(总结)初中数学相似三角形定理知识点总结
初中八年级数学知识点总结
初中八年级数学知识点总结学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的八年级数学知识点,希望对大家有所帮助。
【相似、全等三角形】1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2、相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似4、判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)5、判定定理 3 三边对应成比例,两三角形相似(SSS)6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似7、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比8、性质定理 2 相似三角形周长的比等于相似比9、性质定理 3 相似三角形面积的比等于相似比的平方10、边角边公理有两边和它们的夹角对应相等的两个三角形全等11、角边角公理有两角和它们的夹边对应相等的两个三角形全等12、推论有两角和其中一角的对边对应相等的两个三角形全等13、边边边公理有三边对应相等的两个三角形全等14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等15、全等三角形的对应边、对应角相等【等腰、直角三角形】1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论 3 等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论 1 三个角都相等的三角形是等边三角形7、推论 2 有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
初三数学相似知识点
初三数学相似知识点
1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的对
应边长成比例,对应角度相等。
2. 相似比例:相似三角形的边长比值称为相似比例。
如果两个三角形的对应边长分别
为a:b:c和ka:kb:kc,那么它们的相似比例为a:b:c。
3. 相似三角形定理:包括AAA相似定理、AA相似定理和对应角边比相等定理。
其中,AAA相似定理指出如果两个三角形的对应角度相等,那么它们相似;AA相似定理指出如果两个三角形的两个对应角度相等,那么它们相似;对应角边比相等定理指出如果
两个三角形的两个对应角度相等,并且对应边长之比相等,那么它们相似。
4. 相似三角形的性质:相似三角形的相似比例等于对应边长之比;相似三角形的相似
比例等于对应角度的正弦值、余弦值或正切值;相似三角形的高线、中线等与对应边
长成等比例;相似三角形的面积与边长平方成比例。
5. 相似三角形的应用:相似三角形的定理在解决实际问题中有很多应用,如利用相似
三角形进行测量、解决影子问题、求解高度、求解距离等。
6. 图形的相似:除了三角形,其他图形(如矩形、圆、椭圆等)也有相似的概念和相
似关系,可以利用相似关系解决相关问题。
这些内容是初三数学中关于相似的主要知识点,希望对你有帮助!如有其他问题,请
随时提问。
初中数学知识归纳相似三角形的判定定理分析
初中数学知识归纳相似三角形的判定定理分析初中数学知识归纳:相似三角形的判定定理分析相似三角形是初中数学中非常重要的概念,它可以帮助我们解决各种几何问题。
相似三角形判定定理是判断两个三角形是否相似的基本定理。
本文将对相似三角形的判定定理进行归纳和分析,帮助读者更好地理解和应用这一知识点。
一、全等三角形的性质回顾在归纳相似三角形的判定定理之前,我们首先回顾一下全等三角形的性质。
两个三角形全等的条件有三种情况:边-角-边(SAS)、角-边-角(ASA)和边-边-边(SSS)。
只要满足其中一种情况,两个三角形就是全等的。
全等三角形的性质提供了相似三角形判定的基础,我们下面来看看相似三角形的判定定理。
二、相似三角形的判定定理相似三角形的判定定理包括以下三种情况:AAA相似定理、AA相似定理和边-比-边相似定理。
我们逐一进行分析。
1. AAA相似定理AAA相似定理是指如果两个三角形的对应角度相等,那么这两个三角形相似。
具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以得出结论:△ABC ∽△DEF。
其中,“∽”表示相似。
根据AAA相似定理,我们可以用角度关系判定两个三角形是否相似。
这对于求解角度未知的三角形问题非常有用。
但需要注意的是,AAA相似定理只能判定三角形之间的相似关系,并不能确定它们的实际大小。
