平方差公式与完全平方公式练习题

合集下载

(完整版)平方差、完全平方公式专项练习题(精品)

(完整版)平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差、完全平方公式专项练习题 经典

平方差、完全平方公式专项练习题  经典

平方差公式专项练习题有关配方问题(一)对于a2+2ab+b2=(a+b)2、a2-2ab+b2=(a-b)2的配方问题是,对于a2,2ab,b2这三项,认准特点,式子中缺哪项就补哪项,但要保证式子相等。

具体操作:先确定第一项,再确定第三项,最后确定中间项,并且要检验中间项与原式中的中间项相等。

(二)练习: 1.若x2+mx+9是完全平方式,则m=_____.2. 若x2+12x+m2是完全平方式,则m=_____.3. 若x2-mx+9=(x+3)2,则m=_____.4. 若4x2-mx+9是完全平方式,则m=_____.5.若4x2+12x+m2是完全平方式,则m=_____.6.若(mx)2+12x+9是完全平方式,则m=_____.7.若mx2+12x+9是完全平方式,则m=_____.8.已知x2-2(m+1)xy+16y2是一个完全平方式,那么m的值是_____.9.(1)化简(a-b)2+(b-c)2+(a-c).(2)利用上题的结论,且a-b=10,b-c=5,求a2+b2+c2-ab-bc-ac的值.(3)已知a=2x-12,b=2x-10,c=2x+4,求a2+b2+c2-ab-bc-ac的值(4)已知a,b,c是三角形的三边且满足a2+b2+c2-ab-bc-ac=0,判断三角形的形状.10.已知x2-2x+y2+6y+10=0,求x=_____,y=_____,x+y=_____.11. 已知x2-4x+y2+6y+13=0,求x=_____,y=_____,xy=_____.12.试说明N=x2-4x+y2+6y+15永远为正值.平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007200820061⨯+.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差和完全平方公式及经典例题

平方差和完全平方公式及经典例题

平方差和完全平方公式及经典例题专题一:平方差公式例1:计算下列各整式乘法。

①位置变化$(7x+3y)(3y-7x)$②符号变化$(-2m-7n)(2m-7n)$③数字变化$98\times102$④系数变化$(4m+n)(2m-n)-24$⑤项数变化$(x+3y+2z)(x-3y+2z)$⑥公式变化$(m+2)(m-2)(m^2+4)$变式拓展训练:变式1】$(-y-x)(-x+y)(x^2+y^2)(x^4+y^4)$变式2】$(2a-\frac{b}{3})^2-\frac{(b-4a)^2}{33}$变式3】$1002-992+982-972+\cdots+22-12$专题二:平方差公式的应用例2:计算$2004-2004^2\times2005\times2003$的值为多少?变式拓展训练:变式1】$(x-y+z)^2-(x+y-z)^2$变式2】$301\times(302+1)\times(302^2+1)$变式3】$(2x+y-z+5)(2x-y+z+5)$变式4】已知$a$、$b$为自然数,且$a+b=40$。

1)求$a^2+b^2$的最大值;(2)求$ab$的最大值。

专题三:完全平方公式例3:计算下列各整式乘法。

①位置变化:$(-x-\frac{y}{2})(\frac{y}{2}+x)$②符号变化:$(-3a-2b)^2$③数字变化:$197^2$④方向变化:$(-3+2a)^2$⑤项数变化:$(x+y-1)^2$⑥公式变化$(2x-3y)^2+(4x-6y)(2x+3y)+(2x+3y)^2$变式拓展训练:变式1】$a+b=4$,则$a^2+2ab+b^2$的值为()A.8B.16C.2D.4变式2】已知$(a-b)^2=4$,$ab=12$,则$(a+b)^2$=_____变式3】已知$x+y=-5$,$xy=6$,则$x^2+y^2$的值为()A.1B.13C.17D.25变式4】已知$x(x-1)-(x^2-y)=-3$,求$x^2+y^2-2xy$的值专题四:完全平方公式的运用例4:已知:$x+y=4$,$xy=2$。

