一次函数培优强化训练卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数培优强化训练卷
1、在直角坐标系中,有以A (-1,-1),B (1,-1),C (1,1),D (-1,1)为顶点的正方形,设正方形在直线y=x 上方及直线y=-x+2a 上方部分的面积为S .(1)求a=21时,S 的值.(2)当a 在实数范围内变化时,求S 关于a 的函数关系式.
2、直线PA 是一次函数y=x+n (n >0)的图象,直线PB 是一次函数y=-2x+m (m >n )的图象,PA 与y 轴交于Q 点(如图所示),若四边形PQOB 的面积是
65,AB=2.(1)用m 或n 表示A 、B 、Q 、三点的坐标;(2)求A 、B 两点的坐标;(3)求直线PA 与PB 的解析式.
3、据某气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h )与时间t (h )的函数图象如图所示.过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为th 内沙尘暴所经过的路程s (km ).
(1)当t=4时,求s 的值;
(2)将s 随t 变化的规律用数学关系式表示出来;
(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场沙尘暴是否会侵袭到N 城?如果
会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.
4、如图,直线l 1:y=kx+b 平行于直线y=x-1,且与直线l 2:y=mx+
2
1相交于点P (-1,0).
(1)求直线l 1、l 2的解析式;(2)直线l 1与y 轴交于点A .一动点C 从
点A 出发,先沿平行于x 轴的方向运动,到达直线l 2上的点B 1处后,改
为垂直于x 轴的方向运动,到达直线l 1上的点A 1处后,再沿平行于x 轴的
方向运动,到达直线l 2上的点B 2处后,又改为垂直于x 轴的方向运动,到
达直线l 1上的点A 2处后,仍沿平行于x 轴的方向运动,…照此规律运动,
动点C 依次经过点B 1,A 1,B 2,A 2,B 3,A 3,…,B n ,A n ,…①求点B 1,
B 2,A 1,A 2的坐标;②请你通过归纳得出点A n 、B n 的坐标;并求当动点C
到达A n 处时,运动的总路径的长?
5、根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:
2012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=_____;b=_____;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?
6、依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元?(2)设x表示公民每月收入(单位:元),y表示应交税款(单位:元),当2500≤x≤4000时,请写出y关于x的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?
7、快车甲和慢车乙分别从A 、B 两站同时出发,相向而行.快车到达B 站后,停留1小时,然后原路原速返回A 站,慢车到达A 站即停运休息.下图表示的是两车之问的距离y (千米)与行驶时间x (小时)的函数图象.请结合图象信息.解答下列问题:
(1)直接写出快、慢两车的速度及A 、B 两站间的距离;(2)求快车从B 返回 A 站时,y 与x 之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.
8、小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP (图2)的夹角记为y 1,时针与OP 的夹角记为y 2
度(夹角是指不大于平角的角),旋转时间记为t 分钟.观察结束后,他利用获得的数据绘制成图象(图3),并求出y 1与t 的函数关系式:y 1= 6t (0≤t≤30
-6t+360 (30<t≤60)请你完成:
(1)求出图3中y 2与t 的函数关系式;
(2)直接写出A 、B 两点的坐标,并解释这两点的实际意义;
(3)若小华继续观察一个小时,请你在题图3中补全图象.
9、某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个
商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售
这两种产品每件的利润(元)如下表:
(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件
利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A ,B 型产品的每件利润不变,
问该公司又如何设计分配方案,使总利润达到最大?
A 型利润
B 型利润
甲店 200 170 乙店 160 150