2. AA相似定理AA相似定理是指如果两个三角形的两个对应角度相等,那么这两个三角形相似。
具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E(或∠A=∠E,∠B=∠D),那么我们可以得出结论:△ABC ∽△DEF。
AA相似定理是比较常用且直观的判定方式。
通过测量或计算出两个角度的大小,我们就能确定两个三角形的相似关系。
需要注意的是,判定相似三角形时,AA相似定理只能判定两个角度对应相等,不能判定另一个角度是否相等。
3. 边-比-边相似定理边-比-边相似定理是指如果两个三角形的对应边长成比例,那么这两个三角形相似。
中考数学《相似三角形》知识点及练习题
相似三角形一. 知识梳理1.平行线分线段成比例定理定理:两条直线被三条平行线所截,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
2.相似三角形定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。
相似比:相似三角形对应边的比叫做相似比。
3.相似三角形的判定平行法:平行于三角形一边的直线和其他两边相交,所得的三角形与原三角形相似。
两角法:两角分别相等的两个三角形相似。
边角法:两边成比例且夹角相等的两个三角形相似。
三边法:三边对应成比例的两个三角形相似。
4.相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应边上高的比,对应边上中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。
5.位似图形定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
这时的相似比又叫位似比6. 黄金分割:点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 二.课后作业1.下列图形中不一定属于相似形的是( )A.两个圆B.两个等边三角形C.两个正方形D.两个矩形2.如果两个相似三角形的面积比是1∶4,那么它们的周长比是( )A. 1∶16B. 1∶4C. 1∶6D. 1∶23.已知△ABC ∽△DEF ,且AB:DE=1:2,则△ABC 的周长与△DEF 的周长之比( )A.1:2B.1:4C.2:1D.4:14.如图,给出下列条件:其中,不能单独判定△ABC∽△ACD 的条件为( )A.∠B=∠ACDB.∠ADC=∠ACBC.AC CD =AB BCD.AC AD =AB AC5.如图,DE ∥BC ,且AD=2,BD=5,则△ADE 与△ABC 的相似比为( )A.2:5B.5:2C.2:7D.7:26.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=( ) A.7 B.8 C.9 D.10 E A D CB A BC DE7.已知△ABC ∽△DEF ,且它们的周长之比为1:2,那么它们的相似比为 。
【初中数学】初中数学三角形相似重要知识点
【初中数学】初中数学三角形相似重要知识点【—三角形相似判定知识】三角形相似知识经常出现在的大题目中,性质及判定定理也是需要掌握的。
三角形相似判定(1)平行于三角形一边的直线和其他两边平行,所形成的三角形与原三角形相近。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相近。
(简叙为:三边对应成比例,两个三角形相近。
)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
直角三角形认定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相近。
相似三角形性质定理:(1)相近三角形的对应角成正比。
(2)相似三角形的对应边成比例。
(3)相近三角形的对应高线的比,对应中线的比和对应角平分线的比都等同于相近比。
(4)相似三角形的周长比等于相似比。
(5)相近三角形的面积比等同于相近比的平方。
判定定理推论推断一:顶角或底角成正比的两个等腰三角形相近。
推论二:腰和底对应成比例的两个等腰三角形相似。
推断三:存有一个锐角成正比的两个直角三角形相近。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推断五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相近。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
性质 1.相近三角形对应角成正比,对应边变成比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相近三角形周长的比等同于相近比。
