人工智能考试复习资料解读
人工智能复习资料整理(修正版-如发现计算错误请指出)
一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
【2024版】人工智能导论复习
可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
人工智能导论复习资料
人工智能导论复习资料一、什么是人工智能人工智能,简单来说,就是让机器像人一样思考和行动。
它不是一种单一的技术,而是一个涵盖了多种学科和技术的领域,包括计算机科学、数学、统计学、心理学、语言学等等。
想象一下,你有一个智能助手,它能理解你的需求,回答你的问题,甚至帮你完成一些复杂的任务,比如规划旅行、管理财务。
这就是人工智能在日常生活中的一种应用。
人工智能的目标是创建能够执行需要人类智能才能完成的任务的计算机系统。
这些任务包括学习、推理、解决问题、理解语言、识别图像和声音等等。
二、人工智能的发展历程人工智能的发展并非一蹴而就,它经历了几个重要的阶段。
在早期,科学家们就开始思考机器能否像人类一样思考。
20 世纪50 年代,人工智能的概念被正式提出,当时的研究主要集中在基于规则的系统和符号推理上。
然而,由于计算能力的限制和对智能本质理解的不足,人工智能在20 世纪 70 年代遭遇了第一次寒冬。
到了 20 世纪 80 年代,随着专家系统的出现,人工智能迎来了一次小的复兴。
专家系统是一种基于知识库和推理规则的系统,可以解决特定领域的问题。
但随着问题的复杂度增加,专家系统的局限性也逐渐显现。
近年来,由于大数据的出现、计算能力的大幅提升以及深度学习算法的突破,人工智能再次取得了巨大的进展。
图像识别、语音识别、自然语言处理等领域都取得了令人瞩目的成果。
三、人工智能的核心技术(一)机器学习机器学习是人工智能的核心领域之一。
它让计算机通过数据自动学习模式和规律。
机器学习有监督学习、无监督学习和强化学习等多种方法。
监督学习是最常见的一种,比如通过大量已标记的图片(比如猫和狗的图片)来训练计算机识别新的猫和狗的图片。
无监督学习则是让计算机在没有标记的数据中自己发现模式,例如将相似的客户分组。
强化学习是通过奖励和惩罚机制来训练智能体做出最优决策,比如让机器人学会走路。
(二)深度学习深度学习是机器学习的一个分支,它使用多层神经网络来学习数据的表示。
ai总结试卷知识点
ai总结试卷知识点一、人工智能的基本概念1. 人工智能的定义和特点人工智能是指利用计算机技术模拟人类智能的能力,包括感知、认知、学习、推理、规划和行动等方面。
具有智能的特点,如自主性、学习能力、推理能力、语言能力等。
2. 人工智能的分类根据不同的方法和技术,人工智能可以分为强人工智能和弱人工智能。
强人工智能是指具有人类智能水平的人工智能系统,能够思考、学习和创造;弱人工智能则是指专门针对某一领域或任务的人工智能系统,无法与人类智能相提并论。
二、人工智能的技术原理1. 机器学习机器学习是一种基于数据的自动化学习方法,通过训练数据和算法的迭代优化,使计算机系统能够从中提取知识、模式和规律。
常见的机器学习方法包括监督学习、无监督学习和强化学习。
2. 深度学习深度学习是一种基于人工神经网络的学习方法,具有多层次的表示和抽象特征提取能力。
它能够处理大规模的数据,并在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
3. 自然语言处理自然语言处理是指通过计算机技术处理和理解自然语言的能力,包括文本分析、语义理解、机器翻译等。
它是人工智能技术的重要应用领域之一,已经在搜索引擎、智能对话系统等方面得到了广泛应用。
4. 强化学习强化学习是一种基于奖励信号进行学习的方法,通过试错和反馈机制,使智能体在与环境的交互中学习并优化策略。
它在游戏、机器人控制、自动驾驶等领域具有重要应用价值。
5. 人工智能的伦理和安全问题随着人工智能技术的发展,一些伦理和安全问题也愈发突出。
包括数据隐私保护、算法歧视、自动化生产带来的社会影响等。
需要制定相关政策和法规来保障个人权益和社会稳定。
三、人工智能的应用领域1. 医疗健康领域人工智能技术在医疗影像诊断、药物研发、健康管理等方面得到了广泛应用,能够提高诊断精度和治疗效果,促进健康产业的发展。
2. 金融领域人工智能技术在风险管理、信用评估、市场预测等方面具有重要作用,能够提高金融机构的运营效率和风险控制能力。
人工智能应用开发复习资料
人工智能应用开发复习资料一、人工智能的基本概念在探讨人工智能应用开发之前,我们首先需要明确什么是人工智能。
简单来说,人工智能就是让计算机能够像人类一样思考和学习,具备智能行为的能力。
它涉及到多个学科领域,如计算机科学、数学、统计学、神经科学等。
人工智能的目标是创建能够执行各种任务的智能系统,这些任务包括但不限于图像识别、语音识别、自然语言处理、决策制定等。
通过使用大量的数据进行训练,计算机模型可以学习到模式和规律,从而能够对新的输入做出准确的预测和决策。
二、人工智能应用开发的流程1、数据收集与预处理数据是人工智能应用的基础。
首先需要收集大量相关的数据,这些数据的质量和数量对模型的性能有着至关重要的影响。
收集到的数据往往存在噪声、缺失值等问题,需要进行清洗、预处理和标注,以便模型能够有效地学习。
2、选择合适的模型架构根据具体的应用场景和问题,选择合适的人工智能模型架构,如神经网络、决策树、支持向量机等。
不同的模型在处理不同类型的数据和任务时具有不同的优势和局限性。
