第二章电网的电流保护1-2
电网的电流保护
第2章 电网的电流保护 2.1 单侧电源网络相间短路的电流保护
若 和E S 为Z常S 数,则短路电流将随着 L k 的减小而增大,经计算后可绘
出其变化曲线,如图2.2所示。若Z S 变化,即当系统运行方式变化时,短 路电流都将随着变化。 当系统阻抗最小时,流经被保护元件短路电流最大的运行方式称为最大运 行方式。 图2.2中曲线1表示系统在最大运行方式下短路点沿线路移动 时三相短路电流的变化曲线。 短路时系统阻抗最大,流经被保护元件短路电流最小的运行方式称为最小 运行方式。在最小运行方式下,发生两相短路时通过被保护元件的电流最 小,即最小短路电流为
E S ——系统等效电源的相电势,也可以是母线上的电压;
Z S — 保护安装处到系统等效电源之间的阻抗,即系统阻抗;
Z 1 ——线路单位长度的正序阻抗,单位为;
1.10
L k ——短路点至保护安装处之间的距离。
第2章 电网的电流保护 2.1 单侧电源网络相间短路的电流保护
图2.2 单侧电源辐射形电网电流速断保护工作原理图 1.11
1.2
第2章 电网的电流保护 本章内容
● 2.1 单侧电源网络相间短路的电流保护 ● 2.2 电网相间短路的方向性电流保护 ● 2.3 大电流接地系统的零序电流保护 ● 2.4 小电流接地系统的零序电流保护 ● 思考题与习题
1.3
第2章 电网的电流保护 2.1 单侧电源网络相间短路的电流保护
对于单侧电源网络的相间短路保护主要采用三段式电流保护,即第一 段为无时限电流速断保护,第二段为限时电流速断保护,第三段为定时 限过电流保护。其中第一段、第二段共同构成线路的主保护,第三段作 为后备保护。
1. 工作原理
对于图2.2所示的单侧电源辐射形电网,为切除故障线路,需在每条线路的电源侧装
国网考试之电力系统继电保护:电力系统继电保护(weiwancheng) 题库
第一章绪论习题1-1 在图1-1所示的网络中,设在d点发生短路,试就以下几种情况评述保护1和保护2对四项基本要求的满足情况:(1)保护1按整定时间先动作跳开1DL,保护2起动并在故障切除后返回;(2)保护1和保护2同时按保护1整定时间动作并跳开1DL和2DL;(3)保护1和保护2同时按保护2整定时间动作并跳开1DL和2DL;(4)保护1起动但未跳闸,保护2动作跳开2DL;(5)保护1未动,保护2动作并跳开2DL;(6)保护1和保护2均未动作图1-1 习题1-1图第二章电网的电流保护和方向性电流保护一、三段式相间电流保护例题例题2.1欲在图2-1所示的35KV中性点不接地电网中变电所A母线引出的线路AB上,装设三段式电流保护,保护拟采用两相星形接线。
试选择电流互感器的变比并进行I段、II段、III段电流保护的整定计算,即求I、II、III段的一次和二次动作电流(I’dz、I’dz·J、I’’dz、I’’dz·J、I dz、I dz·J)、动作时间(t’、t’’、t)和I段的最小保护范围l min%,以及II段和III段的灵敏系数K’’lm、K lm(1)、K lm(2)。
对非快速切除的故障要计算变电所母线A的残余电压。
已知在变压器上装有瞬动保护,被保护线路的电抗为0.4Ω/km,可靠系数取K’k=1.3,K’’k=1.1,K k=1.2,电动机自启动系数K zq=1.5,返回系数K h=0.85,时限阶段△t=0.5s,计算短路电流时可以忽略有效电阻。
其他有关数据按3种方案列于表1中。
图2-1 例题2.1图表1 三种方案解参见图2-1。
已知X s=0.3Ω,l =10km,S B=2×10 MV A,U d%=7.5,S fh=15MV A,t10=2.5s。
1 求电流I段定值(1)动作电流I’dzI’dz=K’k×Id·B·max=1.3×4.97=6.46(kA)其中Id·B·max=E S/(X s+X AB)=(37/3)/(0.3+10×0.4)=4.97(kA)(2) 灵敏性校验,即求l minl min = 1/Z b×((3/2)·E x/ I’dz-X s,max) = 1/0.4×( (37/2) / 6.46 -0.3)=6.4 (km)l min % = 6.4/10 ×100% = 64% > 15%2 求电流II段定值(1) 求动作电流I’’dz为与相邻变压器的瞬动保护相配合,按躲过母线C最大运行方式时流过被整定保护的最大短路电流来整定(取变压器为并列运行)于是Id·C·max=E S/(X s+X AB+X B/2)=(37/3)/(0.3+4+9.2/2)=2.4(kA)I’’dz=K’’k·Id·C·max= 1.1×2.4=2.64(kA)式中X B=Ud%×(U2B / S B)=0.075×(352/10)=9.2(Ω)(2)灵敏性校验K’’lm=Id·B·min / I’’dz=3/ 2×4.97/2.64=1.63 > 1.5满足要求(3)求动作时间t(设相邻瞬动保护动作时间为0s)t’’ = 0+0.5 = 0.5 (s)3 求电流III段定值(1)求动作电流IdzI dz =(Kk/Kh)×Kzq×Imaxfh=(1.2/ 0.85)×1.5×247=523(A)式中Imaxfh =Sfh/(3U ming)=15/(3×35)=247(A)(2)灵敏性校验本线路末端短路时K lm (1) =((3/2) ×4.97)/0.523=8.22>1.5 满足要求相邻变压器出口母线C(变压器为单台运行)三相短路时I(3)d·C·max=E S/(X s+X AB+X B)=(37/3)/ (0.3+4+9.2) = 1.58(kA)考虑C点短路为y,d11接线变压器后短路,当该点为两相短路时,对所研究的保护动作最不利,又因保护接线采用两继电器式两相星形接线,故有I(2)d·min=(1/2)I(3)d·C·min故K lm (2) =0.5×1580/523=1.5 > 1.2满足要求如采用三继电器式两相星形接线,灵敏系数还可提高1倍。
电力系统继电保护-(第2版)第二章-电流保护PPT课件全文编辑修改
等值阻抗最大,以致发生故障时,通过保护装置的短路电流为 最小的运行方式。
➢最大短路电流:在最大运行方式下三相短路时通过保护装置
的电流为最大,称为最大短路电流。
Ik.m axZ E Z s.m iE nZ k 1Z s.m in E Z 1 L k 1短路类型系数
流来整定。
动作电流:
I =K II
II
set.2 rel
Iset.1
K r I e I l 1 .1 ~ 1 .2 ( 非 周 期 分 量 已 衰 减 )
为保证选择性,动作时限要高于下一线路电流速断保护的动 作时限一个时限级差△t (Δt一般取0.5s)
动作时间: t2II t1 tt
(1) 前一级保护动作的负偏差(即保护可能提前动作) ; (2) 后一级保护动作的正偏差(即保护可能延后动作) ; (3) 保护装置的惯性误差(即断路器跳闸时间:从接通跳闸回 路到触头间电弧熄灭的时间) ; (4) 再加一个时间裕度。
Lmin
1( Z1
3 E
2
II set
Zs.max)
(保证选择性和可靠性,牺牲一定的灵敏性,获得速动性)
三、保护实现原理图
电流速断保护的主要优点是动作迅速、简单可靠。 缺点是不能保护线路的全长,且保护范围受系统运行方式和 线路结构的影响。当系统运行方式变化很大或被保护线路很 短时,甚至没有保护范围。
对于单侧电源网络的相间短路保护主要采用三段式电流 保护,即第一段为无时限电流速断保护,第二段为限时电 流速断保护,第三段为定时限过电流保护。其中第一段、 第二段共同构成线路的主保护,第三段作为后备保护
电流互感器和电流继电器是实现电流保护的基本元件。
(完整版)电力系统继电保护辅导资料二
电力系统继电保护辅导资料二主题:课件第二章电网的电流保护第1-2节——单侧电源网络相间短路的电流保护、电网相间短路的方向性电流保护学习时间:2013年10月7日-10月13日内容:我们这周主要学习第二章的第1-2节,单侧电源网络相间短路的电流保护和电网相间短路的方向性电流保护的相关内容。
希望通过下面的内容能使同学们加深电网电流保护相关知识的理解。
一、学习要求1.掌握三段式电流保护的配合原则、整定计算,会阅读三段式电流保护的原理图;2.理解方向性电流保护中方向元件的作用,能正确按动作方向分组配合、整定计算。
二、主要内容(一)单侧电源网络相间短路的电流保护1.继电器(1)基本原理能自动地使被控制量发生跳跃变化的控制元件称为继电器。
当输入信号达到某一定值或由某一定值突跳到零时,继电器就动作,使被控制电路通断。
它的功能是反应输入信号的变化以实现自动控制和保护。
继电器的继电特性:(也称控制特性)继电器的输入量和输出量在整个变化过程中的相互关系。
图1 继电特性继电器的返回系数r K :返回值r X 与动作值op X 的比值。
即r r opX K X 过量继电器:反应电气量增加而动作的继电器。
其返回系数小于1,不小于0.85。
欠量继电器:反应电气量降低而动作的继电器。
其返回系数大于1,不大于1.2。
(2)继电保护装置的基本分类● 按动作原理:电磁型、感应型、整流型、晶体管型、集成电路型、微机型等继电器。
● 按反应的物理量:电流继电器、电压继电器、功率方向继电器、阻抗继电器和频率继电器等。
● 按作用:起动继电器、时间继电器、中间继电器、信号继电器和出口继电器等。
Y Y min 0(3)过电流继电器动作电流(I op ):使继电器动作的最小电流。
返回电流(I re ):使继电器由动作状态返回到起始位置时的最大电流。
2.单侧电源网络相间短路时电流量值特征正常运行:负荷电流短路:三相短路、两相短路k k s E I K Z Z ϕϕ=+式中,E ϕ——系统等效电源的相电动势;s Z ——保护安装处至系统等效电源之间的阻抗;k Z ——短路点至保护安装处之间的阻抗;K ϕ——短路类型系数(三相短路取1,两相短路取2)。