初中数学相似三角形定理知识点总结精选全文完整版
可编辑修改精选全文完整版初中数学相似三角形定理知识点总结相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
下面是小编为大家带来的初中数学相似三角形定理知识点总结,欢迎阅读。
相似三角形定理1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的`预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8. 相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2。
初中相似三角形知识点
初中相似三角形知识点一、相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边长成比例的三角形。
也就是说,如果三角形ABC与三角形DEF相似,那么角A等于角D,角B等于角E,角C等于角F,并且边AB与边DE、边BC与边EF、边CA与边DF之间的长度成同一比例。
二、相似三角形的标记在标记相似三角形时,我们通常使用一个字母来表示一个三角形,例如三角形ABC。
如果两个三角形相似,我们可以用一个比例系数(通常用字母k表示)来标记它们的对应边。
例如,如果AB/DE = BC/EF = AC/DF = k,那么我们说三角形ABC与三角形DEF相似,并且边长比例为k。
三、相似三角形的性质1. 角的对应性:相似三角形的对应角相等。
2. 边的成比例性:相似三角形的对应边成比例。
3. 面积的比例:相似三角形的面积比等于边长比的平方。
即,如果三角形ABC与三角形DEF相似,且边长比为k,则三角形ABC的面积与三角形DEF的面积之比为k^2。
4. 周长的比例:相似三角形的周长比也等于它们边长的比例。
四、相似三角形的判定1. 三角形相似判定定理:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。
2. 边角边(SAS)判定定理:如果两个三角形有两边及其夹角分别相等,那么这两个三角形相似。
3. 边边边(SSS)判定定理:如果两个三角形的所有对应边分别成比例,那么这两个三角形相似。
五、相似三角形的应用相似三角形的概念在解决实际问题中非常有用,例如在测量、建筑、设计和其他领域。
通过使用相似三角形的性质,我们可以解决涉及长度、面积和角度的问题,尤其是在没有直接测量工具的情况下。
六、练习题1. 已知三角形ABC与三角形DEF相似,且AB = 6cm, BC = 8cm, AC = 10cm,DE = 3cm,求EF的长度。
2. 如果三角形PQR的面积是24平方厘米,并且与三角形ABC相似,且三角形ABC的面积是144平方厘米,求三角形PQR的边长。
初三《相似三角形》知识点总结
相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:(1)相似比是有顺序的。
(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。
(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。
(2)两个等边三角形一定相似,两个等腰三角形不一定相似。
(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
初中相似三角形知识点总结
初中相似三角形知识点总结
相似三角形是指两个或多个三角形的对应角相等,对应边成比例的关系。
以下是初中相似三角形的知识点总结:
1. 相似三角形的定义:两个或多个三角形的对应角相等,对应边成比例。
2. 相似三角形的性质:
- 对应角相等:两个相似三角形的对应角相等,即角A = 角D,角B = 角E,角C = 角F。
- 对应边成比例:两个相似三角形的对应边成比例,即 AB/DE = BC/EF = AC/DF。
3. 相似三角形的判定:
- AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。
- SAS相似定理:如果两个三角形的两个边成比例,并且夹角相等,则这两个三角形相似。
4. 相似三角形的应用:
- 求比例关系:根据相似三角形的性质,可以利用已知的比例关系来求解未知的边长或角度。
- 利用相似三角形求高度:在一个相似三角形中,可以利用已知的比例关系来求解未知的高度。
5. 相似三角形的注意事项:
- 只有对应角相等和对应边成比例的三角形才是相似三角形。
- 相似三角形的比例关系可以用来计算边长,但不能用来计算面积。
相似三角形是初中数学中的重要概念,它在几何形状的比较和计算中有着广泛的应用。
理解相似三角形的性质和应用方法,对于解决与三角形相关的问题具有重要意义。