3、训练模型使用预处理后的数据对模型进行训练。
训练过程中,模型会不断调整参数,以最小化损失函数,提高预测的准确性。
训练的时间和计算资源取决于数据量和模型的复杂度。
4、模型评估与优化使用测试集对训练好的模型进行评估,常用的评估指标包括准确率、召回率、F1 值等。
根据评估结果,对模型进行优化,如调整超参数、增加数据量、使用更复杂的模型等。
5、部署与应用将优化后的模型部署到实际的应用环境中,如网站、移动应用、服务器等。
在应用过程中,不断监测模型的性能,根据实际情况进行调整和更新。
三、常见的人工智能应用领域1、图像识别图像识别是指计算机能够识别和理解图像中的内容。
例如,人脸识别、物体识别、场景识别等。
在安防监控、自动驾驶、医疗诊断等领域有着广泛的应用。
2、语音识别语音识别技术能够将人类的语音转换为文字。
常见的应用包括语音助手、语音输入法、智能客服等。
人工智能试题答案及解析
人工智能试题答案及解析一、单项选择题(每题2分,共20分)1. 人工智能的英文缩写是()。
A. AIB. MLC. DLD. RL答案:A解析:人工智能的英文缩写是AI,即Artificial Intelligence。
2. 下列哪个选项是人工智能的典型应用之一?()A. 语音识别B. 量子计算C. 云计算D. 区块链答案:A解析:语音识别是人工智能的典型应用之一,它涉及到将语音信号转换为文本信息的技术。
3. 机器学习的主要目标是()。
A. 预测未来B. 自动驾驶C. 数据分析D. 使计算机能够利用数据进行学习答案:D解析:机器学习的主要目标是使计算机能够利用数据进行学习,从而提高其性能和智能。
4. 深度学习是机器学习的一个子集,它主要依赖于()。
A. 决策树B. 支持向量机C. 神经网络D. 随机森林答案:C解析:深度学习是机器学习的一个子集,它主要依赖于神经网络,尤其是深度神经网络。
5. 下列哪个算法不是监督学习算法?()A. 线性回归B. 逻辑回归C. 聚类D. 支持向量机答案:C解析:聚类是一种无监督学习算法,它不依赖于标签数据,而是将数据点分组到多个簇中。
6. 在人工智能中,过拟合是指()。
A. 模型在训练数据上表现太好B. 模型在训练数据上表现太差C. 模型在新数据上表现太好D. 模型在新数据上表现太差答案:A解析:过拟合是指模型在训练数据上表现太好,但在新数据上表现差,即模型对训练数据过度敏感。
7. 下列哪个选项是强化学习的特点?()A. 需要大量标记数据B. 通过与环境的交互进行学习C. 通过反向传播算法进行学习D. 通过梯度下降算法进行学习答案:B解析:强化学习的特点是通过与环境的交互进行学习,以获得最大的累积奖励。
8. 在自然语言处理中,词嵌入的目的是()。
A. 将文本转换为数值表示B. 将图像转换为数值表示C. 将音频转换为数值表示D. 将视频转换为数值表示答案:A解析:词嵌入的目的是将文本转换为数值表示,以便机器学习模型可以处理。
《人工智能》考试复习资料
中南大学人工智能习题:1-1、什么是人工智能?试从学科和能力两方面加以说明。
从学科方面定义:人工智能是计算机科学中涉及研究、涉及应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模范和执行人脑的某些智力功能,并开发相关理论和技术。
从能力方面定义:人工智能是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。
1-2、在人工智能的发展过程中,有哪些思想和思潮起了重要作用?1、数理逻辑和关于计算本质的新思想2、1956年第一次人工智能研讨会召开3、控制论思想的影响4、计算机的发明发展5、专家系统和知识工程6、机器学习、计算智能、人工神经网络和行为主义研究1-3、为什么能够用机器(计算机)模仿人的智能?物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件性迁移6种功能。
反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。
物理符号系统的假设伴随有3个推论:推论一:既然人具有智能,那么他(她)就一定是个物理符号系统。
推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能。
推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。
1-4、人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?研究和应用领域:问题求解(下棋程序),逻辑推理与定理证明(四色定理证明),自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学(星际探索机器人),模式识别(手写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输高度,列车编组指挥),系统与语言工具。
新的研究热点:概率图模型(隐马尔可夫模型、贝叶斯网络)、统计学习理论(SLT)& 支持向量机(SVM)、数据挖掘与知识发现(超市市场商品数据分析),人工生命1-5、人工智能有哪几种学派?1)符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
人工智能期末复习
