[最新]钢筋混凝土梁的正截面承载力计算_图文
正截面承载力计算
最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。
对于受弯构件, 按下式计算:(2)基本公式及其适用条件 1)基本公式式中:M —弯矩设计值;f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。
2)适用条件l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。
在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能min t y max(0.45f /f ,0.2% )ρ= (3.2.1) sy c 1A f bx f =α(3.2.2)()20c 1x h bx f M -≤α(3.2.3) ()20y s x h f A M -≤(3.2.4)或承受的最大弯矩的表达式: (3)计算方法 1)截面设计己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h求:所需受拉钢筋截面面积A s 计算步骤:①确定截面有效高度h 0h 0=h -a s式中h —梁的截面高度;a s —受拉钢筋合力点到截面受拉边缘的距离。
承载力计算时,室内正常环境下的梁、板,a s 可近似按表3.2.4取用。
表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜)②计算混凝土受压区高度x ,并判断是否属超筋梁若x ≤ξb h 0,则不属超筋梁。
否则为超筋梁,应加大截面尺寸,或构件种类纵向受力 钢筋层数混凝土强度等级 ≤C20 ≥C25 梁一层 40 35 二层65 60 板一层2520提高混凝土强度等级,或改用双筋截面。
③计算钢筋截面面积A s ,并判断是否属少筋梁若A s ≥ρmin bh ,则不属少筋梁。
否则为少筋梁,应A s=ρmin bh 。
钢筋混凝土受弯构件正截面承载力计算
结性能,钢筋的混凝土保护层厚度c一般不小于 25mm;
并符合附录四附表4—1的规定。 截面有效高度 h0 h as
Ý¡ 30mm
1.5d cݡ cmin
d
混凝土保护层计算厚度as:
h0
钢筋一层布置时 as=c+d/2 ,
钢筋二层布置时 as=c+d+e/2, a
其中e为钢筋之间净距。
Ý¡ cmin 1.5d
4.1 概述
第三章 钢筋混凝土受弯构件正截面承载力计算
3.2 受弯构件正载面的试验研究
b
一、适筋梁正截面受力过程
As
ec f
xn
h h0
a
h0:有效截面高度 es 平截面假定
应变片
第三章 钢筋混凝土受弯构件正截面承载力计算
应变图
ec max
应力图 M
et max
Mcr
M
ey
My
M
xf D
Mu Z
现浇梁板:常用C15~C25级混凝土 预制梁板:常用C20~C30级混凝土
● 另一方面,RC受弯构件是带裂缝工作的,由于裂缝宽度 和挠度变形的限制,高强钢筋的强度也不能得到充分利用。
梁常用Ⅱ~Ⅲ级钢筋,板常用Ⅰ~Ⅱ级钢筋。
第三章 钢筋混凝土受弯构件正截面承载力计算
◆截面尺寸确定 ● 截面应具有一定刚度,满足正常使用阶段的验算能
基本公式: fcbx f y As
KM
fcbx(h0
x) 2
f y As (h0
x) 2
x≥bh0时, 会产生超筋破坏。此时截面承载力用
bh0 代入计算 KM
第三章 钢筋混凝土受弯构件正截面承载力计算
钢筋混凝土受弯构件正截面承载力计算
由相对界限受压区高度b可推出最大配筋率 b及单筋矩形截面的最大受弯承载力Mumax。
As bh0
b
1
f
fc
y
4.3.5 适筋和少筋破坏的界限条件
min.h/h0 b min —— 最小配筋率, 根据钢筋混凝土梁的破坏弯
矩等于同样截面尺寸素砼梁的开裂弯矩 确定的。
确定的理论依据为:
Mu = Mcr
《规范》对min作出如下规定:
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
梁的宽度和高度
宽度 :b = 120、150、(180)、200、(220)、 250、300、350、…(mm)
高度:h=250、300、350、400、……、750、800、 900、…(mm)。
二、 截面尺寸和配筋构造
2. 板
c15mm d
分布钢筋
h0
h
d 6 ~ 12mm
h0 h 20
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
Ts = fyAs
1. 基本计算公式
N 0
M 0
1 fcbx fyAs (3 - 20)
架立
箍筋
弯矩引起的 垂直裂缝
钢筋混凝土受弯构件正截面承载力计算
为保证钢筋混凝土结构的耐久性、防火性以及钢
筋与混凝土的粘结性能,钢筋的混凝土保护层厚
5度、一配般筋不率小于2A 5msm% ; ....4...2()
bh0
用下述公式表示
As bh0
%
公式中各符号含义:
As为受拉钢筋截面面积; b为梁宽;h0为梁的有效 高度,h0=h-as;as为所有受拉钢筋重心到梁底面 的距离,单排钢筋as= 35mm ,双排钢筋as= 55~60mm 。
M/ M u
Mu
1.0
0.8 My
0.6
II
0.4
III III a II a
M cr I a
I
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
说明:
对于配筋合适的梁,在III
阶段,其承载力基本保持不 变而变形可以很大,在完全
M/ M u
Mu
1.0
破坏以前具有很好的变形能 力,破坏预兆明显,我们把
0.8 My
通常采用两点对称集中加荷,加载点位于梁跨度 的1/3处,如下图所示。这样,在两个对称集中荷载间 的区段(称“纯弯段”)上,不仅可以基本上排除剪力的 影响(忽略自重),同时也有利于在这一较长的区段上(L /3)布置仪表,以观察粱受荷后变形和裂缝出现与开 展的情况。在“纯弯段”内,沿梁高两侧布置多排测 点,用仪表量测梁的纵向变形。
梁破坏时的极限弯矩Mu小于在正常情况下的开
裂弯矩Mcr。梁配筋率越小, Mcr -Mu的差值越大; 越大(但仍在少筋梁范围内), Mcr -Mu的差值越小。
当Mcr -Mu =0时,它就是少筋梁与适筋梁的界限。这
时的配筋率就是适筋梁最小配筋率的理论值min。
钢筋混凝土受弯构件—T形截面梁正承载力计算
现浇肋梁楼盖(梁跨中截面) (a)
槽型板 (b)
(a)
(b)
空(c心) 板
(c)
单元4 T形截面梁正截面承载力计算
T形梁有效(计算)翼缘宽度:
离梁肋越远,T形梁翼缘受压的 压应力越小,因此对受压翼缘的宽 度有一定限制,在这个限制的宽度 范围内,认为翼缘的压应力均匀分 布。
单元4 T形截面梁正截面承载力计算
2.T形梁截面复核例题
上一例题中,若已配置受拉钢筋为8Φ25,即As=4418mm2,弯矩设计值 M=650KN.m,其余已知条件不变,试验算截面是否安全。
解题分析:T形梁首先需要确定计算翼缘宽度,之后判定T形截面类别,再进 行相应计算。 [解] (1)确定翼缘计算宽度
as
同上一题,取bf'=600mm
(2)判别T形截面类别
fc=9.6N/mm2,ft=1.1N/mm2; fy=300N/mm2, ξb=0.55
1
fcbf
hf
h0
hf 2
1.0 9.6
600
100
730
100 2
391 .7 10 6
N .mm
391 .7KN.m 450 KN.mm 第二类T形截面
(3)求M1
139.8mm b h0
0.55 740mm
(5)求As As
1 fcbx 1 fc b f
fy
bh f
1.0 9.6 250139.8 1.0 9.6 600 250100 2238mm2
300
(6)选钢筋 选用6Φ22,As=2281mm2
6Φ22
250
单元4 T形截面梁正截面承载力计算
求:验算截面是否安全
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算
◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
第三章 钢筋混凝土受弯构件正截面承载力计算
第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第一节钢筋砼受弯构件的构造一、钢筋砼板的构造二、钢筋砼梁的构造一、钢筋砼板(reinforced concreteslabs)的构造1、钢筋砼板的分类:整体现浇板、预制装配式板。
2、截面形式小跨径一般为实心矩形截面。
跨径较大时常做成空心板。
如图所示。
3、板的厚度:根据跨径(span)内最大弯矩和构造要求确定,其最小厚度应有所限制:行车道板一般不小于100mm;人行道板不宜小于60mm(预制板)和80mm(现浇筑整体板)。
4、板的钢筋由主钢筋(即受力钢筋)和分布钢筋组成如图。
钢筋混凝土板桥构造图(1)主筋布置:布置在板的受拉区。
直径:行车道板:不小于10mm;人行道板:不小于8mm。
间距:间距不应大于200mm。
主钢筋间横向净距和层与层之间的竖向净距,当钢筋为三层及以下时,不应小于30mm,并不小于钢筋直径;当钢筋为三层以上时,不应小于40mm,并不小于钢筋直径的1.25倍。
净保护层:保护层厚度应符合下表规定。
序号构件类别环境条件ⅠⅡⅢ、Ⅳ1 基础、桩基承台⑴基坑底面有垫层或侧面有模板(受力钢筋)⑵基坑底面无垫层或侧面无模板465756852 墩台身、挡土结构、涵洞、梁、板、拱圈、拱上建筑(受力主筋)34453 人行道构件、栏杆(受力主筋)22534 箍筋22535 缘石、中央分隔带、护栏等行车道构件34456 收缩、温度、分布、防裂等表层钢筋15225梁构件,在不同环境条件下,保护层厚度值注:请点击<按扭Ⅰ,Ⅱ,Ⅲ&Ⅳ>,以查看不同保护层厚度值(2)分布钢筋(distribution steel bars):垂直于板内主钢筋方向上布置的构造钢筋称为分布钢筋作用:A、将板面上荷载更均匀地传递给主钢筋B、固定主钢筋的位置C、抵抗温度应力和混凝土收缩应力(shrinkage stress)布置:A、在所有主钢筋的弯折处,均应设置分布钢筋B、与主筋垂直C、设在主筋的内侧数量:截面面积不小于板截面面积的0.1%。