初中数学相似三角形知识点、常见结论、解题技巧
初中数学相似三角形知识点、常见结论、解题技巧一、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边的比叫做相似比(或相似系数)。
二、相似三角形的基本定理平行于三角形一边的直线与其他两边(或两边的延长线)相交,形成一个类似于原三角形的三角形。
三、三角形相似的判定1、三角形相似的判定方法①、定义法:对应角相等,对应边成比例的两个三角形相似②、平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2、直角三角形相似的判定方法①、以上各种判定方法均适用②、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似③、垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
相似常见类型二、相似常见结论1若DE//AB,则DG/AF=GE/BF2若AD平分∠BAC,则AB/AC=BD/CD3若四边形ABCD是平行四边形,则AE⊃2;=EF·FG4若∠DAC=∠DBC,则△ADE~△BCE ,可推导出△AEB~△DEC即上下相似可得左右相似同理,左右相似可得上下相似相似三角形常见解题技巧1、三角形叉叉图这类题目经常考察寻找线段的比例或长度。
图中四对线段比AE/ED、AF/BF、CD/BD、CE/EF,知二求二。
常用辅助线做法:过点作三角形边的平行线遵循原则:所做辅助线不能破坏原有线段比例2、三角形的可解性一个三角形,必然有三角形、三边、三高、周长、面积等十一个量。
平面几何中的相似三角形知识点总结
平面几何中的相似三角形知识点总结
相似三角形是平面几何中重要的概念,它在解决实际问题和证明几何定理中起到重要的作用。
以下是相似三角形的知识点总结:
1. 相似三角形定义:相似三角形定义:
相似三角形是指具有对应角度相等且对应边长成比例的两个三角形。
2. 相似三角形定理:相似三角形定理:
- AAA相似定理:如果两个三角形的三个对应角度分别相等,那么这两个三角形是相似的。
- AA相似定理:如果两个三角形的一个角度相等,且它们的对边成比例,那么这两个三角形是相似的。
- SSS相似定理:如果两个三角形的三条对边成比例,那么这两个三角形是相似的。
3. 相似三角形特性:相似三角形特性:
- 对应角相等:相似三角形的对应角度是相等的。
- 对边成比例:相似三角形的对应边长成比例,即各对应边的比值相等。
- 外接圆相似:相似三角形的外接圆是相似的。
4. 相似三角形的性质:相似三角形的性质:
- 相似三角形的周长比等于对应边长比。
- 相似三角形的面积比等于对应边长比的平方。
- 两个相似三角形的高度和底边成比例。
5. 相似三角形的应用:相似三角形的应用:
- 测量不可直接测量的长度:利用相似三角形的边长比例,可以测量无法直接测量的长度,如建筑物的高度、山的高度等。
- 解决实际问题:相似三角形的概念经常用于解决实际问题,如计算建筑物的阴影长度、确定图像的放大缩小比例等。
以上是平面几何中相似三角形的重要知识点总结。
掌握这些知识,能帮助我们更好地理解和解决与相似三角形相关的问题。
相似三角形知识点归纳
相似三角形知识点归纳下面是关于相似三角形的一些重要知识点的归纳:1.相似三角形的定义:当两个三角形的对应角度相等时,它们称为相似三角形。
记作△ABC∽△DEF。
2.相似三角形的性质:相似三角形具有以下重要性质:-对应角度相等:如果△ABC∽△DEF,则∠A=∠D,∠B=∠E,∠C=∠F。
-对应边长度比相等:如果△ABC∽△DEF,则AB/DE=BC/EF=AC/DF。
-对应高度比相等:如果△ABC∽△DEF,则h₁/h₂=AB/DE=BC/EF=AC/DF,其中h₁和h₂分别为两个三角形的高度。
3.相似三角形的证明方法:-AA相似定理:如果两个三角形的两个角度分别相等,则它们相似。
根据该定理,只需证明两个对应角度相等即可证明两个三角形相似。
-SAS相似定理:如果两个三角形中的一对对应边的比相等,且对应角度相等,则这两个三角形相似。
-SSS相似定理:如果两个三角形的三对对应边比分别相等,则这两个三角形相似。
4.相似三角形的应用:-计算长度比例:根据相似三角形的性质,可以通过已知长度比例的一组相似三角形,来计算其他边的长度比例。
-求解角度:通过已知相似三角形的对应角度相等,可以求解未知的角度。
-计算面积比例:相似三角形的面积比等于边长比的平方。
所以,通过已知相似三角形的边长比,可以计算出面积比。
5.重要的相似三角形定理:-长边分割定理:如果一条直线平行于一个边,且与另外两条边相交,这条直线将三角形分割成两个相似的三角形。
-三角形的垂直角定理:在一个直角三角形中,斜边与任意一个锐角的两个垂直角相等。
总结起来,相似三角形是几何学中一个重要的概念。