人工智能原理期末考试复习1. 什么是人工智能?发展经历了几个阶段?人工智能指的是能够感知或推断信息,并将其作为知识而拥有,以应用于环境或语境中适合的行为;机器的智能称为人工智能,通常在运用程序、间或适当硬件的计算机系统中得以实现.2. 人工智能研究的内容有哪些?机器学习、知识表示方法、搜索求解策略、进化算法及其应用、确定性及不确定性推理方法、群体智能算法及其应用。
3. 人工智能有哪些研究领域?安全防范、医疗诊断、语音识别、工业制造、计算机游戏、机器翻译。
4. 什么是知识?有哪些特性?有几种分类方法?知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。
相对正确性、不确定性、可表示性与可利用性。
分类方法:(1)按知识的作用范围分为∶常识性知识和领域性知识﹔(2)按知识的作用及表示分为∶事实性知识、规则性知识、控制性知识和元知识;(3 )按知识的确定性分为:确定知识和不确定知识;(4) 按人类思维及认识方法分为:逻辑性知识和形象性知识。
5. 什么是知识表示、命题、谓词,一阶谓词逻辑、产生式、框架、语义网络?知识表示就是将人类知识形式化或者模型化;命题是一个非真即假的陈述句;谓词的一般形式: ),...,,(21n x x x P );n x x x ,...,,21是个体,某个独立存在的事物或者某个抽象的概念, P 是谓词名,用来刻画个体的性质、状态或个体间的关系。
一阶谓词逻辑表示:谓词不但可表示一些简单的事实,而且可以表示带有变量的“知识”,有时称为“事实的函数”。
进而可用谓词演算中的逻辑联接词“与()”、“或(v)"、“非(┐)”和“蕴含(→)”等来组合已有知识,从而表示出更复杂的知识。
产生式通常用于表示事实、规则以及它们的不确定性度量,适合于表示事实性知识和规则性知识。
框架是一种描述所论对象(一个事物、事件或概念)属性的数据结构。
语义网络:从图论的观点看,它其实就是“一个带标识的有向图”,由结点和弧(也称“边”)所组成。
人工智能复习试题和答案及解析
一、单选题1. 人工智能的目的是让机器能够(D ),以实现某些脑力劳动的机械化。
A. 具有完全的智能B. 和人脑一样考虑问题C. 完全代替人D. 模拟、延伸和扩展人的智能2. 下列关于人工智能的叙述不正确的有( C )。
A. 人工智能技术它与其他科学技术相结合极大地提高了应用技术的智能化水平。
B. 人工智能是科学技术发展的趋势。
C. 因为人工智能的系统研究是从上世纪五十年代才开始的,非常新,所以十分重要。
D. 人工智能有力地促进了社会的发展。
3. 自然语言理解是人工智能的重要应用领域,下面列举中的(C)不是它要实现的目标。
A. 理解别人讲的话。
B. 对自然语言表示的信息进行分析概括或编辑。
C. 欣赏音乐。
D. 机器翻译。
4. 下列不是知识表示法的是()。
A. 计算机表示法B. 谓词表示法C. 框架表示法D. 产生式规则表示法5. 关于“与/或”图表示知识的叙述,错误的有(D )。
A. 用“与/或”图表示知识方便使用程序设计语言表达,也便于计算机存储处理。
B. “与/或”图表示知识时一定同时有“与节点”和“或节点”。
C. “与/或”图能方便地表示陈述性知识和过程性知识。
D. 能用“与/或”图表示的知识不适宜用其他方法表示。
6. 一般来讲,下列语言属于人工智能语言的是(D )。
A. VJB. C#C. FoxproD. LISP7. 专家系统是一个复杂的智能软件,它处理的对象是用符号表示的知识,处理的过程是(C )的过程。
A. 思考B. 回溯C. 推理D. 递归8. 确定性知识是指(A )知识。
A. 可以精确表示的B. 正确的C. 在大学中学到的知识D. 能够解决问题的9. 下列关于不精确推理过程的叙述错误的是( B )。
A. 不精确推理过程是从不确定的事实出发B. 不精确推理过程最终能够推出确定的结论C. 不精确推理过程是运用不确定的知识D. 不精确推理过程最终推出不确定性的结论10. 我国学者吴文俊院士在人工智能的( A )领域作出了贡献。
人工智能题库及答案详解
人工智能题库及答案详解一、单选题1. 人工智能(AI)的起源可以追溯到哪个年代?A. 1950年代B. 1960年代C. 1970年代D. 1980年代答案:A2. 下列哪项不是人工智能的主要分支?A. 机器学习B. 机器人学C. 神经网络D. 量子计算答案:D3. 深度学习是人工智能领域中的一个重要概念,它主要基于哪种数学结构?A. 线性代数B. 概率论C. 神经网络D. 逻辑推理答案:C二、多选题1. 人工智能在以下哪些领域有应用?A. 医疗诊断B. 交通管理C. 游戏开发D. 金融分析答案:A, B, C, D2. 以下哪些是人工智能研究的关键技术?A. 自然语言处理B. 计算机视觉C. 专家系统D. 遗传算法答案:A, B, C, D三、判断题1. 人工智能的发展完全依赖于硬件的进步。
()答案:错误2. 图灵测试是衡量机器智能的一个标准,由艾伦·图灵提出。
()答案:正确3. 人工智能可以完全替代人类的工作。
()答案:错误四、简答题1. 请简述人工智能的定义及其主要研究领域。
答案:人工智能(AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似方式做出反应的智能机器。
主要研究领域包括机器学习、自然语言处理、计算机视觉、机器人学等。
2. 什么是机器学习,它与人工智能的关系是什么?答案:机器学习是人工智能的一个核心领域,它使计算机系统利用数据来提高性能,而无需进行明确的编程。
机器学习是实现人工智能的一种手段,通过学习数据模式来提高决策能力。
