法是正确的.
A.任一条直线都有倾斜角,也都有斜率; B.直线的倾斜角越大,它的斜率就越大;
求直线AB、BC、CA的斜率,并判断这 些直线的
倾斜角是什么角?
y.
解:
直线AB的斜率
k AB
22 84
0
B
.A
.
.
. . o.
.
.
.
x
C
直线BC的斜率
kBC
22 0 (8)
4 8
1 2
直线CA的斜率
kCA
2 (2) 40
4 4
1
∵ kAB 0 ∴直线AB的倾斜角为零度角。
∵ kBC 0 ∴直线BC的倾斜角为钝角。
系也中不画能出确这定两一条条直直线线,的并位求置这.两条直线的倾斜角分
别是多少?
已知y直线上y=一x 点和其倾斜角y 可y 以惟一确定一
条直线.
A y 3x
问:不同A 的直线其倾斜角y=一x+1定不C相同吗?
oB x
C oo D B x x
取点A(1,1) B(1,0) 取取点点A(C1(,12,) B(31),0D)(C1(,-10,)0)
| QP2 | | QP1 |
y2 y1 x2 x1
图(2)在 RtP1P2Q 中,k tan tan(1800 ) tan
tan | QP2 | y2 y1 y2 y1
| QP1 | x1 x2
x2 x1
k tan y2 y1 y1 y2
x2 x1 x1 x2
y
y
P2 (x2, y2 )
P1(x1, y1)
Q(x2, y1) Q(x2, y1)
o
x
o
P2 (x2 , y2 )
P1(x1, y1)
x
y
P2
o
P1 Q
x
y
P1
Q P2
o
x
(1)
(2)
(3)
(4)
1.当直线 P1 P2的方向向上时:
图(1)在RtP1P2Q 中,k tan
tan QP1P2
3.当直线的倾斜角在什么范围时,其斜率k>0? 当直线的倾斜角在什么范围时,其斜率k<0?
倾斜角为锐角时,k>0; 倾斜角为钝角时,k<0; 倾斜角为0o时,k=0.
4.指出下列直线的倾斜角和斜率:
(1)y 3x; (2)y x tan 60; (3)y x tan(30).
5.结合图形,观察倾斜角变化时,斜率的变化情况.
o
x
y
o
x
例4、(1)直线的倾斜角为 ,4且50 600
则直线的斜率k的取值范围是__[1,_3_] __ 。
(2)直线的倾斜角为 ,且 450 1350
则直线的斜率k的取值范围是_[1_, _)_U_(_, _1] 。
∵ kCA 0 ∴直线CA的倾斜角为锐角
例2 . 已知点A(3,2),B(-4,1),C(0,-l),求 直线AB,BC,CA的斜率,并判断这些直线的倾斜角是 锐角还是钝角.
例3 在平面直角坐标系中,画出经过原点且 斜率分别为1,-1,2及-3的直线l1,l2,l3及l4.
l4
y l3
l2
l1 思考:斜率随倾斜角 逐渐变大是怎样的变 化?
y
y
y
y
o
x
o
x
o
x
o
x
如果给定直线的倾斜角,我们当然可以根据斜率
的定义 k =tanα求出直线的斜率;
如果给定直线上两点坐标,直线是确定的,倾斜 角也是确定的,斜率就是确定的,那么又怎么求出直 线的斜率呢?
探究: 经过两p1点(x1, y1), p2 (x2, y2,)且 x1 的x直2 线的斜率k
C.平行于x轴的直线的倾斜角是0或π;
D.两直线的斜率相等,它们的倾斜角相等 E.直线斜率的范围是(-∞,+∞).. F. 一定点和一倾斜角可以唯一确定一条直线
1.当倾斜角α=0o,30o,45o,60o时,这条直线 的斜率分别等于多少?
2.当倾斜角α=120o,135o,150o时,这条直线的 斜率分别等于多少?
第三章
3.1 3.2 3.3
3.1
直线的 倾斜角和斜率
主要内容
3.1.1 倾斜角与斜率 3.1.2 两条直线平行与垂直的判定
3.1.1 倾斜角与斜率
倾斜角与斜率
y
对于平面直角坐标系 内的一条直线l,它的位 置由哪些条件确定呢?
两点确定一条直线.
o
x
还有其他方法吗?或 者说如果只给出一点,要 确定这条直线还应增加什 么条件?
2.当直线 P1 P2的方向向下时,同理也有k
tan
y2 x2
y1 x1
y1 y2 x1 x2
斜率公式
经过两点 P1(x1, y1), P2 (x2 , y2 )的直线的斜率公式
公式的特点:
k
y2 x2
y1 x1
( x1
x2 )
(1) 与两点的顺序无关;
(2) 公式表明,直线的斜率可以通过直线上任意两
AOB=450
ACCOBD==465000
下思考列:各日图常中生标活出中,的还角有α没是有y直表线示倾的斜倾程斜度角的吗量?呢?
y
y
y
y
o
α
坡度x (比)o
升高量 前α 进x量
o

x
o升高α
x
x
前进
直线的斜率
一条直线倾斜角的正切值叫做这条直线的斜率。
斜率通常用k 表示,即:
k tan ( 90o )
在直角坐标系中,图中的四条红色直线在位置上有 什么联系和区别?
经过同一点
倾斜程度不同
倾斜角与斜率
直线的倾斜角 当直线l与x轴相交时,
我们取x轴作为基准,x轴 正向与直线l向上方向所成 的角叫做直线l 的倾斜角.
0o<180o
l1的倾斜角为锐角
l2的倾斜角为直角
l3的倾斜角为钝角
y
y
l4 o
y
yl
P l3 l
相关文档
最新文档