平方差公式和完全平方公式(含参一)(人教版)(含答案)

平方差公式和完全平方公式(含参一)(人教版)(含答案)

平方差公式和完全平方公式(含参一)(人教版)一、单选题(共10道,每道10分)1.若,则的值为( )A.-1B.1C.±1D.2答案:B解题思路:试题难度:三颗星知识点:平方差公式2.若,则的值为( )A.-4B.±4C.±4yD.4答案:C解题思路:试题难度:三颗星知识点:平方差公式3.若,则的值为( )A.3B.-3C.±3D.±9答案:C解题思路:试题难度:三颗星知识点:平方差公式4.若,则的值为( )A.7B.±7C.-7D.以上都不对答案:B解题思路:试题难度:三颗星知识点:平方差公式5.若是完全平方式,则的值为( )A.2B.-2C.±2D.±1答案:C解题思路:试题难度:三颗星知识点:完全平方公式6.若是完全平方式,则的值为( )A.36B.9C.-9D.±9答案:B解题思路:试题难度:三颗星知识点:完全平方公式7.若是完全平方式,则的值为( )A.-6B.-12C.±6D.±12答案:D解题思路:试题难度:三颗星知识点:完全平方公式8.若是完全平方式,则的值为( )A.-4B.4C.-16D.16答案:A解题思路:试题难度:三颗星知识点:完全平方公式9.若,则的值为( )A.2B.-2C.±2D.4答案:B解题思路:试题难度:三颗星知识点:完全平方公式10.若,则的值为( )A.-1B.1C.±1D.-4答案:A解题思路:试题难度:三颗星知识点:完全平方公式。

(完整版)实用版平方差、完全平方公式专项练习题(精品)

(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )

完整版)平方差公式与完全平方公式练习题

完整版)平方差公式与完全平方公式练习题

完整版)平方差公式与完全平方公式练习题1.计算以下多项式的积:1) $x^2-1$2) $m^2-4$3) $(2x)^2-1$4) $x^2-25y^2$2.哪些多项式可以用平方差公式相乘?1) 可以2) 可以3) 可以4) 可以5) 可以6) 可以3.计算:1) $9x^2-4$2) $4a^2-3b^2$3) $4y^2-x^2$4.简便计算:1) $9996$2) $-y^2-3y+10$5.计算:1) $4y^2-xy-2x^2$2) $25-4x^2$3) $-0.5x^4+0.25x^2$4) $12x$5) $.75$6) $9999$6.证明:两个连续奇数的积加上1一定是一个偶数的平方。

假设两个连续奇数为$(2n+1)$和$(2n+3)$,它们的积为$(2n+1)(2n+3)=4n^2+8n+3$,加上1后得到$4n^2+8n+4=(2n+2)^2$,是一个偶数的平方。

7.求证:$(m+5)^2-(m-7)^2$一定是24的倍数。

m+5)^2-(m-7)^2=(m^2+10m+25)-(m^2-14m+49)=24m-24$。

是24的倍数。

完全平方公式(一)1.应用完全平方公式计算:1) $16m^2+8mn+n^2$2) $y^2-6y+9$3) $a^2+2ab+b^2$4) $b^2-2ab+a^2$2.简便计算:1) $$2) $9801$3) $50$4) $50$3.计算:1) $16x^2-8xy+y^2$2) $9a^4-24a^3b+16a^2b^2$3) $10xy^2-y^4$4) $-9a^2-2ab-3b^2$5) $6x^2-3xy+3y^2$4.在下列多项式中,哪些是由完全平方公式得来的?1) 是2) 是3) 不是4) 是5) 是完全平方公式(二)1.运用法则:1) $a+\dfrac{b-c}{2}$2) $a-\dfrac{b-c}{2}$3) $a-\dfrac{b+c}{2}$4) $a+\dfrac{b+c}{2}$2.判断下列运算是否正确:1) 正确2) 错误3) 正确4) 错误3.计算:1) $x^2-4y^2+12x-12y+9$2) $a^2+b^2+c^2+2ab+2ac+2bc$3) $6x+9$4) $2x^2+16x+19$4.计算:dfrac{1}{x^2}+\dfrac{1}{x}+\dfrac{1}{4}$1+\dfrac{1}{x}+\dfrac{1}{x^2}$dfrac{1}{c^2}+\dfrac{1}{c}+\dfrac{1}{4}$1.求(a-b+2c)²和(a+b+c)²-(a-b-c)²的结果。