五、论述题1. 论述人工智能在教育领域的应用及其潜在影响。
答案:人工智能在教育领域的应用包括个性化学习、智能辅导、自动化评分等。
它能够根据学生的学习习惯和能力提供定制化的学习计划,提高学习效率。
同时,AI教师可以辅助人类教师进行教学,减轻教师负担。
然而,人工智能的广泛应用也可能带来教师角色的转变、学生隐私保护等问题。
六、案例分析题1. 请分析AlphaGo战胜围棋世界冠军的案例,并讨论其对人工智能发展的意义。
AI考试题库及答案解析
AI考试题库及答案解析一、选择题1. 人工智能(AI)的核心目标是什么?A. 自动化生产B. 模拟人类智能C. 增强人类能力D. 替代人类工作答案:B2. 下列哪项技术不属于人工智能领域?A. 机器学习B. 神经网络C. 量子计算D. 深度学习答案:C二、填空题3. 人工智能的三个主要分支包括______、______和______。
答案:机器学习、自然语言处理、计算机视觉4. 深度学习是一种基于______的算法,它能够处理复杂的数据模式。
答案:神经网络三、简答题5. 请简述人工智能在医疗领域的应用。
答案:人工智能在医疗领域的应用包括辅助诊断、患者监护、药物研发、机器人手术等。
AI能够通过分析大量的医疗数据来辅助医生进行更准确的诊断,同时在药物研发过程中,AI可以加速化合物筛选和临床试验的效率。
四、论述题6. 论述人工智能对就业市场的影响及其可能的应对策略。
答案:人工智能对就业市场的影响是多方面的。
一方面,AI可以提高生产效率,减少某些重复性或危险工作的人力需求,从而可能导致某些职业的就业机会减少。
另一方面,AI也会创造新的就业机会,尤其是在AI开发、维护和应用领域。
应对策略包括加强教育和培训,以提高劳动力的适应性和技能水平;鼓励创新和创业,以创造新的就业机会;以及制定相应的政策,以保障劳动者的权益。
五、案例分析题7. 某公司计划利用人工智能技术优化其供应链管理,请分析可能的AI 应用场景并提出建议。
答案:在供应链管理中,AI可以应用于需求预测、库存管理、物流优化和风险评估等方面。
例如,通过机器学习算法分析历史销售数据,可以更准确地预测产品需求,从而优化库存水平;利用深度学习对物流路径进行优化,可以减少运输成本和时间;同时,AI还可以通过分析市场和环境因素来评估潜在的风险,并提出相应的应对措施。
建议公司首先明确AI应用的目标和范围,然后选择合适的AI技术和工具,最后建立跨部门的协作机制,以确保AI技术的有效实施。
上海市考研智能科学与技术复习资料人工智能与模式识别重点知识点总结
上海市考研智能科学与技术复习资料人工智能与模式识别重点知识点总结上海市考研智能科学与技术复习资料——人工智能与模式识别重点知识点总结一、人工智能基础知识1. 人工智能概述人工智能是一门研究如何使计算机能够完成人类智能活动的学科,包括机器学习、自然语言处理、专家系统等。
2. 人工智能发展历程人工智能的发展经历了符号主义、连接主义和统计学习三个阶段,如今已进入深度学习时代。
3. 人工智能的应用领域人工智能在图像识别、语音识别、自动驾驶、医疗诊断等领域有广泛应用。
二、机器学习算法1. 机器学习概述机器学习是人工智能的一个重要分支,通过从数据中学习规律,使计算机具备自主学习和推断能力。
2. 监督学习监督学习是指通过已标记的训练数据来训练模型,并通过模型预测新数据的标签或值。
3. 无监督学习无监督学习是指使用未标记的数据进行模型训练,通过发现数据内在结构和模式来进行分类或聚类。
4. 深度学习深度学习是一种基于神经网络的机器学习方法,通过模拟人脑神经元之间的连接来实现高效的模式识别和推断。
三、模式识别算法1. 模式识别概述模式识别是指根据已有的模式来识别新样本的过程,包括特征提取、特征选择和分类器设计等步骤。
2. 特征提取特征提取是指从原始数据中提取出具有代表性的特征,常用的方法包括主成分分析、线性判别分析和小波变换等。
3. 特征选择特征选择是指从大量特征中选择出最具有代表性和区分性的特征,以提高分类器的性能。
4. 分类器设计分类器设计是指选择合适的算法或模型来对样本进行分类,常用的有支持向量机、决策树和随机森林等。
四、人工智能和模式识别的应用1. 图像识别人工智能和模式识别在图像识别领域有广泛应用,如人脸识别、物体检测和图像分类等。
2. 语音识别人工智能和模式识别在语音识别领域可以实现自动语音识别、语音合成和语音情感识别等技术。
3. 自动驾驶人工智能和模式识别在自动驾驶领域可以实现环境感知、路径规划和智能驾驶等功能。
人工智能期末考试知识点(考点)总结
⼈⼯智能期末考试知识点(考点)总结1、智能所包含的能⼒(1)感知能⼒(2)记忆与思维能⼒(3)学习和⾃适应能⼒(4)⾏为能⼒2、⼈⼯智能分为五个阶段:(1)孕育期(2)形成期(3)知识应⽤期(4)从学派分⽴⾛向综合(5)智能科学技术学科的兴起3、⼈⼯智能研究的基本内容(1)与脑科学和认知科学的交叉研究(2)智能模拟的⽅法和技术研究4、⼈⼯智能研究中的不同学派(三⼤学派)(1)符号主义(2)联结主义(3)⾏为主义5、机器学习机器学习是机器获取知识的根本途径,同时也是机器具有智能的重要标志。
有⼈认为,⼀个计算机系统如果不具备学习功能,就不能称其为智能系统。
机器学习有多种不同的分类⽅法,如果按照对⼈类学习的模拟⽅式,机器学习可分为符号学习、联结学习、知识发现和数据挖掘等。
6、演绎推理与归纳推理的区别演绎推理与归纳推理是两种完全不同的推理。
演绎推理是在已知领域内的⼀般性知识的前提下,通过演绎求解⼀个具体问题或证明⼀个给定的结论。
