网规网优材料15:LTE入门必读
lte入门介绍.
第二部分 LTE基础技术
第一章 LTE协议结构
第一节 LTE的扁平化网络架构 第二节 LTE的协议栈架构
第二章 E-UTRAN物理层
第一节 LTE无线帧结构 第二节 LTE物理资源分配 第三节 LTE物理信道
© ZTE Corporation. All rights reserved
核心网络:基于ANSI-41
3G 标准
TD-SCDMA
核心网络:基于MAP
CDMA技术是3G的主流技术
© ZTE Corporation. All rights reserved
向4G演进策略
© ZTE Corporation. All rights reserved
向LTE演进——分久必合!
LTE
第一部分 LTE前世今生
第一章 LTE前世篇
第一节 移动通信的发展 第二节 向LTE演进
第二章 LTE今生篇
第一节 什么是LTE 第二节 LTE网络结构
© ZTE Corporation. All rights reserved
4
二.移动通信网的演进
主要提供数据 业务的接入
使用蜂窝组网,广泛应用的 标准有AMPS、TACS等,采 2.5G 用模拟技术和频分多址 目前应用最广泛的移动通信系统,主要指 GSM系统, GPRS (FDMA) 等技术 完全采用数字技术,使用 FDM、TDM 、CDMA等技 2.75G 术,提供数字化的语音业务和低数据业务、短消息 EDGE 最高500kbps, 国际标准有WCDMA、CDMA2000、TD平均150kbps SCDMA、WiMax。技术指标:室内速率 3G 2Mbps,室外速率384kbps,行车速率 WCDMA 144kbps。能够实现语音业务、高速率传输及 TD-SCDMA 宽带多媒体、无线接入Internet等服务 5G CDMA2000 3.5G 4G HSPA 3.9G 3.75G LTE+ LTE HSPA+ 14.4MType1帧结构:每个10ms无线帧,分为20个时隙,10个子帧。 每个子帧1ms,包含2个时隙,每个时隙0.5ms。 上行和下行传输在不同频率上进行。
LTE网络基础知识简介
LTE网络基础知识简介目录一、LTE网络概述 (2)1.1 LTE概念及发展历程 (3)1.2 LTE技术优势与演进 (4)二、LTE网络架构 (5)2.1 EPC网络组成 (7)2.2 UTRAN网络组成 (8)2.3 eNB与gNB的关系及切换 (9)三、LTE关键技术 (11)四、LTE网络规划与部署 (12)4.1 需求分析 (13)4.2 网络设计 (14)4.3 部署策略 (16)五、LTE网络测试与优化 (17)5.1 测试目的与方法 (18)5.2 关键性能指标(KPI)分析 (19)5.3 网络优化策略 (20)六、LTE与其他无线通信技术的比较 (22)6.1 与2G/3G的比较 (23)6.2 与Wi-Fi的比较 (24)七、LTE未来发展趋势 (26)7.1 5G技术发展与LTE演进 (27)7.2 IoT与LTE的关系 (28)八、总结与展望 (29)8.1 LTE技术成果总结 (30)8.2 对未来LTE发展的展望 (32)一、LTE网络概述LTE(LongTerm Evolution,长期演进)是一种基于新一代无线通信技术的4G移动通信标准。
它采用了全球通用的频段和编码技术,可以实现高速、低时延、大连接数的移动通信服务。
LTE网络在全球范围内得到了广泛的应用和推广,为用户提供了更加便捷、高效的移动互联网体验。
LTE是3G(第三代移动通信技术)的升级版,相较于3G,LTE在数据传输速度、时延、网络容量等方面都有显著提升。
LTE也是4G(第四代移动通信技术)的基础,两者共享相同的技术规范和频谱资源。
LTE可以看作是4G的一个过渡阶段,为后续5G网络的发展奠定了基础。
高速:LTE网络的最大下行速率可达100Mbps,上传速率可达50Mbps,大大满足了用户的上网需求。
低时延:LTE网络的空口时延较低,一般在10ms左右,用户体验较好。
大连接数:LTE网络具有较高的并发连接能力,可支持数百万人同时在线。
LTE网规网优基础
Page 8
PCI冲突场景
PCI冲突主要分成PCI碰撞和PCI混淆:
PCI碰撞是指相同PCI的两个或多个同频LTE小区在地理位置上的隔离度过小,使得UE在这两个或多个