通过理解相似三角形的定义、性质、证明方法以及应用,我们可以去解决各种几何问题。
相似三角形的知识点需要掌握好,也是我们在解决几何问题过程中的重要工具。
相似三角形知识点总结(两篇)2024
引言概述:相似三角形是初中数学中的重要知识点,它与三角形的性质和比例有着密切的关联。
在上一篇文章中,我们已经探讨了相似三角形的基本定义和判定方法。
本文将进一步总结相似三角形的性质,包括比例关系、角度关系、长度关系等,以及相似三角形在几何应用中的具体问题。
正文内容:一、比例关系1.直角三角形相似定理:在两个直角三角形中,如果一个角相等,那么它们是相似的。
并且,相似直角三角形的斜边与斜边之比等于其他两边与对应两边之比。
2.对称比例定理:如果一条直线把两个三角形分成两个部分,而且这两个部分的比例相等,则这两个三角形是相似的。
对称比例定理为我们解决相似三角形问题提供了一个常用的判定方法。
二、角度关系1.对应角相等定理:如果两个三角形的对应角相等,则这两个三角形是相似的。
2.外角定理:三角形的一个外角等于它所对的两个内角之和。
应用外角定理可以求解相似三角形中的角度问题。
三、长度关系1.边长比例定理:在两个相似三角形中,相应边的比例相等。
即两个相似三角形对应边的比等于它们的任意两边比的乘积。
2.高度定理:在两个相似三角形中,对应边所对的高的比例等于对应边的比例。
四、几何应用1.利用相似三角形求解高度问题:当无法直接测量一个高度时,可以利用相似三角形的高度定理来计算。
2.利用相似三角形求解距离问题:当无法直接测量两点之间的距离时,可以利用相似三角形的边长比例定理来求解。
3.利用相似三角形求解面积问题:当无法直接测量一个三角形的面积时,可以利用相似三角形的边长比例定理和高度定理来计算。
总结:相似三角形作为三角形知识的重要组成部分,具有较强的通用性和实用性。
本文通过比例关系、角度关系、长度关系等多个方面的阐述,总结了相似三角形的重要性质和应用方法。
相似三角形的掌握对于解决几何问题具有重要的指导意义,能够为我们的数学学习和实际应用带来更大的便利和效果。
通过深入学习和掌握相似三角形的知识,我们将能够更加准确和高效地解决与三角形相似性相关的问题。
初中数学相似三角形知识总结
初中数学相似三角形知识总结在初中数学的学习中,相似三角形是一个非常重要的知识点。
它不仅在数学学科中有着广泛的应用,对于我们解决实际问题也具有重要的意义。
接下来,让我们一起深入了解相似三角形的相关知识。
一、相似三角形的定义相似三角形是指对应角相等,对应边成比例的两个三角形。
也就是说,如果两个三角形的对应角相等,对应边的比值都相等,那么这两个三角形就是相似的。
例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',∠C =∠C',且 AB/A'B' = BC/B'C' = AC/A'C',那么三角形ABC 就与三角形 A'B'C'相似,记作:△ABC ∽△A'B'C'。
二、相似三角形的判定1、两角分别相等的两个三角形相似。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
比如,在三角形 ABC 和三角形 DEF 中,若∠A =∠D,∠B =∠E,那么△ABC ∽△DEF。
2、两边成比例且夹角相等的两个三角形相似。
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 A'B'C'中,若AB/A'B' = AC/A'C',且∠A =∠A',则△ABC ∽△A'B'C'。
3、三边成比例的两个三角形相似。
当两个三角形的三条边对应成比例时,这两个三角形相似。
比如三角形 MNP 和三角形 XYZ 中,若 MN/XY = NP/YZ = MP/XZ,那么△MNP ∽△XYZ。
三、相似三角形的性质1、相似三角形的对应角相等。
这是相似三角形的基本性质之一,也是判断两个三角形相似的重要依据。
三角形的相似性和等腰三角形知识点总结
三角形的相似性和等腰三角形知识点总结三角形是初中数学中重要的几何形状之一,相似性和等腰三角形是三角形的两个重要概念。
本文将对三角形的相似性和等腰三角形进行知识点的总结,并进行适当的举例说明。
一、三角形的相似性三角形的相似性是指两个三角形的对应内角相等,且对应边成比例。
根据相似性的性质,可以得出以下几个重要结论:1. AAA相似定理如果两个三角形的三个角分别相等,则这两个三角形相似。
例如,设△ABC和△DEF,已知∠A=∠D,∠B=∠E,∠C=∠F,则根据AAA相似定理可得出△ABC∽△DEF。
2. AA相似定理如果两个三角形的两个角分别相等,则这两个三角形相似。
例如,设△ABC和△DEF,已知∠A=∠D,∠B=∠E,则根据AA相似定理可得出△ABC∽△DEF。
3. SSS相似定理如果两个三角形的三个边分别成比例,则这两个三角形相似。