平方差公式与完全平方公式练习题

平方差公式与完全平方公式练习题

平方差公式1. 计算下列多项式的积. (1) (x+1) (x-1) (2) (m+2) (m-2) (3)(2x+l)(2x-l)(4)(x+5y)(x-5y)2. 下列哪些多项式相乘可以用平方差公式? (1 ) (2a + 3b)(2a-3b) (2) (-2a + 3b)(2a-3b) (3) (~2a + 3b)(-2a + 3b) (4) (~2a 一 3b)(2a 一 3b) (5) (a + b + c)(a — b + c) (6) {a —b — c)(a + b — c)3. 计算: (1) (3x+2) (3x-2) (2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)4. 简便计算: (1) 102x98 (2) (y+2) (y-2) - (y-1 )(y+5)5.计算:(1)(-x-2y)(-2y + x)(2) (2x + 5)(5_2x)(3) (0.5-x)(x +0.5)(,+0.25)(4) (X + 6)2-(X -6)2 (5) 100.5x99.5(6)99x101 x 10001创作:欧阳德6. 证明:两个连续奇数的积加上1 —定是一个偶数的平方7. 求证:伽+疔-伽-7尸一定是24的倍数完全平方公式(一)1. 应用完全平方公式计算:(1) (4m+n) 2 (2) (y-1) 2(3) (-a-b) 2 (4) (b-a) 22. 简便计算:(1) 1022 (2) 992(3) 50.012(4) 49炉3. 计算:(1 ) (4x-y)2 (2) (3a2b-4ab2c)2(3) (5x- ) 2=-10^2+y4(4) (3a + -b) (5)(x + -)2A(6) (x-1)2X4. 在下列多项式中,哪些是由完全平方公式得来的?(1) x2 -4x + 4 (2) l + 16a2 (3) x2 -1(4) x2 +xy + y2 (5) 9x2 -3xy + -y24'完全平方公式(二)1. 运用法则:(1) a+b-c=a+ ( ) (2) a-b+c=a-2. 判断下列运算是否正确.(a-2b) - (4c+5) 3. 计算:4 •计算:(1 ) (a-h + 2c)2 (2) (a + h + c)2 - (a-h-c)2 5. 如果2 +36x + 81是一个完全平方公式, 少?少?7.如果x 2-y 2 =4,那么(x-y)2(x+y)2的结果是多少?8•已知 a + h = 5 ab=\.5 ,求 a 2 +b 2 和(a-h)2 的值已知 x +丄=3 ,求F +亠和(x —丄)'的值X X X9•已知 a+b = -l ab = 12 ,求/ +b 2 和(a -bf 的值(3) a-b-c=a-( (4) a+b+c=a-(1) 2a-b--=2a- (b--)2 2(3n+2a-b)(2) m-3n+2a-b=m+(3) 2x-3y+2=- (2x+3y-2)(4) a-2b-4c+5=(1) (x+2y-3) (x-2y+3)(o+b+c) 2 (3)(x+3) 2-x 2 (4)(x+5) 2(x-2)(x-3)则斤的值是多6.如果4, +也+36是一个完全平方公式, 则斤的值是多10.证明⑵2 + 1)2—25能被4整除时间:2021・03.07 | 创作:欧阳彳蕙。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