钢筋混凝土受弯构件正截面承载力计算—单筋矩形截面梁计算
受压混凝土的应力-应变关系
计算原则
2)等效矩形应力图
简化原则:受压区混凝土的合力大小不变;受压区混凝土的合力作用点不变。
等效矩形应力图形的混凝土受压区高度 x 1xn ,等效矩形应力图形的应力值 为 1 fc, 1、1 的值见下表。
表 1、1 值
混凝土强 度等级
≤C50
C55
C60
C65
C70
C75
(2)求跨中截面的最大弯矩设计值。
因仅有一个可变荷载,故弯矩设计值应有取下列两者中的较大值:
M 1 1.2g 1.4q l 2
8
1 1.2 5 1.4 10 5.02 62.5
8
M 1 1.35g 1.4 0.7q l 2
8
1 1.35 5 1.4 0.7 10 5.02 51.7
需要加固、补强
计算原则
1)基本假定
01 平截面假定。
02
钢筋的应力 s 等于钢筋应变 s 与其弹性模量 Es 的乘积,但不得大
于其强度设计值 fy,即
s sEs fv
03 不考虑截面受拉区混凝土的抗拉强度。
计算原则
04
受压混凝土采用理想化的应力-应变关系,当混凝土强度等级为
C50及以下时,混凝土极限压应变 cu=0.0033。
(1)受拉钢筋为4 25,As=1964 mm2; (2)受拉钢筋为3 18,As=763 mm²。
单筋矩形截面梁计算
解 查表得:
fc 9.6N/mm2
ft 1.10N/mm2
f y 300N/mm2 c 1.0
b 0.550
c 30mm
单筋矩形截面梁计算
(1)
d
25
h0 h c 2 450 30 2 408
第三章-钢筋混凝土受弯构件正截面承载力计算
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;
第4章-钢筋混凝土受弯构件正截面承载力计算
第4章钢筋混凝土受弯构件正截面承载力计算本章学习要点:⏹了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;⏹掌握建筑工程中单筋矩形截面、双筋矩形截面和T形截面承载力的计算方法;⏹熟悉受弯构件正截面的构造要求。
受弯构件:同时受到弯矩M 和剪力V共同作用, 而轴力N可以忽略的构件。
p pl l lM plVp§4.1 概述•受弯构件截面类型:梁、板( a )( b )( c )( d )( e )( f )( g )现浇梁板形成T形截面和倒L形截面在弯矩作用下发生正截面受弯破坏;在弯矩和剪力共同作用下发生斜截面受剪或受弯破坏。
•本章要求掌握:单筋矩形截面、双筋矩形截面、单筋T形截面正截面承载力计算。
§4.2受弯构件正截面的受力特征4.2.1 配筋率对构件破坏特征的影响•截面配筋率纵向受力钢筋截面面积A s 与截面有效面积的百分比•构件的破坏特征取决于配筋率、混凝土强度等级、截面形式等因素,但以配筋率对构件破坏特征的影响最为明0s bh A =ρ(4-1)1. 少筋梁(脆性破坏):•一裂即断, 由砼的抗拉强度控制, 承载力很低。
•破坏很突然, 属脆性破坏。
•砼的抗压承载力未充分利用。
•设计不允许。
ρ< ρmin2. 适筋梁(塑性破坏):•破坏开始于受拉区钢筋屈服,屈服时,弯矩为My ,随后受压区混凝土压碎;•钢材、混凝土的强度都得到充分利用。
•ρmin ≤ρ≤ρmax •构件破坏前有明显预兆。
3. 超筋梁(脆性破坏):•开裂,裂缝多而细,钢筋应力不高,最终由于压区砼压碎而崩溃。
•裂缝、变形均不太明显,破坏具有脆性性质。
•钢材未充分发挥作用。
•设计不允许。
ρ>ρmax不同配筋率构件的破坏特征:⏹适筋破坏:⏹超筋破坏:⏹少筋破坏:⏹受弯构件的破坏形式取决于受拉钢筋与受压区混凝土相互抗衡的结果;⏹应避免将受弯构件设计成少筋构件和超筋构件,只允许设计成适筋构件;⏹通过控制配筋率或控制相对受压区高度等措施来设计适筋构件。
3第三章(14):钢筋混凝土受弯构件正截面承载力计算3.6
混凝土结构设计原理
第 3章
板的截面尺寸确定
板的宽度一般较大,计算时取单位宽度(b=1000mm)进行计算;
厚度应满足①单跨简支板的最小厚度不小于l0/35; ②多跨连续板的最小厚度不小于l0 /40 ; ③悬臂板的最小厚度(指的是悬臂板的根部 厚度)不小于l0 /12。同时 ,应满足表3-3的规定,并以10mm为模数。
混凝土结构设计原理
第4章
c
d 8 ~ 12mm
板: ≤ C20时,c=20mm ≥ C25时,c=15mm
as =c+d/2 as=20mm。 h0=h-20
h0 h
梁正截面的三种破坏形态
(a)少筋梁;(ρ<ρmin)
承载力很小,一裂即断,没 有预兆,脆性,应避免。
(b)适筋梁;(ρmin≤ρ≤ρb )
混凝土结构设计原理
3.3.2计算简图
第3章
x=β1x0
C ——受压区合力;T ——受拉区合力
等效:指两个图形不但压应力合力的大小相等,而且 合力的作用位置完全相同。
混凝土结构设计原理
第 3章
X 0 α1ƒcbx=ƒyAs
(3-2)
Ms 0 M≤Mu=α1ƒcbx(h0-x/2) (3-3a)
但混凝土用量和模板费用增加,并影响使用净空高度;