这个结论实际上早已蕴涵在⼀般性知识的前提中,演绎推理只不过是将其揭⽰出来,因此它不能增殖新知识。
⽽在归纳推理中,所推出的结论是没有包含在前提内容中的。
这种由个别事物或现象推出⼀般性知识的过程,是增殖新知识的过程。
7、确定性知识确定性知识是指其真假可以明确给出的知识,其表⽰⽅法主要包含谓语逻辑表⽰法、产⽣式表⽰法、语义⽹络表⽰法、框架表⽰法等。
8、谓语逻辑表⽰⽅法P299、语义⽹络表⽰法P3410、框架表⽰法(鸟框架)P4111、产⽣式推理的基本结构产⽣式推理的基本结构如图所⽰,它包括综合数据库、规则库和控制系统三个重要组成部分。
12、谓语公式P6913、状态空间的盲⽬搜索根据状态空间采⽤的数据结构的不同,它可分为图搜索算法和树搜索算法。
树搜索算法包括⼀般树和代价树的盲⽬搜索算法。
⼀般树的盲⽬搜索主要包括⼴度优先搜索算法和深度优先搜索算法两种。
14、⼴度优先搜索算法和深度优先搜索算法的区别P7915、⼋数码难题P7916、代价树的⼴度优先搜索也称为分枝界限算法P8017、城市交通难题P8118、什么是估价函数⽤来估计节点重要性的函数称为估价函数。
人工智能期末复习资料
一、智能化智能体1.什么是智能体?什么是理性智能体?智能体的特性有哪些?智能体的分类有哪些?智能体定义:通过传感器感知所处环境并通过执行器对该环境产生作用的计算机程序及其控制的硬件.理性智能体定义:给定感知序列(percept sequence)和内在知识(built—in knowledge),理性智能体能够选择使得性能度量的期望值(expected value)最大的行动。
智能体的特性:自主性(自主感知学习环境等先验知识)、反应性(Agent为实现自身目标做出的行为)、社会性(多Agent及外在环境之间的协作协商)、进化性(Agent自主学习,逐步适应环境变化)智能体的分类:简单反射型智能体:智能体寻找一条规则,其条件满足当前的状态(感知),然后执行该规则的行动.基于模型的反射型智能体:智能体根据内部状态和当前感知更新当前状态的描述,选择符合当前状态的规则,然后执行对应规则的行动。
基于目标的智能体:为了达到目标选择合适的行动,可能会考虑一个很长的可能行动序列,比反射型智能体更灵活。
基于效用的智能体:决定最好的选择达到自身的满足。
学习型智能体:自主学习,不断适应环境与修正原来的先验知识.2.描述几种智能体类型实例的任务环境PFAS,并说明各任务环境的属性.答题举例:练习:给出如下智能体的任务环境描述及其属性刻画。
o机器人足球运动员o因特网购书智能体o自主的火星漫游者o数学家的定理证明助手二、用搜索法对问题求解1。
简述有信息搜索(启发式搜索)与无信息搜索(盲目搜索、非启发式搜索)的区别。
非启发式搜索:按已经付出的代价决定下一步要搜索的节点。
具有较大的盲目性,产生较多的无用节点,搜索空间大,效率不高。
启发式搜索:要用到问题自身的某些信息,以指导搜索朝着最有希望的方向前进。
由于这种搜索针对性较强,因而原则上只需搜索问题的部份状态空间,搜索效率较高。
2.如何评价一个算法的性能?(度量问题求解的性能)▪完备性:当问题有解时,算法是否能保证找到一个解;▪最优性:找到的解是最优解;▪时间复杂度:找到一个解需要花多长时间▪搜索中产生的节点数▪空间复杂度:在执行搜索过程中需要多少内存▪在内存中存储的最大节点数3。
《人工智能相关知识点考试》考试试题(含答案解析)
《人工智能相关知识点考试》考试试题(含答案解析)一、单选题1、人工智能的英文缩写是?A、AIB、IRC、ARD、VR正确答案:A答案解析:答案:A。
人工智能(Artificial Intelligence)通常缩写为AI。
2、以下哪项不是机器学习的常见类型?A、非监督学习B、强化学习C、混合学习D、监督学习正确答案:C答案解析:答案:C。
混合学习不是标准的机器学习分类,常见的有监督、非监督和强化学习。
3、哪种算法常用于识别图像中的物体?A、决策树B、线性回归C、卷积神经网络(CNN)D、K-均值聚类正确答案:C答案解析:答案:C。
卷积神经网络(CNN)特别擅长处理图像识别任务。
4、人工智能在医疗领域的应用不包括?A、手术机器人B、自动驾驶汽车C、药物研发加速D、病理诊断辅助正确答案:B答案解析:答案:B。
自动驾驶汽车属于交通领域的应用,非医疗领域。
5、什么是“深度学习”?A、仅限于浅层数据的学习技术B、一种快速学习方法C、基于多层神经网络的学习模型D、不需要大量数据的学习方式正确答案:C答案解析:答案:C。
深度学习利用多层神经网络对复杂数据进行建模和分析。
6、下列哪项不属于自然语言处理(NLP)的应用?A、文本情感分析B、图像内容描述生成C、语音识别软件D、智能客服聊天机器人正确答案:B答案解析:答案:C。
图像内容描述生成属于计算机视觉领域,而非NLP。
7、在自然语言处理中,词语嵌入(Word Embedding)的主要目的是什么?A、将词汇转化为数值向量,以便于计算和理解语义关系B、转换文本为图像形式C、实现文本的语法检查D、提取文本的关键句子正确答案:A答案解析:答案:A。
词语嵌入通过将每个词映射到一个高维空间中的向量,帮助模型理解词语之间的语义和语法关系。
8、以下哪项是人工智能伦理中的重要考虑因素?A、人工智能责任归属B、数据隐私保护C、以上都是D、算法偏见消除正确答案:C答案解析:答案:C。
人工智能专业必考知识点解析!不看后悔
人工智能专业必考知识点解析!不看后悔一、引言随着人工智能技术的飞速发展,该领域已成为当今最热门的行业之一。