小区信号交叠区域无法正常同步。 若服务小区与测量小区的RSRP满足切换门限,且该测量小区与服务小区的邻区同频、同PCI,则有可 能导致切换失败、掉话。这样PCI冲突称为PCI混淆。存在两种场景: A. 满足切换条件的CellB是服务小区CellA的 邻区,且与服务小区的其它邻区CellC同频、 同PCI,eNodeB不能分辨UE测量到服务小 区的哪个邻区,从而导致切换失败,如下 图所示:
Ø增强导频功率; Ø调整天线方向角和下倾角,
使两基站覆盖交叠深度加大, 电缆、定向天线等方案来解 保证一定大小的切换区域;
决;
Ø此外需要注意分析场景和
注意:覆盖范围增大后可能
带来的同邻频干扰
地形对覆盖的影响。
增加天线挂高,更换更高增 益天线。
Page 12
案例-通过路测UE寻找弱覆盖区
通过进行空载路测,得到 测试路线上信号强度的具 体分布,根据路测工具显 示的分布情况,找出信号 的弱覆盖区,如图中红色
则一旦当移动台离开该“岛”时,就会立即发生掉话。而且即便是配置了邻区,由于“岛”的区域过小,
也会容易造成切换不及时而掉话。
Ø避免扇区天线的主瓣方向正 Ø在天线方位角基本合理的情 Ø对于高站的情况,降低天线
对道路传播;对于此种情况应 当适当调整扇区天线的方位角, 使天线主瓣方向与街道方向稍 微形成斜交,利用周边建筑物 的遮挡效应减少电波因街道两 边的建筑反射而覆盖过远的情 况
Same EARFCN Same PCI
LTE网规网优基础知识问答
LTE网规网优基础知识问答目录一、LTE概述与基本原理 (2)1. LTE基本概念及发展历程 (3)2. LTE网络架构与主要组件 (4)3. LTE关键技术及特点 (5)二、网规基础知识 (7)1. 网规概述及重要性 (8)2. 网络规划目标与原则 (10)3. 网络规划流程 (10)4. 基站选址与布局规划 (11)5. 频率规划与干扰协调 (12)三、网优基础知识 (14)1. 网络优化概述及目的 (15)2. 网络优化流程与方法 (16)3. 无线网络性能评估指标 (18)4. 容量优化与负载均衡技术 (19)5. 覆盖优化与信号增强措施 (20)四、LTE系统性能参数与配置优化 (22)1. 系统性能参数介绍 (24)2. 性能参数配置与优化策略 (25)3. 小区间干扰协调与优化方法 (27)4. 基站设备配置与优化建议 (28)五、LTE网络故障排查与处理 (30)1. 网络故障分类与识别方法 (31)2. 常见故障原因分析及处理措施 (32)3. 故障处理流程与案例分析 (32)4. 网络维护与管理技巧分享 (34)六、案例分析与实践经验分享 (35)1. 成功案例介绍与分析角度 (36)2. 实践中的经验教训总结 (38)3. 案例中的优化策略与实施效果评估 (39)七、LTE发展趋势与展望 (40)1. LTE技术发展趋势分析 (42)2. 新技术在LTE网络中的应用前景探讨 (43)一、LTE概述与基本原理LTE(Long Term Evolution,长期演进)是一种标准的无线宽带通信,主要用于移动设备和数据终端,其设计目标是提供一种高速、低延迟、高连接性的无线通信服务。
LTE的发展是为了满足移动通信市场的需求,特别是在3GPP的长期演进计划中,旨在解决3G网络中的瓶颈问题,提高无线通信的速度和质量。
LTE的关键技术包括正交频分复用(OFDM)、多输入多输出(MIMO)、密集波分复用(Dense WDM)、链路自适应技术等。
LTE试题库--网优
一、填空题1.S1承载(S1 bearer)用来传送eNodeB和Serving GW之间的EPS数据包.2.系统信息在小区范围内的所有UE进行广播,目的是告诉UE网络接入层和非接入层的公共信息,以便用户在发起呼叫之前了解网络的配置情况.3.S-TMSI(短格式临时移动用户标识)用来保证无线信令流程更加有效,如寻呼和业务请求流程。
4.LTE带宽灵活配置:支持1.4MHz, 3MHz, 5MHz, 10Mhz, 15Mhz, 20MHz.5.LTE的接入网E-UTRAN由e-NodeB组成,提供用户面和控制面;LTE的核心网EPC由MME,S-GW和P-GW组成6.P-GW的主要功能包括:分组数据过滤;UE的IP地址分配;上下行计费及限速。
7.LTE支持多种频段,从700MHz到2.6GHz.8.LTE支持两种双工模式:FDD和TDD.9.LTE具有时域和频域的资源,资源分配的最小单位是资源块RB(Resource Block).10.下行功控决定了每个RE(Resource Element)上的能量EPRE(Energy per ResourceElement);上行功控决定了每个DFT-S-OFDM(上行SC-FDMA的复用调制方式)符号上的能量。