人教版初中数学平方差与完全平方公式练习及参考答案

人教版初中数学平方差与完全平方公式练习及参考答案

平方差与完全平方公式练习1、用平方差公式进行计算:
(1) 103×97; (2)118×122 (3) 102×98 (4) 51×49
2、平方差公式在混合运算中的应用:
(3) (4)
利用平方差公式进行证明:
3、对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的整数倍吗?
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.
方法总结:在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系.
4、如果两个连续奇数分别是2n-1,2n+1(其中n为正整数),证明两个连续奇数的平方差是8的倍数.
注意:逆用了平方差公式!5、
6、
7、
8、
9、对于任意一个正整数n,整式A=(4n+1)·(4n-1)-(n+1)·(n-1)能被15整除吗?请说明理由.
10、王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
完全平方公式
1、利用完全平方公式计算:
2、下面各式的计算是否正确?如果不正确,应当怎样改正?
3、利用完全平方公式计算
4、利用完全平方公式的变形求整式的值:
5、填空:
6、
7、
8、(1)(3a+b-2)(3a-b+2) (2)(x-y-m+n)(x-y+m-n) 9、
10、已知x+y=8, x-y=4,求xy.。

平方差公式、完全平方公式综合练习题

平方差公式、完全平方公式综合练习题

平方差公式、完全平方公式综合练习题在代数学的学习中,平方差公式和完全平方公式是我们经常会用到的重要公式。

它们可以帮助我们简化复杂的计算,提高效率。

本文将为大家提供一些综合练习题,以帮助大家熟练掌握平方差公式和完全平方公式的应用。

练习题1:计算以下表达式的值:(1) $(3x + 4)(3x - 4)$;(2) $(5a + 2b)(5a - 2b)$;(3) $(2x + 7y)(2x - 7y)$。

解答:(1) 首先,我们可以利用平方差公式进行计算:$(3x + 4)(3x - 4) = (3x)^2 - 4^2 = 9x^2 - 16$。

(2) 同样地,利用平方差公式进行计算:$(5a + 2b)(5a - 2b) = (5a)^2 - (2b)^2 = 25a^2 - 4b^2$。

(3) 再次利用平方差公式进行计算:$(2x + 7y)(2x - 7y) = (2x)^2 - (7y)^2 = 4x^2 - 49y^2$。

练习题2:计算以下表达式的值:(1) $9x^2 - 16$;(2) $25a^2 - 4b^2$;(3) $4x^2 - 49y^2$。

解答:(1) 这个表达式可以看作是平方差公式的逆运算。

通过观察可得:$9x^2 - 16 = (3x)^2 - 4^2 = (3x + 4)(3x - 4)$。

(2) 类似地,我们可以将其写成平方差公式的形式:$25a^2 - 4b^2 = (5a)^2 - (2b)^2 = (5a + 2b)(5a - 2b)$。

(3) 同样地,利用平方差公式的逆运算,我们可以得到:$4x^2 - 49y^2 = (2x)^2 - (7y)^2 = (2x + 7y)(2x - 7y)$。

练习题3:计算以下表达式的值:(1) $(x + 2)^2$;(2) $(y - 3)^2$;(3) $(3a - b)^2$。

解答:(1) 这些表达式可以应用完全平方公式进行计算。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例22解:∵(∴+)(b a ∵+b a 例3解:例4解:a 2+b (例5x-z 的积得来例61=(2-1)和解:( =( =24096 =161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。

例7.运用公式简便计算 (1)1032 (2)1982 解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32 =10000+600+9 =10609(2)1982=(200-2)2 =2002-2⨯200⨯2+22 =40000-800+4 =39204 例8.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2) 解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2 (2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4 例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