例如,设△ABC和△DEF,已知AB/DE=BC/EF=AC/DF,则根据SSS相似定理可得出△ABC∽△DEF。
相似三角形的面积比等于两个相似三角形的边长比的平方。
具体而言,如果△ABC与△DEF相似,则有以下关系式:(面积比) = (边长比的平方) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2二、等腰三角形的性质等腰三角形是指具有两边相等的三角形。
根据等腰三角形的性质,可以得出以下几个重要结论:1. 等腰三角形的两底角(底边两边所对的角)相等。
例如,设△ABC是等腰三角形,其中AB=AC,则∠B=∠C。
2. 等腰三角形的顶角(顶边所对的角)是对顶角。
例如,设△ABC是等腰三角形,其中AB=AC,则∠A是对顶角。
3. 等腰三角形的高线(从顶角到底边垂直的线段)也是中线和角平分线。
例如,设△ABC是等腰三角形,其中AB=AC,高线AD,则AD 是BC的中线和∠BAD的角平分线。
4. 等腰三角形的高线、中线和角平分线重合。
例如,设△ABC是等腰三角形,其中AB=AC,高线、中线和角平分线合为一线。
初中数学知识归纳相似三角形的判定定理与实例
初中数学知识归纳相似三角形的判定定理与实例初中数学知识归纳:相似三角形的判定定理与实例相似三角形是初中数学中重要的概念之一,它涉及到判定与应用两个方面。
本文将对相似三角形的判定定理进行归纳总结,并通过实例加深理解。
一、相似三角形的判定定理1. 三边比例法:如果两个三角形的各边对应边的比相等,即a/b = c/d = e/f,则这两个三角形相似。
例如,如图1所示的三角形ABC和DEF,已知AB/DE = BC/EF = AC/DF = 2/3,就可以判定它们为相似三角形。
[示意图1]2. 三角形内角对应定理:如果两个三角形对应的内角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F,则这两个三角形相似。
例如,如图2所示的三角形ABC和DEF,已知∠A = ∠D = 60°,∠B = ∠E = 70°,∠C = ∠F = 50°,就可以判定它们为相似三角形。
[示意图2]3. AA相似判定法:如果两个三角形的两个对应角相等,则这两个三角形相似。
例如,如图3所示的三角形ABC和DEF,已知∠A = ∠D,∠C =∠F,就可以判定它们为相似三角形。
[示意图3]4. SSS相似判定法:如果两个三角形的对应边成比例,则这两个三角形相似。
例如,如图4所示的三角形ABC和DEF,已知AB/DE = BC/EF = AC/DF = 2/3,就可以判定它们为相似三角形。
[示意图4]二、相似三角形的实例与应用1. 高度定理:在一个直角三角形中,高与斜边的关系是恒定的。
根据这个定理,我们可以利用相似三角形来求解一些直角三角形的问题。
例如,如图5所示的直角三角形ABC中,已知AB = 3 cm, BC = 4 cm,求AC的长度。
[示意图5]解法:由于三角形ABC是直角三角形,根据高度定理可知,∆ABC与∆ACD相似。
由此可以得到以下等式:AB/AC = BC/AD。
将已知数据代入可得3/AC = 4/AD,整理得AC = 3/4 * AD。
相似三角形知识点总结
相似三角形知识点总结相似三角形是初中数学中的重要内容之一,学好相似三角形的知识对于解决各种几何问题非常有帮助。
相似三角形包含了多个知识点,接下来将对这些知识点进行总结。
1. 相似三角形的定义和判定相似三角形的定义是:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形就是相似的。
用符号表示为∆ABC∼∆DEF。
判定两个三角形相似的方法有几种:(1)AAA相似判定法:如果两个三角形的三个角分别相等,则这两个三角形相似。
(2)SAS相似判定法:如果两个三角形的一个角相等,而这个角的两边分别与另一个角的两边成比例,则这两个三角形相似。
(3)SSS相似判定法:如果两个三角形的对应边分别成比例,则这两个三角形相似。
2. 相似三角形的性质(1)相似三角形的对应角相等。
相似三角形的对应角相等是相似的基本性质,也是判定相似三角形的一个重要标志。
如果两个三角形的对应角分别相等,那么这两个三角形就是相似的。
(2)相似三角形的对应边成比例。
相似三角形的对应边成比例是相似三角形的另一个重要性质。
即使两个三角形的对应边依次成比例,那么这两个三角形就是相似的。
(3)相似三角形的边比例与面积比例的关系。
如果两个三角形相似,那么它们的边比例的平方等于它们的面积比例。
即若∆ABC∼∆DEF,则AB/DE = BC/EF = AC/DF,并且[(AB/DE)^2] = [(BC/EF)^2] = [(AC/DF)^2] = ∆ABC的面积/∆DEF的面积。
3. 相似三角形中的一些重要定理(1)相似三角形的高定理如果两个三角形相似,那么它们的高也成比例。