11.OFDM (Orthogonal Frequency Division Multiplexing)属于调制复用技术,它把系统带宽分成多个的相互正交的子载波,在多个子载波上并行数据传输。
12.LTE下行支持MIMO技术进行空间维度的复用。
空间复用支持单用户SU-MIMO模式或者多用户MU-MIMO模式。
13.受限于终端的成本和功耗,实现单个终端上行多路射频发射和功放的难度较大。
因此,LTE正研究在上行采用多个单天线用户联合进行MIMO传输的方法,称为Virtual-MIMO.14.在LTE系统中,功控主要用来降低对邻小区上行的干扰,补偿链路损耗,它也是一种慢速的链路自适应机制。
LTE入门初级篇(最新)讲解
#0
#1
#2
#3
One subframe
#18
#19
Type1帧结构:每个10ms无线帧, 10个子帧,分为20个时隙。 每个子帧1ms,包含2个时隙,每个时隙0.5ms。 上行和下行传输在不同频率上进行。
LTE无线帧结构
帧结构Type2 TDD
One radio frame, Tf = 307200Ts = 10 ms One half-frame, 153600Ts = 5 ms
30720Ts
Subframe #0
One subframe, 30720Ts
DwPTS GP
Subframe #2 UpPTS
Subframe #3
Subframe #4
Subframe #5
Subframe #7
DwPTS GP
UpPTS
Subframe #8
Subframe #9
关键技术之OFDM
➢ Total cell IDs: 168 x 3 = 504 cell IDs. (0~503) ➢ PCI值=PSS+3×SSS
➢ 测试关注指标:
LTE测试项:RSRP
RSRP: Reference Signal Received Power(参考信号接 收功率)
范围:-70dBm~105dBm
关键技术之高阶调制
高阶调制的优点:采用64QAM调制方式,比采用的16QAM速率提升50% 高阶调制的缺点:越是高性能(速率高)的调制方式,其对信号质量 (信噪比)的要求也越高
目录
1. LTE 基本原理 2. LTE优化工作内容与流程 3. LTE网络优化案例
LTE无线网络优化
LTE网络优化
LTE关键知识点总结
LTE关键知识点总结LTE(Long Term Evolution)是第四代移动通信技术的一种标准,它通过提高数据速率、降低通信延迟和增强网络容量来满足日益增长的移动通信需求。
LTE技术在实现更高数据速率、更可靠的网络连接和更低的通信延迟方面都取得了重大突破,成为目前移动通信领域的主流技术之一、下面是LTE技术的一些关键知识点总结:1.LTE的基本原理LTE技术基于OFDMA(正交频分多址)和SC-FDMA(单载波频分多址)技术,它使用蜂窝网络结构,将空间划分为多个小区域,每个小区域由一个基站负责覆盖。
用户设备(如手机、平板等)通过基站与核心网络进行通信,实现数据传输和通话等功能。
2.LTE的核心网络LTE的核心网络由Evolved Packet Core(EPC)组成,包括MME(移动性管理实体)、SGW(分组数据网关)和PGW(用户面网关)等组件。
EPC负责数据传输、呼叫控制和移动管理等功能,确保用户设备能够在移动过程中实现无缝切换和连接。
3.LTE的频段和带宽LTE技术在不同频段上运行,包括700MHz、800MHz、1800MHz、2300MHz和2600MHz等频段。
用户可以根据所在地区和运营商的情况选择不同频段的LTE网络。
另外,LTE网络的带宽可以根据需求进行调整,通常包括5MHz、10MHz、15MHz和20MHz等不同的带宽设置。
4.LTE的多天线技术(MIMO)LTE技术支持多天线技术(MIMO),即通过多个发射天线和接收天线来实现数据传输。
MIMO技术可以提高信号覆盖范围、增强网络容量和减少信号干扰,提高网络性能和用户体验。
5.LTE的载波聚合技术(CA)LTE技术还支持载波聚合技术(CA),即同时使用多个频率载波进行数据传输。
通过CA技术,可以提高网络速率和覆盖范围,同时优化网络资源的利用效率,提升整体网络性能。
6.LTE的VoLTE技术LTE技术还支持VoLTE(Voice over LTE),即通过LTE网络实现高质量的语音通话。
LTE网规网优基础知识
LTE 网规网优基础知识问答汇总 - MaEasy CHM
Table of Contents