(完整版)平方差公式与完全平方公式提高训练

(完整版)平方差公式与完全平方公式提高训练

教学过程提高训练一、选择1.若(x+a)(x+b)=x2-kx+ab,则k的值为( )A.a+b B.-a-b C.a-b D.b-a2.计算(2x-3y)(4x2+6xy+9y2)的正确结果是( )A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 3.(x2-px+3)(x-q)的乘积中不含x2项,则( )A.p=q B.p=±q C.p=-q D.无法确定4.若0<x<1,那么代数式(1-x)(2+x)的值是( )A.一定为正B.一定为负C.一定为非负数D.不能确定5.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( ) A.2(a2+2)B.2(a2-2)C.2a3D.2a66.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=407.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=21.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.2.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.3.若a2+a+1=2,则(5-a)(6+a)=__________.4.当k=__________时,多项式x-1与2-kx的乘积不含一次项.5. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.1、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .二、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);(3)(a -2b +3c -1)(a +2b -3c -1); (4)(s -2t )(-s -2t )-(s -2t )2;(4)(5)(t -3)2(t +3)2(t 2+9)2.例1、完全平方式1、若k x x ++22是完全平方式,则k =2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差公式
1.计算下列多项式的积.
(1)(x+1)(x-1)(2)(m+2)(m-2)
(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)
2.下列哪些多项式相乘可以用平方差公式?
(1))3
a
(b
b
3
-
)(
+
a-
2
2(b
3
)(
a
b
+(2))3
2
a-
2
(3))3
2
3
)(
2
(b
a
-(4))3
a-
b
-
-
2
3
)(
+
(b
2
a
a+
b
-
(5))
c
a
(c
b
-
)(
-
+
a-
b
a
+(6))
(c
)(
c
b
+
-
a+
b
3.计算:
(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)
(3)(-x+2y)(-x-2y)
4.简便计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
5.计算:
(1))
)(
5
-(2))2
5
2(x
+
x-
-
-
2
)(
(x
y
x+
y
2
(3))25.0)(5.0)(5.0(2++-x x x (4)22)6()6(--+x x
(5)100.5×99.5 (6)99×101×10001
6.证明:两个连续奇数的积加上1一定是一个偶数的平方
7.求证:22)7()5(--+m m 一定是24的倍数
完全平方公式(一)
1.应用完全平方公式计算:
(1)(4m+n )2 (2)(y-1
2
)2 (3)(-a-b )2 (4)(b-a )2 2.简便计算:
(1)1022 (2)992 (3)50.012 (4) 49.92 3.计算:
(1)2)4(y x - (2)222)43(c ab b a -
(3)-x 5( )2= 4210y xy +- (4))3)(3(b a b a --+ (5)2)1(x
x +
(6)2)1(x
x -
4.在下列多项式中,哪些是由完全平方公式得来的? (1)442+-x x (2)2161a + (3)12-x (4)22y xy x ++ (5)224
139y xy x +-
完全平方公式(二)
1.运用法则:
(1)a+b-c=a+( ) (2)a-b+c=a-( ) (3)a-b-c=a-( ) (4)a+b+c=a-( ) 2.判断下列运算是否正确.
(1)2a-b-2c
=2a-(b-2
c ) (2)m-3n+2a-b=m+(3n+2a-b ) (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b )-(4c+5) 3.计算:
(1)(x+2y-3)(x-2y+3) (2)(a+b+c )2
(3)(x+3)2-x 2 (4)(x+5)2-(x-2)(x-3)
4.计算:
(1)2)2(c b a +- (2)22)()(c b a c b a ---++
5.如果81362++x kx 是一个完全平方公式,则k 的值是多少?
6.如果3642++kx x 是一个完全平方公式,则k 的值是多少?
7.如果422=-y x ,那么22)()(y x y x +-的结果是多少?
8.已知5=+b a 5.1=ab ,求22b a +和 2)(b a -的值已知31
=+x
x ,求
2
21x
x +
和2
)1(x x -的值
9.已知-7=+b a 12=ab ,求ab b a -22+和 2)(b a -的值
10.证明25)12(2-+n 能被4整除。

相关文档
最新文档