电流保护(1-2)2
2.1.6 阶段式电流保护配合
保护1:瞬时过电流 保护(不是速断)
保护2:0.5s过电流 保护(不是II段) 可加电流速断 (两段式) 保护3:电流速断 限时电流速断 过电流保护 (三段式) 全系统任意点发生短路时,如果不发生保护或断路器据动,则故障 都可以在0.5s内切除。
演示
阶段式电流保护评价
的近后备保护。 优点:可保护本线路全长;可作为电流速断的近后备保护;
缺点:速动性差(有延时)。
2.1.5 过电流保护
过电流保护是指其起动电流按躲最大负荷电流 来整定的保护。 该保护不仅能保护本线路全长,且能保护相邻 线路的全长。可作为本线路主保护的近后备保 护以及相邻下一线路保护的远后备保护。
2.1.5 过电流保护
I K rel
I
I
E Z s. min Z AB Z BC
I K rel I k .B. max
KrelI为可靠系数,取1.2~1.3,是考虑非周期分量影响、实际短 路电流可能大于计算值、保护装置的实际动作值可能小于整定 值和一定的裕度等因素。
2)电流速断保护整定原则
继电器的二次动作电流:
动作时限
tn t( n 1) max t t( n 1) max ~ 下一相邻母线上 所接保护的最大动作时间
2.1.5 过电流保护
动作时限(越靠近电源时间越长,如何解决?)
2.1.5 过电流保护
3)灵敏性的校验 a. 作为近后备时 采用最小运行方式下本线路末端两相短路时的 电流来校验,要求Ksen ≥ 1.3 ~ 1.5
3 2
E Zs Zk
(短路电流中的工频周期分量)
最大运行方式和最小运行方式:
对继电保护而言,在相同地点发生相同类型的短路时 流过保护安装处的电流最大,称为系统最大运行方式, 对应的系统等值阻抗最小,Zs=Zs.min。 对继电保护而言,在相同地点发生相同类型的短路时 流过保护安装处的电流最小,称为系统最小运行方式, 对应的系统等值阻抗最大,Zs=Zs.max。
2011继电保护 第2章 电网的电流保护双侧电源
(2)外汲电流的影响 限时电流速断保护整定时 分支电路的影响 考虑分支系数
I
set
K rel I set .下一级 K b
3.过电流保护装设方向元件的一般方法 反方向保护的延时小于本线路保护的动作延时,本保护可不用方向元件
0 60 C相继电器能够动作的条件 分析结论:三相短路和任意两相短路,当 0 90 K 使故障相方向继电器动作的条件为 30 60 90°接线方式的优点 缺点 (1)两相短路没有死区
(2)选择继电器的内角在30°和 60° 之间,各种相间短路都能保证动作的方向性 在保护安装地点附近正方向发生三相短路时,方 向保护存在动作的死区
0 90 K
的情况下均能动作,应选择
0 90
在三相对称的情况下,当功率因数为1时,加入继电 器的电流和电压相位相差90°(这只是加入继电器的 电压和电流的一种组合,并无实际意义)
之间才能满足要求
同一相的电流元件与功率元件必须串联,然后再 与其它相并联,一起起动其它元件
2.正方向发生两相短路 (1)短路点位于保护安装地点附近 为使故障相方向继电器在任何 0 90 K 的情况下均能动作,应选择 之间才能满足要求 0 90 (2)短路点远离保护安装地点 120 B相继电器能够动作的条件 30 C相继电器能够动作的条件 30 60 正方向发生两相短路 B相继电器能够动作的条件 30 90
五、方向性电流保护的应用特点 1.电流速断保护可以取消方向元件的情况 速断保护的整定值躲过反方向短路时流过保护的最大短路电流, 保护可以不用方向元件
2.限时电流速断保护整定时分支电路的影响 (1)助增电流的影响 分支系数 故障线路流过的短路电 流 K b 前一级保护所在线路上 流过的短路电流
第二章电流保护和方向性电流保护
曲线 max :系统最大运行方式下发生三相 短路情况。 曲线min:系统最小运行方式下发生两相 短路情况。
(线路上某点两相短路电流
为该点三相短路电流的 倍)
3 2
(2) 动作电流整定
原则:按躲开下条线路出口(始端)短路时流过本保护的 最大短路电流整定(以保证选择性): IIdz.1 > I(3)d.B.max 取:IIdz.1= KБайду номын сангаасI· I(3)d.B.max IIdz.2 > I(3)d.c.max IIdz.2= KkI· I(3)d.C.max
可靠系数: KkII = 1.1~1.2
(Id中非周期分量已
衰减,故比K I稍小)
2、动作时限的配合 为保证本线路电流II段与
下条线路电流I段的保护范围
重叠区内短路时的动作选择 性,动作时限按下式配合: tII1=tI2+t≈t (t: 0.35s~0.6s,一般取0.5s) 3、保护装置灵敏性的校验 对于过量保护,灵敏系数:
(可靠系数:KkI = 1.2~1.3)
(3) 灵敏性校验
该保护不能保护本线路全长, 故用保护范围来衡量: max:最大保护范围. min:最小保护范围.