1. LTE 网规网优 FAQ_基本概念篇................................................................................................... 4 1.1 为什么要从 3G 向 LTE 演进 .............................................................................................. 4 1.2 LTE 扁平网络架构是什么 ................................................................................................... 4 1.3 相对于 3G 来说 LTE 采用了哪些关键技术....................................................................... 5 1.4 OFDM 基本原理................................................................................................................... 7 1.5 单用户 MIMO 和多用户 MIMO 的区别 .......................................................................
LTE网规网优基础培训
工程参数总表 传播模型 仿真所需参数 仿真软件 数字地图 相关指导书
网规规划预规划报告模版 网络规划输入信息 网络估算报告 基站勘测报告 系统仿真输出信息
输出
《xx项目网络预规划报告》 《XX网络预规划方案》 。。。。。。
LTE网络预规划流程
信息搜集
无线网络 估算
无线网络估算 报告
LTE网规网优基础
第1章 LTE 网络规划基本知识 第2章 LTE 常规优化方法和案例 第3章 LTE KPI及其影响因素分析
无线网络规划流程概述
建 建 输入
网网 信
成目 息
无
本标
..
线网
基 基 输出
络估 算
站站 信
数配 息
..
目置
被 估 输入
选站点 结论算
..
信 息
无 线网
络
预
小 理 输出
区半 论站
LTE网络规模估算流程
客户需求分析
覆盖要求
质量要求
确定输入参数
创建链路预算
频谱信息
传播模型
……
业务模型
规划用户数
最大允许路径损耗
获得小区半径
容量估算
最大小区半径
计算单站覆盖面积
单小区容量 网络容量估算
最大单站覆盖面积
覆盖估算站点数
容量估算站点数
最大站点数
估算站点规模
无线网络预规划
预规划是综合信息收集、网络估算、站址选择、系统仿真,完成无线网络的初步设计 。
不同时期网络建设的策略 基站规划情况 小区参数规划情况 仿真结果分析 特殊场景覆盖容量解决方案
清频测试报告
站址选择
N
系统仿真
LTE网规网优基础文档资料
LST EUTRANINTERFREQNCELL(异频邻区查询)确认是否添加该异频邻区。 3.在MOCN的场景下:通过MML :LST EUTRANEXTERNALCELLPLMN 查询确认是否添加了PLMN。 例:UE不断上报测量报告,未收到切换命令。打开测量报告,目标切换的PCI为211,RSRP=51-140=-89dBm,远比服务小区的
LTE 常规优化方法和案例
第1节 优化流程和基本方法 第2节 网络参数核查(邻区,PCI,参数) 第3节 覆盖类问题分类和案例
Page 19
覆盖问题分类和主要影响因素
弱覆盖(覆盖空洞) 越区覆盖
无主导小区 针尖效应 拐角效应 上下行不平衡
下行
•发射功率 •合路损耗 •路径损耗PL •频段 •接收点距离基站的距离 •电波传播的场景和地形 •天线增益 •天线挂高 •天线的参数(方向图) •天线下倾角 •天线方位角
Cell A
CellC
Nbr of Serving
Cell
CellA
CellB
UE
Seving Cell
Detected Cell
CellC is the Neighboring Cell of
Cell A
CelB is not the Neighboring Cell of
Cell A
Page 18
Page 113
案例-分析找出无主导小区区域
Ø 现象: 一段测试路线上, UE反复在几个相同小区进行小区重选或者乒乓切换
LTE网规网优基础知识问答汇总(全集)-华为