具体地说,若∆ABC∼∆DEF,则(AD/DF) = (BE/EF) = (CF/DF),其中AD、BE和CF分别是∆ABC和∆DEF的高。
(2)相似三角形的角平分线定理如果两个三角形相似,那么它们的内角的角平分线也成比例。
具体地说,若∆ABC∼∆DEF,则∠BAC的平分线与∠EDF的平分线相交于点K,而∠ABC的平分线与∠DEF的平分线相交于点L,则AK/KE = BL/LF。
相似三角形知识点总结(初中数学)
图形的相似知识点一、比例的基本性质1.有关概念:如果d c b a ::=或dc b a =,那么a,b,c,d 成比例,其中b,c 称为比例内项,a,d 称为比例外项。
2.(1)若dc b a =,那么bc ad =。
(2)反比性质: a c b d b d a c=⇔=。
(3)合比性质:若d c b a =,那么dd c b b a ±=±。
(4)等比性质:若)0(≠+++===n d b n m d c b a ,那么b a n d b m c a =++++++ 。
知识点二、成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称为比例线段。
知识点四、黄金分割把线段AB 分成两条线段AC,BC (AC>BC ),且使AC 是AB 和BC 的比例中项,即AB AC AC BC =或2AC AB BC =⋅,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点. ==AB AC AC BC 618.0215≈-,称为黄金分割比。
知识点五、平行线分线段成比例的基本事实1.两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线截得的线段也相等。
如图所示,直线l 1∥l 2∥l 3,直线AC,DF 被直线l 1,l 2,l 3截得的线段分别为AB ,BC 和DE ,EF ,若AB=BC ,则DE=EF 。
2.两条直线被一组平行线所截,所得的对应线段成比例。
如图所示,直线l 1∥l 2∥l 3,直线AC,DF 被直线l 1,l 2,l 3所截,那么DFEF AC BC DF DE AC AB EF DE BC AB ===,,。
知识点六、相似图形1.相似图形定义:直观上,把一个图形放大(或缩小)得到的图形与原图形是相似的。
相似的图形特点:形状相同,但大小不一定相等。
2.相似三角形的有关概念(1)定义:我们把三个角对应相等,且三条边对应成比例的两个三角形叫作相似三角形(如图所示);(2)表示方法:ABC ∆和C B A '''∆相似,记作C B A ABC '''∆∆∽,读作ABC ∆相似于C B A '''∆,符号“∽”读作“相似于”。
【初中数学】初中数学相似三角形的判定知识点总结
【初中数学】初中数学相似三角形的判定知识点总结
【—相似三角形总结】知识要点:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上,如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上。
相似三角形判定方法
方法一(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线与线段成比例的证明)
方法二
如果一个三角形的两个角与另一个三角形的两个角对应相等,
那么这两个三角形相似。
方法三
如果两个三角形的两组对应边成比例,并且相应的夹角相等,
那么这两个三角形相似
方法四
如果两个三角形的三组对应边成比例,那么这两个三角形相似
方法五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形
三个基本型
Z型 A型反A型
方法六
两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
一定相似的三角形1.两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
2.两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
)
3.两个等边三角形
(两个等边三角形,三角都是60度,且边边相等,所以相似)
4.直角三角形中由斜边的高形成的三个三角形(母子三角形)
知识要领总结:如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学相似三角形定理知识点总结相似三角形定理
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。
3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边
1。