Exx / 3 Exx / 3 3 I 由: Kk 2 Z s.max z1lmin Z s.min z1L
3 Z s.min z1L 可求得:lmin ( Z s.max ) / z1 I 2 Kk
为保证动作选择性,动作
时限按“阶梯原则”整定:
tIII1=Max{tIII2,tIII3,tIII4}+t
对定时限过流保护,当故障越靠近电源端时,此时短路电
流Id越大,但过流保护的动作时限反而越长 ——— 缺点 ∴ 定时限过流保护一般作为后备保护,但在电网的终端可以 作为主保护。
电流保护-相间短路电流保护
I
I set
3 Eϕ = 2 Zs max + Z1 Lmin
I
I set
=K
I rel
Eϕ Zs min + Z A− B
Z1为每公里线路阻抗,即ZA-B=Z1*L 两公式相等,可得:保护范围校验:
⎡ ⎤ 3 K rel Zs max − Zs min ⎥ 1 ⎢ 3 Lmin 2 100% = − ⎢ ⎥ × 100% ≥ (15" 20)% L K rel ⎢ 2 Z1 L ⎥ ⎢ ⎥ ⎣ ⎦
4。三段式电流保护的应用及特点 •保护应用: ¾在末端设备上用0秒动作的过电流保护作主保护。 ¾一般线路采用电流速断I段作主保护,用过电流保护III段 作后备保护。 ¾近电源端因III段时间延时较大,采用I、II、III段的三段 式保护。
第二章 电网的电流保护
上海电力学院
六、反时限过电流保护
1。反时限过电流保护特点
Krel 可靠系数1.15 ~1.25;返回系数0.85;自起动系数2 ~7。
第二章 电网的电流保护
上海电力学院
3。定时限过电流保护(电流保护III段) 2)按选择性要求整定 在多段线路的各个段上均装有过电流保护,各按躲过最大 负荷电流整定。当某段线路发生故障时,电源与短路点之 间的各个过电流保护均会起动。 按选择性要求,应只有故 障线路的过电流保护动作切 除故障,采用不同动作时限 的方法,保证选择性,在故 障线路的过电流保护动作切 除故障后,其它已启动的过 电流保护立即返回。
区别:动作电流值不同;动作时间不同。
第二章 电网的电流保护
上海电力学院
电力系统短路电流与系统运行方式及故障类型的关系:
第二章电流保护
一、 单侧电源网络相间短路的电流保护 二、 电网相间短路的方向性电流保护 三、 大电流接地系统的单相接地保护 四、 小电流接地系统的单相接地保护
要求
掌握: 1.电流继电器的工作原理及相关定义。 2.三段式电流保护的基本原理 3.三段式电流保护的整定计算方法 4.三段式电流保护的接线方式 5.三段式电流保护的应用 6.方向性电流保护的原理和整定计算方法
其中增加ZJ的原因: ▪ 增大触点容量(ZJ继电器的触点容量大) ▪ 躲过管型避雷器放电时间(相当于瞬时接
地短路)
0.04~0.06s 避雷器放电时间 0.06~0.08s ZJ动作时间(选择)
5. 灵敏度校验 Klm
▪
要求:Klm
l m in LAB
100
%
(15%
~
20 %) LAB
按最小运行方式下发生两相短路情况校验
▪ 由公式:
I
(2) d
I
I dz
3 2
E Z smax Z0lmin
lmin
推出灵敏度 Klm
6. 特点:
▪ 只能保护本线路的一部分 ▪ t=0 ▪ Klm 可能很小
➢ 保护范围受系统运行方式影响,当运行方式 变化很大时,可能很小。
➢ 当线路较长时其始端与末端短路电流差别较 大, lmin 较大;当线路较短时其始端与末端 短路电流差别较小,lmin 较小,所以:短线路 更受运行方式影响。
R8
Ij
LB
. I2
R1
D1-D4
UR1
C1
R2 C2
a D5 I1I2
R3
Ib1
UR3
b
D6
C3
R9 R7
单侧电源网络相间短路的电流保护.
解决方法
对反应电流升高而动作的电流速断保护 而言,能使该保护装置起动的最小电流值称 为保护装置的整定电流.以Iset表示.