许多学生和从业者都渴望掌握这个专业,但面对繁杂的知识点,往往无从下手。
本文将为你解析人工智能专业必考知识点,帮助你轻松掌握这个专业!二、人工智能定义人工智能(Artificial Intelligence,简称AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能涉及到计算机科学、数学、心理学、哲学等多个学科,其目标是让机器能够胜任一些通常需要人类智能才能完成的复杂工作。
三、机器学习机器学习是人工智能领域中的一个重要分支,它是指通过让机器从数据中学习规律和模式,从而完成特定任务的方法。
常见的机器学习算法包括:决策树、支持向量机、神经网络等。
四、深度学习深度学习是机器学习的一个重要分支,它通过构建多层神经网络来模拟人脑的学习方式。
深度学习在语音识别、图像识别、自然语言处理等领域取得了突破性成果。
其中,卷积神经网络(CNN)和循环神经网络(RNN)是最常用的深度学习模型。
五、自然语言处理自然语言处理是人工智能领域中与人类语言相关的研究分支。
它涉及到的内容包括文本分析、语音识别、机器翻译等。
自然语言处理技术使得机器能够理解和生成人类语言,为人类提供更好的智能服务。
六、计算机视觉计算机视觉是人工智能领域中研究如何让机器“看懂”图像和视频的技术。
它包括图像识别、目标检测、人脸识别等多个方面。
计算机视觉技术的应用非常广泛,如自动驾驶、智能安防等。
七、强化学习强化学习是人工智能领域中的一种特殊学习方法。
它通过让机器在环境中不断尝试和调整,以获得最大的奖励。
强化学习在游戏策略、自动驾驶等领域有着广泛的应用。
八、知识表示与推理知识表示与推理是人工智能领域中研究如何将知识转化为计算机可理解的形式,并在此基础上进行推理和决策的技术。
知识表示与推理在专家系统、智能推荐等领域有着广泛的应用。
人工智能知识点总复习(附答案)
知识点1. 什么是人工智能?它的研究目标是什么?人工智能的研究目标远期目标揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能涉及到脑科学、认知科学、计算机科学、系统科学、控制论等多种学科,并依赖于它们的共同发展近期目标研究如何使现有的计算机更聪明,即使它能够运用知识去处理问题,能够模拟人类的智能行为。
相互关系远期目标为近期目标指明了方向近期目标则为远期目标奠定了理论和技术基础2. 人工智能有哪几个主要学派?各自的特点是什么?人工智能研究的三大学派:随着人工神经网络的再度兴起和布鲁克(R.A.Brooks)的机器虫的出现,人工智能研究形成了符号主义、联结主义和行为主义三大学派。
符号主义学派是指基于符号运算的人工智能学派,他们认为知识可以用符号来表示,认知可以通过符号运算来实现。
例如,专家系统等。
联结主义学派是指神经网络学派,在神经网络方面,继鲁梅尔哈特研制出BP网络之后,人工神经网络研究掀起了第二次高潮。
之后,随着模糊逻辑和进化计算的逐步成熟,又形成了“计算智能”这个统一的学科范畴。
行为主义学派是指进化主义学派,在行为模拟方面,麻省理工学院的布鲁克教授1991年研制成功了能在未知的动态环境中漫游的有6条腿的机器虫。
智能科学技术学科研究的主要特征(1) 由对人工智能的单一研究走向以自然智能、人工智能、集成智能为一体的协同研究;(2) 由人工智能学科的独立研究走向重视与脑科学、认知科学、等学科的交叉研究;(3) 由多个不同学派的独立研究走向多学派的综合研究;(4) 由对个体、集中智能的研究走向对群体、分布智能的研究;(5) 智能技术应用已渗透到人类社会的各个领域。
知识表示的类型按知识的不同存储方式:陈述性知识:知识用某种数据结构来表示;知识本身和使用知识的过程相分离。
过程性知识:知识和使用知识的过程结合在一起。
知识表示的基本方法非结构化方法:一阶谓词逻辑产生式规则结构化方法:语义网络框架知识表示的其它方法状态空间法和问题归约法。
人工智能相关知识点考试
人工智能相关知识点考试一、人工智能的基本概念。
1. 定义。
- 人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
它旨在让机器能够像人类一样进行感知、学习、推理、决策等智能行为。
2. 发展历程。
- 人工智能的发展可以追溯到20世纪50年代。
- 达特茅斯会议被视为人工智能诞生的标志,当时的科学家们提出了人工智能的概念,并对其未来发展进行了讨论。
- 早期的人工智能发展经历了符号主义阶段,主要基于逻辑推理和知识表示,例如专家系统的构建。
- 后来随着计算能力的提升和数据量的增加,连接主义兴起,以神经网络为代表,尤其是深度学习的发展,推动了人工智能在图像识别、语音识别等众多领域取得巨大突破。
3. 人工智能的分类。
- 弱人工智能:专注于执行特定任务,如语音助手只能进行语音交互相关的任务,而不具备真正意义上的通用智能。
- 强人工智能:具备与人类相当的智能水平,能够像人类一样思考、学习、解决各种复杂问题,目前还尚未完全实现。
- 超人工智能:在智能水平上远远超过人类,这是一种理论上的未来发展阶段。
二、人工智能的主要技术。
1. 机器学习。
- 定义:机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
- 分类:- 监督学习:- 概念:使用标记数据进行学习,训练数据集中包含输入特征和对应的输出标签。
例如在图像分类任务中,输入是图像,输出是图像所属的类别(如猫、狗等)。