● 反之,b、h(h0)越小,所需的As就越大,r 增大。
衡量截面尺寸是否合理的标准是:实际配筋率是否处 于常用配筋率范围内。
经济配筋率 梁:(0.6~1.5)% 板:(0.4~0.8)%
钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算
这时本题转化为已知As´求As的问题。
(3)求As
= −
+ ′ ′ ( − ′ )
得
× × = . × . × − .
+ × × ( − )
偏心受拉构件正截面受拉承载力计算
− =
×
属于大偏心受拉构件。
(2) 计算As´
= − + = −
+ =
由式(5-6)可得
′
− ² ( − . )
=
′ ( − ′ )
As=1963mm2
,
(1-1)、(1-2)式可得
′
=
=
− ( −. ) ²
′ ( −′ )
+′ ′ +
(5-6)
(5-7)
当采用对称配筋时,求得x为负值,取 = 2′ ,并对As´合力点取矩,计算As 。
偏心受拉构件正截面受拉承载力计算
315×103 ×125−1.0×14.3×1000×1752 ×0.55×(1−0.5×0.55)
=
<0
300×(175−25)
偏心受拉构件正截面受拉承载力计算
取
′ = ′ = . × × = ²
取2
16,
选2
16,A's=402mm2
偏心受拉构件的正截面受力原理及承载能力计算
判别条件:
M h
e
as
N 2
M h
e
as
N 2
混凝土受弯构件正截面承载力计算_图文
2.板的宽度:由实际情况决定。 3.钢筋配置:
板内钢筋有两种:受力钢筋和分布钢筋。
受力钢筋:承担弯矩,通过强度计算确定。
直径:一般6~12。 间距:当板厚h150mm时,间距S 200mm
当板厚h150mm时,间距S 1.5h 在板的煤m宽度内不少于三根。
荷载增加,钢筋应变增 加,应力不变,裂缝向上 发展,压区高度减小,中 和轴上移,压区混凝土应 力图形不断丰满,最终受 压边缘混凝土达到极限压
应变ecu ,构件达到极限
承载力,此时截面上的弯 矩即为抗弯承载力Mu, 也称为第三阶段末“Ⅲa” 。第三阶段末为抗弯承载 力计算的依据。
裂缝开裂前--第一阶段, 界限Ia
工截面尺寸应统一规格。 2.梁内配筋:
(1)纵向受力筋:承受弯矩
(2)弯起钢筋:承受弯矩和剪力
h
(3)架立筋:形成钢筋骨架,固定箍筋
,承担次弯矩。
(4)箍筋:承担剪力,固定纵筋。
(5)侧向构造钢筋:承担混凝土收缩、
b
温度变化产生的内力。
3.梁内受力钢筋的保护层厚度及净距
≥30mm 1.5d c≥cmin d
C=a1fc bx
近似取1-0.5x =0.98 ,h=1.1h0
Ts =ss As
ftk /fyk=1.4ft/1.1fy=1.273ft/fy
◆ 同时不应小于0.2% ◆ 对于现浇板和基础底板沿每个方向受拉钢筋的最小配筋
率不应小于0.15%。
4.5单筋矩形截面受弯构件抗弯强度计算
三、基本公式应用 1.截面设计
已知:弯矩设计值M (M≤ Mu)
求:截面尺寸b,h(h0)、截面配筋As,以及材料强度fy、fc
3.2 正截面承载力计算
3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。
所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。
一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。
ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。
根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。
①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。
适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。
第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。
当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。
当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。
Ⅰa阶段的应力状态是抗裂验算的依据。
第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。
裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。
随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。
第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。
当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。