I BC. f max
I AB. f max
1
IC D. f max
l
正常运行时,各条线路中流过所供的负荷电流,越是 靠近电源侧的线路,流过的电流越大。负荷电流的大 小,取决于用户负荷接入的多少,当用户的负荷同时 都接入时,流过线路的是最大负荷电流。
根据电力系统短路分析,当电源电势一定时,短路电流
继 电 器
高周波继电器
低电压继电器
欠量继电器
阻抗继电器 低周波继电器
电磁型过电流继电器
6
5
IJ
2
3 4 8
1
7
1. 2. 3. 4. 5. 6. 7. 8.
线圈 铁心 空气隙 被吸引的可动舌片 可动触点 固定触点 弹簧 止档
电磁型过电流继电器结构
6
J I
2
3 4
5
J 产生磁通 线圈 1中的电流 I , 通过由 :
触发器翻转过程c1升高由截止区向放大区过渡c2下降c2下降t2导通对应于继电器的动作状态输出电压20低电压继电器正常运行及电压高时继电器不动作触点断开电压低及停电时继电器动作触点闭合过电压继电器正常运行及电压低时和停电时继电器不动作触点闭合电压高时继电器动作触点断开阻抗继电器jj极化继电器ii电流差动继电器21时间继电器信号继电器中间继电器22212212单侧电源网络相间短路时电流量值特征单侧电源网络相间短路时电流量值特征正常运行时各条线路中流过所供的负荷电流越是靠近电源侧的线路流过的电流越大
电力系统继电保护-2 电网的电流保护
1、电力系统运行方式( Z s)的变化; 2、电力系统正常运行状 态(E)的变化; 3、不同短路类型( K)的变化; 4、随短路点距等值电源 的距离变化,短路电流 连续变化,越远电流越 小, 并且在本线路末端和下 级线路出口短路,电流 没有差别。
(图解:电力系统艰苦的工作环境)
2.1.3 电流速断保护
最大运行方式- 在相同的地点发生相同 类型的短路时流过保护 安装处电流最大, 对继电保护而言称为系 统最大运行方式,对应 的系统等值阻抗最小, Z s Z s min。 最小运行方式- 在相同的地点发生相同 类型的短路时流过保护 安装处电流最小, 对继电保护而言称为系 统最小运行方式,对应 的系统等值阻抗最大, Z s Z s max。
根据继电器的安装位置和工作任务给定动作值, 为使继电器有普遍的使用价值,动作值可以调整。
图2-1: 过电流继电器框图
2.1.1 继电器
(电流继电器图)
(电压继电器DY-28C图)
(时间继电器DS-31图)
(LDB-I型电流保护综合继电器图)
2.1.1 继电器
• 3 继电器的继电特性
• 继电特性——无论起动和返回,继电器的动作都是明确干脆的,它不 可能停留在某一个中间位置。
2.1.4 限时电流速断保护
• (图2-9: 限时电流速断动作时限的配合关系)
由上图可见,在保护 1 电流速断范围以内的故障,将以 t1I 的时间被切除,此时保
II 护 2 的限时电流速断虽然可能起动,但由于 t 2 较 t1I 大一个 t ,保护 1 电流速断
动作切出故障后,保护 2 返回,因而从时间上保证了选择性。
• • • •
2.1.1 继电器
• 2 过电流继电器原理框图
电力系统继电保护习题-第二章电网的电流保护
第二章 电网的电流保护2-1.已知:线路L1装设三段式电流保护,保护采用两相不完全星形接线,L1的,max 174L I A ⋅=300/5TA n =,在最大运行方式下及最小运行方式下k1、k2及k3点三相短路电流见下表: 短路点 k1 k2 k3最大运行方式下三相短路电流(A ) 4400 1310 520最小运行方式下三相短路电流(A ) 3945 1200490L2过电流保护的动作时限为:2.5秒。
求:L1线路各段(I,II,III 段)保护的动作电流,继电器的动作电流及动作时限,并校验保护的Ⅱ、Ⅲ段灵敏度(各项系数取:,,,,) 1.3I rel K = 1.1II rel K = 1.2rel K ΙΙΙ= 1.3ss K =0.85re K =图2-12-2.如图所示网络,已知:max 6.7s Z ⋅=Ω,min 5.5s Z ⋅=Ω。
试对保护1进行电流I 段和II 段的整定计算(求:'set I 、、、't %min l ''setI 、、''t ''sen K 、)并画出时限特性曲线(线路阻抗取0.4Ω/kM ,电流I 段的可靠系数,电流II 段的可靠系数,下同)。
注:计算短路电流取E 1.3I rel K = 1.1II rel K =ф=。
图2-22-3.题图2-2中,已知:,取电流III 段可靠系数、返回系数、自起动系数。