- 常见算法:线性回归、逻辑回归、支持向量机(SVM)、决策树等。
- 非监督学习:- 概念:使用未标记数据进行学习,旨在发现数据中的结构、模式或规律。
例如聚类分析,将数据点划分为不同的簇,使得同一簇内的数据点具有相似性,不同簇的数据点具有较大差异。
- 常见算法:K - 均值聚类、层次聚类等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能第一章 绪论1、智能(intelligence )人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。
2、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
3、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。
4、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。
5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
代表人物有纽厄尔、肖、西蒙和尼尔逊等。
连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。
行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。
6、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图人类 计算机认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。
研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。
7、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。
2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。
一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。
两者具有不可分割的关系,一方面,近期目标的实现为远期目标研究做好理论和技术准备,打下了必要的基础,并增强人们实现远期目标的信心。
另一方面,远期目标则为近期目标指明了方向,强化了近期研究目标的战略地位。
8、人工智能研究的基本内容:(1)认知建模;(2)知识表示;(3)知识推理;(4)知识应用;(5)机器感知;(6)机器思维;(7)机器学习;(8)机器行为(9)智能系统构建9、人工智能研究的主要方法:(1)、功能模拟法(2)、结构模拟法(3)、行为模拟法(4)、集成模拟法10、人工智能研究和应用领域:(1)计算智能(2)专家系统(3)机器学习(4)机器视觉(5)神经网络第二章知识表示方法1、人工智能课程三大内容:知识表示;知识推理;知识应用。
2、知识表示方法:(9种)重点掌握这4种:状态空间法,谓词演算法,产生表示法,语义网络法(重点),问题归约法、框架表示、面向对象表示、剧本表示和过程表示。
3、状态空间法状态空间法三要点:①状态:表示问题求解法中每一步问题状况的数据结构;②算符:把问题从一种状态变换为另一种状态的手段;③状态空间方法:基于解答空间的问题表示和求解方法,它是以状态与算符为基础来表示和求解问题的。
(看p29的图2.2)4有圆弧的表示“与”,无圆弧的表示“或”或节点:只要解决某个问题就可以解决其父辈问题的节点集合,如图中(M\N\H).与节点:只有解决所有子问题,才能解决其父辈问题的节点八集合,如图中(B,C)和(D,E,F)各个节点之间用一段小圆弧连接标记。
5、谓词逻辑法(1)连词A、合取:就是用连词(∧)把几个公式连接起来而构成的公式。
相当于“与”B、析取:就是用连词(∨)把几个公式连接起来而构成的公式。
相当与“或”C、蕴涵:(→)表示“如果….那么”的语句。
D、非:表示否定,用符号(~,)表示。
(2)量词A、全称量词:若一个原子公式P(x),对于所有可能变量x都具有T值,则用(∃)表示。
B、存在量词:若一个原子公式P(x),至少有一个变元x,可使P(x)为T值,则用(∀)P(x)表示。
6、置换与合一(1)置换例2.2表达式P[x,f(y),B]的4个置换为s1={z/x,w/y}(出现x和y的地方,分别z和w替换,下同)s2={A/y}s3={q(z)/x,A/y}s4={c/x,A/y}用Es来表示一个表达式E 用置换s所得到的表达式的置换。
于是,可得到P[x,f(y),B]的4个置换的例,如下:P[x,f(y),B]s1=P[z,f(w),B]P[x,f(y),B]s2=P[x,f(A),B]P[x,f(y),B]s3=P[q(z),f(A),B]P[x,f(y),B]s4=P[c,f(A),B](2)合一例2.3表达式集{P[x,f(y),B],P[x,f(B),B]}的合一者为s={A/x,B/y}因为 P[x,f(y),B]s=P[x,f(B),B]s=P[A,f(B),B]即s使表达式成为单一形式 P[A,f(B),B]7、二元语义网络的表示(1)语义网络的组成:词法部分;结构部分;过程部分;语义部分。
例,所有的燕子(SWALLOW)都是鸟(BIRD)。
建立两个节点SWALLOW和 BIRD,分别表示燕子和鸟。