max 400L I A ⋅='''1.2rel K =0.85re K =1ss K =(1)对保护1继续进行反应相间短路的电流III 段保护的整定计算(求set I 、t 、sen K (近、远))并确定保护的接线方式。
(2)结合上题计算结果依次求出保护1的电流I 段、II 段和III 段的二次动作电流(I op I 、IIop I 、op I ΙΙΙ)。
2-4.在图2-3所示35KV 单侧电源电网中,已知线路L1的最大负荷电流,电动机的自起动系数,电流互感器变比为200/5,在最小运行方式下,变压器低压侧三相短路归算至线路侧的短路电流max 189L I A ⋅=1.2ss K =(3)min 460k I A ⋅=,线路L1装有相间短路的过电流保护,采用两相星形两继电器式接线。
2011继电保护 第2章 电网的电流保护双侧电源
& j Ue Ueα −90° p arg r p 90° & I
r
r
+1
α
(2)正方向故障时有足够的灵敏度 正方向故障时有足够的灵敏度 ϕr = ϕsen = −α 最大灵敏度角 3.功率方向元件的构成 功率方向元件的构成 方向元件的作用是比较加在该元件上的电流与电压的相位, 方向元件的作用是比较加在该元件上的电流与电压的相位,并在满足 一定关系时动作 实现手段:感应型(感应式功率方向继电器GG-11型) 集成电路型 数字型 实现手段:感应型(感应式功率方向继电器 - 型 实现方法: 实现方法:相位比较 幅值比较
I& r
φ&I
﹡
& φU
& IU ﹡
& Ur
第二章 电网的电流保护
作业 第二章
2.双侧电源的方向性电流保护利用了电流和功率的什么特征 方 双侧电源的方向性电流保护利用了电流和功率的什么特征?方 双侧电源的方向性电流保护利用了电流和功率的什么特征 向性电流保护的主要特点是什么?相间短路的方向性电流保护 向性电流保护的主要特点是什么 相间短路的方向性电流保护 适用的电网。 适用的电网。 什么是功率方向元件的90º接线方式 相间短路功率方向元件采 什么是功率方向元件的 接线方式?相间短路功率方向元件采 接线方式 接线方式的优缺点。 用90º接线方式的优缺点。 接线方式的优缺点
继电保护 第2章 电网的电流保护
第二章 电网的电流保护
五、方向性电流保护的应用特点 1.电流速断保护可以取消方向元件的情况 速断保护的整定值躲过反方向短路时流过保护的最大短路电流, 保护可以不用方向元件
第二章 电网的电流保护
2. 外汲电流的影响(略) 3.过电流保护装设方向元件的一般方法 反方向保护的延时小于本线路保护的动作延时,本保护可不用方向元件
3 2
)
Ik K
E
Zs
Z k
工频 周期 分量
短路点至保护安装处之间的阻抗
第二章 电网的电流保护
三、电流速断保护
1.工作原理
电流速断保护 (1)动作电流的整定
I
set
Ik. L.min
3 2
E Zs.max z1Lmin
原则:保护装置的动作电流要躲过本线路末端的最大短路电流。
第二章 电网的电流保护
五、定时限过电流保护
作为下级线路主保护的远后备保护、本线路主保护的近后备保护、过负荷保护
1.工作原理 2.定时限过电流保护的整定 (1)动作电流的整定
原则:保护装置的动作电流要躲过本线路出现的最大负荷电流,返回电流也应大于
负荷自启动电流
保护
继电保护的一次动作电流IIIIset
由线路流向母线,要求保护不动作 二、方向性电流保护的基本原理 双侧电源网络相间短路的电流保护在原有电流保护的基础上增加 功率方向元件,在反方向故障时把保护闭锁使其不致误动作
双侧电源网络相间短路的电流保护
功率方向元件
可以看成两个单侧电源网络相间短路的电流保护
第二章 电网的电流保护
三、功率方向判别元件
90
arg
Uer j Ir
电网的电流保护和方向电流保护
动作
不可能停留在某一中间
位置,这种特性称为“继
返回
电特性”。
I I re I op
*继电器的动作电流:使继电器动作的最小电流;
*继电器的返回电流:使继电器返回的最大电流;
* 返回系数:
2020/1/8
K re
I re I op
1 (0.85~0.9)
4
2.1 单侧电源网络的相间电流保护
2020/1/8
k1
2020/1/8
37
3.灵敏性的校验 (1)作为近后备时
采用最小运行方式下本线路末端两相短路时的 电流来校验;
2020/1/8
38
3.灵敏性的校验 (1)作为远后备时
采用最小运行方式下相邻线路末端两相短路时 的电流来校验;
2020/1/8
39
在各个过电流保护之间,要求灵敏系数互相配合;
对同一故障点而言,要求越靠近故障点的保护灵敏 系数越高;
15
3、电流速断保护的构成
无时限电流速断保护的单相原理接线图
2020/1/8
16
4、评价
优点:动作速度快,接线简单; 缺点:不能保护线路全长,保护范围受运 行方式的影响,保护线路长度不同,保护 范围也不同。
2020/1/8
II se t.2
运行方式变化对电流速断保护范围的影响
17
4、评价
优点:动作速度快,接线简单; 缺点:不能保护线路全长,保护范围受运 行方式的影响,保护线路长度不同,保护 范围也不同。
2020/1/8
45
阶段式电流保护的配合及应用
㈡阶段式电流保护的配合关系
过电流保护
过电流保护靠时间元件逐级配合满足选择性要求 过电流保护的电流元件不具备选择性
国网考试电力系统继电保护题库
第一章绪论习题1-1在图1-1所示的网络中,设在d点发生短路,试就以下几种情况评述保护1与保护2对四项根本要求的满足情况:(1)保护1按整定时间先动作跳开1,保护2起动并在故障切除后返回;(2)保护1与保护2同时按保护1整定时间动作并跳开1与2;(3)保护1与保护2同时按保护2整定时间动作并跳开1与2;(4)保护1起动但未跳闸,保护2动作跳开2;(5)保护1未动,保护2动作并跳开2;(6)保护1与保护2均未动作图1-1 习题1-1图第二章电网的电流保护与方向性电流保护一、三段式相间电流保护例题例题2.1欲在图2-1所示的35中性点不接地电网中变电所A母线引出的线路上,装设三段式电流保护,保护拟采用两相星形接线。
试选择电流互感器的变比并进展I段、段、段电流保护的整定计算,即求I、、段的一次与二次动作电流〔I’、I’·J、I’’、I’’·J、I、I·J〕、动作时间〔t’、t’’、t〕与I段的最小保护范围,以及段与段的灵敏系数K’’、(1)、(2) Ω,可靠系数取K’1.3,K’’5,时限阶段△0.5s,计算短路电流时可以忽略有效电阻。
其他有关数据按3种方案列于表1中。
图2-1 例题2.1图表1 三种方案解参见图2-1Ω,l =10,2×10 ,7.5,15,t10=2.5s。
1 求电流I段定值〔1〕动作电流I’I’=K’k×Id·B·×4.97=6.46〔〕其中Id·B·=〔+〕=〔37/3〕/〔0.3+10×0.4〕=4.97〔〕(2) 灵敏性校验,即求ll = 1×(〔3/2)·I’×( (37/2) / 6.46 -0.3)=6.4()l % =×100% = 64% > 15%2 求电流段定值(1) 求动作电流I’’为及相邻变压器的瞬动保护相配合,按躲过母线C最大运行方式时流过被整定保护的最大短路电流来整定〔取变压器为并列运行〕于是Id·C·=〔++/2〕=〔37/3〕/〔0.3+〕=〔〕I’’=K’’k·Id·C·=×〔〕式中=×〔U2B / 〕×〔352/10〕=9.2〔Ω〕〔2〕灵敏性校验K’’Id·B·/ I’’=3/ 2×〔3〕求动作时间t〔设相邻瞬动保护动作时间为0s〕t’’ = 0+0.5 = 0.5 (s)3 求电流段定值(1)求动作电流Idzdz (k h)×Kzq×m axfh)××247=523(A)式中m axfh fh 〔3Um ing〕=15/〔3×35〕=247〔A〕(2)灵敏性校验本线路末端短路时(1)=((3/2) ×)/0.523=8.22>1.5 满足要求相邻变压器出口母线C〔变压器为单台运行〕三相短路时I〔3〕d·C·=〔++〕=〔37/3〕〔〕考虑C点短路为y,d11接线变压器后短路,当该点为两相短路时,对所研究的保护动作最不利,又因保护接线采用两继电器式两相星形接线,故有I〔2〕d·=(1/2)I〔3〕d·C·故(2) =×1580/523 =1.5 > 1.2 满足要求如采用三继电器式两相星形接线,灵敏系数还可提高1倍。
电力系统继电保护网上作业题20121112
电⼒系统继电保护⽹上作业题20121112东北农业⼤学⽹络教育学院电⼒系统继电保护⽹上作业题第⼀章绪论⼀. 填空题1.对继电保护装置的四项基本要求是( )性、( )性、( )性和( )性。
2.继电保护装置组成部分⼀般包括(),(),()。
3.电⼒系统发⽣故障时,继电保护装置应将()部分切除,电⼒系统出现不正常⼯作时,继电保护装置⼀般应()。
4.继电保护的可靠性是指保护在应动作(),不应动作时()。
5.输电线路的短路可分为()、()两类。
6.电⼒系统的三种运⾏状态()、()、()。
7.按继电保护所起的作⽤可分为( )保护、( )保护,其中后备保护⼜可分为( )保护和( )保护。
8.能满⾜系统稳定及设备安全要求,有选择性地切除被保护设备和全线故障的保护称为( ).若主保护或断路器拒动时,⽤以切除故障的保护称为( )。
9.保护装置的灵敏性,通常⽤()来衡量,灵敏系数越⼤,则保护的灵敏度就越()。
10.最常见的不正常运⾏状态是(),最常见的故障类型是()。