两个节点以“是一个”(ISA)链相连,如图一,如果再希望表示小燕(XIAOYAN)是一只燕子,那么,只需要在语义网络上增加一个节点(XIAOYAN)和一根ISA链。
如图二图一,图二除了按分类学对物体进行分类以外,人们通常需要表示有关物体性质的知识。
假设希望表示小燕子有一个巢(NEST)这个事实,那么,可用所有权连(OWNS)连到表示是小燕子的巢的节点巢-1(NEST-1)。
巢-1是巢中的一个,即NEST节点表示物体的各类,而NEST-1表示这种物体中的一个例子。
如下图ISA(2)语义网络中的推理过程主要有两种:继承和匹配。
(3)3种继承过程:①值继承;②“如果需要”继承;③“默认”继承。
值继承:除了ISA链以外,另外还有一种AKO(是某种)链也可被用于语义网络中的描述或特性的继承。
AKO是A-KIND-OF的缩写。
NEST-1 NESTManager第三章确定性推理1、盲目搜索(无信息搜索):图搜索策略、宽度优先搜索、深度优先搜索、等代价搜索。
2、宽度优先搜索和深度优先搜索的优缺点:并作图(简答题)宽度优先搜索:这种搜索是从上到下逐层进行的,在对下一层的任一节点进行搜索之前,必须先搜索完上层的所有节点。
它是图搜索一般过程的特殊情况,实际是将OPEN表作为“先进先出”的队列进行操作。
并能够保证在搜索树种找到一条通向目标节点的最短途径;这颗搜索树提供了所有存在的路径(缺点:如果没有路径存在,那么对有限图来说,该算法失败退出;对于无限图来说,则永远不会终止。
)深度优先搜索:首先扩展最新产生的(即最深的)节点,深度相等的节点可以任意排序。
其中起始节点(即根节点)的深度为0,任何其他节点的深度等于其父辈节点深度加上1。
深度优先搜索可能会使搜索过程沿着无益的路径扩展下去,造成路径太长,即使应用了深度界限来避免该问题,但所求得的解答路径并不一定就是最短路径。
启发式搜索:(盲目搜索的不足:效率低,耗费过多的计算空间与时间)(1)启发式搜索策略:用估价函数(evaluation function)来估算节点希望程度(promise)(2)有序搜索;(3)A*算法新的智能搜索算法:遗传算法、模拟退火算法和免疫算法3、谓词演算公式可以化成一个子句集的变换过程步骤:(1)消去蕴涵符号(2)减少否定符号辖域(3)对变量标准化(4)消去存在量词(5)化为前束形(6)把母式化为合取范式(7)消去全称量词(8)消去连词符号^(9)更换变量名称4、(题4—4)基于规则的演绎系统和产生式系统,均有两种推理方式:正向推理和逆向推理正向推理:从if部分向then部分推理的过程,它是从事实或状况向目标或动作进行操作的。
逆向推理:从then部分向if部分推理的过程,它是从目标或动作向事实或状况进行操作的。
5、规则演绎系统:(1)正向规则演绎系统(2)逆向规则演绎系统(3)双向规则演绎系统6、产生式的基本形式(4)(1)产生式规则是一种因果关系或推理关系,通常形式如下:(5) IF P THEN Q (如果P则Q) 或者P→Q(6)其中,P称为条件、前向或产生式的左边,Q称为操作、结果或产生式的右边。
其还可以是“如果P被满足,则可推出结论Q,或应该执行操作Q”。
(7)(2)产生式推理(8)如果已有产生式规则 P→Q(9)并且观察到P,或者知识库中已p,则可得得到结论Q,或执行操作Q。
(10)这种推理的一个关键之处是如何有效解决规则匹配的冲突问题。
7、产生式系统的推理方式分为(按搜索方向):(1)正向推理(2)反向推理(3)双向推理第四章非经典推理1、不确定性推理:在推理过程中所使用的知识、证据等有不确定性。
第五章计算智能1、人工神经网络人工神经网络(ANN)或模拟神经网络是由人工神经元组成的,可把人工神经网络看成是以处理单元(PE)为节点、用加权的向弧(链)相互连接而成的有向图。
它的三层结构:输入层、输出层、隐层。
2、模糊计算3、遗传算法是仿真和自然选择机理,通过人工方式所构造的一类搜索法,从某种程度上来说遗传算法是对生物进化过程的数学方式仿真。
遗传算法的基本原理:A、编码与译码:将问题结构变换为位串形式编码表示的过程叫编码;反之,将位串形式编码表示变换为原问题结构的过程叫译码。
位串形式编码表示称为染色体或个体。
B、适应度函数:为了体现个体的适应能力,引入了对问题中的每一个个体都能进行度量的函数,称为适应度函数。
C、遗传操作:主要有三种(选择、交叉、变异)选择操作也叫复制操作,根据个体的适应度函数值所度量的优劣程度决定它在下一代是被淘汰还是被遗传。
交叉操作:它的简单方式是将被选择出的两个个体P1和P2作为父母个体,将两者的部分码值进行交换。
变异操作:它的简单方式是改变数码串的某个位置上的数码。
D、控制参数(交叉概率取0.6~0.95之间的值,变异概率取0.001~0.01之间的值,种群规模为30~100)。
第六章专家系统1、专家系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。
2、专家系统的特点:(1)启发性(2)透明性(3)灵活性3、专家系统的优点:(1)能够高效率、准确、周到、迅速和不知疲倦地进行工作。
(2)解决实际问题时不受周围环境的影响,也不可能遗漏忘记。
(3)能够不受时间和空间的限制,保存、推广珍贵和稀缺的专家知识与经验。
(4)能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼。
(5)能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力。