11.继电保护装置有按反应电流增⼤原理⽽构成的( )保护,有按反应电压降低原理⽽构成的( )保护,有按反应电流与电压⽐值及相⾓变化原理⽽构成的 ( )保护等。
12.反应于变压器油箱内部故障时所发⽣⽓体⽽构成( )保护;反应于电动机绕组的温度升⾼⽽构成( )保护。
⼆.选择题1.当系统发⽣故障时,正确地切断离故障点最近的断路器,是继电保护( )的体现.A.速动性 B. 选择性 C. 灵敏性2.为了限制故障的扩⼤,减轻设备的损坏,提⾼系统的稳定性,要求继电保护装置具有().A.速动性 B. 选择性 C. 灵敏性三.问答题1.什么是继电保护装置?2.对继电保护有哪些要求?各项要求的定义是什么?3.继电保护装置的基本任务是什么?4.什么是主保护?什么是后备保护?5.何谓近后备保护、远后备保护?第⼆章电⽹的电流保护⼀.填空题1.电流继电器的返回电流与( )电流的⽐值称为继电器的返回系数。
02-电网的电流保护_2.1-2
对继电器的要求
• • • • • • • 工作可靠 动作值误差小 接点可靠 消耗的功率要小 动作迅速 热稳定、动稳定要好 安装调试容易、运行维护方便、价格便宜
继电器的继电特性
• 继电器的继电特性是指 继电器的输入量和输出 量在整个变化过程中的 相互关系。 • 无论是动作还是返回, 继电器都是从起始位置 到最终位置,它不可能 停留在某一个中间位置 上。这种特性就称之为 继电器的“继电特性”。
近后备
远后备
整定计算:时间整定
为保证保护动作的选择性,过电流保护动作 延时是按阶梯原则整定的,即本线路的过电流保 护动作延时应比下一条线路的电流Ⅲ段的动作时 间长一个时限阶段△t:
对定时限过电流保护的评价
• 优点:结构简单,工作可靠,对单侧电源的放射 型电网能保证有选择性的动作。不仅能作本线路 的近后备(有时作为主保护),而且能作为下一 条线路的远后备。在放射型电网中获得广泛应用, 一般在35千伏及以下网络中作为主保护。 • 缺点:动作时间长,而且越靠近电源端其动作时 限越大,对靠电源端的故障不能快速切除。
各种接线方式在不同故障时的性能分析
(1)中性点直接接地或非直接接地电网中的各种相 间短路 前述接线方式均能反应这些故障。 (2)中性点非直接接地电网中的两点接地短路 在中性点非直接接地电网中,某点发生两 点接地故障,希望只切除一个故障点。 ①串联线路上两点接地情况 ②放射性线路上两点接地情况
串联线路上两点接地情况
反时限过电流保护
• (1)工作原理反应电流增大而动作,其延时与通 入电流的平方成反比,一般可作6~10kV线路或电 动机的保护。 • (2)整定计算动作电流的整定原则与定时限过电 流保护相同
反时限过电流保护的整定和配合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统继电保护原理
主讲教师:刘青
电自教研室
2. 电网的电流保护
上节课内容回顾
结论
电流速断保护特例1:
在短线路且运行方式变化很大的系统中,最小运行方式下的保护范围很小甚至等于零。
结论
电流速断保护特例2:
当速断保护应用于线路-变压器组时,其动作电流可按躲过变压器低压母线短路整定,因而,其保护范围可保护线路全长。
2.1.3 电流保护的接线方式
三相星形接线方式两相星形接线方式(完全星形接线方式)(不完全星形接线方式)
结论
当Y,d11接线的降压变压器低压(Δ)侧AB 两相短路时,在高压(Y )侧各相的电流
为Y C
Y A Y B 22I I I &&&−=−=当Y,d11接线的升压变压器高压(Y )侧BC 两相短路时,在低压(Δ)侧各相的电流
为Y C
Y A Y B 22I I I &&&−=−=这对采用两相星形接线的后备保护不利!
5.两种接线方式的应用
三相星形接线广泛应用于发电机、变压器的后备保护中;两相星形接线被广泛应用在中性点非直接接地系统中,作为相间短路电流保护的接线方式。
6、应用范围:
——35KV及以下的单电源辐射状网络中;
2.1.4 阶段式电流保护的
配合及应用
2.1.5 对电流保护的评价
1.选择性
在单侧电源辐射状网络中具有较好的选择性
2.灵敏性
受运行方式的变化的影响
3.速动性
一般情况下能够满足快速切除故障的要求
4.可靠性
简单、可靠性高
学习重点
¾继电器的动作电流、返回电流及返回系数。
¾掌握三段式电流保护的配置、基本工作原理、整定计算原则、整定计算方法及其评价。
¾掌握相间短路电流保护的基本接线方式及其特点与应用范围。
习题
•用相量图分析当Y,d11接线的升压变压器高压(Y)侧BC两相短路时,在低压(Δ)侧各相的电流为
Y C
Y A Y B 22I I I &&&−=−=
The End。