问题描述:为什么要从3G向LTE演进问题答复:LTE(Long Term Evolution)是指3GPP组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是SAE(System Architecture Evolution)。
之所以需要从3G演进到LTE,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快速发展,如WiMax的出现,给3G系统设备商和运营商造成了很大的压力。
在LTE系统设计之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆盖范围、降低运营成本:显著的提高峰值传输数据速率,例如下行链路达到100Mb/s,上行链路达到50Mb/s;在保持目前基站位置不变的情况下,提高小区边缘比特速率;显著的提高频谱效率,例如达到3GPP R6版本的2~4倍;无线接入网的时延低于10ms;显著的降低控制面时延(从空闲态跃迁到激活态时延小于100ms(不包括寻呼时间));支持灵活的系统带宽配置,支持、3MHz、5MHz、10MHz、15MHz、20MHz带宽,支持成对和非成对频谱;支持现有3G系统和非3G系统与LTE系统网络间的互连互通;更好的支持增强型MBMS;系统不仅能为低速移动终端提供最优服务,并且也应支持高速移动终端,能为速度>350km/h的用户提供100kbps的接入服务;实现合理的终端复杂度、成本、功耗;取消CS域,CS域业务在PS域实现,如VOIP;问题描述:LTE扁平网络架构是什么问题答复:LTE的接入网E-UTRAN由eNodeB组成,提供用户面和控制面;LTE的核心网EPC(Evolved Packet Core)由MME,S-GW和P-GW组成;eNodeB间通过X2接口相互连接,支持数据和信令的直接传输;S1接口连接eNodeB与核心网EPC。
其中,S1-MME是eNodeB连接MME的控制面接口,S1-U是eNodeB连接S-GW 的用户面接口;问题描述:相对于3G来说,LTE采用了哪些关键技术问题答复:采用OFDM技术OFDM (Orthogonal Frequency Division Multiplexing)属于调制复用技术,它把系统带宽分成多个的相互正交的子载波,在多个子载波上并行数据传输;各个子载波的正交性是由基带IFFT(Inverse Fast Fourier Transform)实现的。
LTE题库--网优
一、填空题1.S1承载(S1 bearer)用来传送eNodeB和Serving GW之间的EPS数据包.2.系统信息在小区范围内的所有UE进行广播,目的是告诉UE网络接入层和非接入层的公共信息,以便用户在发起呼叫之前了解网络的配置情况.3.S-TMSI〔短格式临时移动用户标识〕用来保证无线信令流程更加有效,如寻呼和业务请求流程。
4.LTE带宽灵活配置:支持1.4MHz, 3MHz, 5MHz, 10Mhz, 15Mhz, 20MHz.5.LTE的接入网E-UTRAN由e-NodeB组成,提供用户面和控制面;LTE的核心网EPC由MME,S-GW和P-GW组成6.P-GW的主要功能包括:分组数据过滤;UE的IP地址分配;上下行计费及限速。
7.LTE支持多种频段,从700MHz到2.6GHz.8.LTE支持两种双工模式:FDD和TDD.9.LTE具有时域和频域的资源,资源分配的最小单位是资源块RB〔Resource Block〕.10.下行功控决定了每个RE〔Resource Element〕上的能量EPRE〔Energy per Resource Element〕;上行功控决定了每个DFT-S-OFDM〔上行SC-FDMA的复用调制方式〕符号上的能量。
11.OFDM 〔Orthogonal Frequency Division Multiplexing〕属于调制复用技术,它把系统带宽分成多个的相互正交的子载波,在多个子载波上并行数据传输。
12.LTE下行支持MIMO技术进行空间维度的复用。
空间复用支持单用户SU-MIMO模式或者多用户MU-MIMO模式。
13.受限于终端的成本和功耗,实现单个终端上行多路射频发射和功放的难度较大。
因此,LTE正研究在上行采用多个单天线用户联合进行MIMO传输的方法,称为Virtual-MIMO.14.在LTE系统中,功控主要用来降低对邻小区上行的干扰,补偿链路损耗,它也是一种慢速的链路自适应机制。
15-LTE基础知识
LTE帧结构
LTE帧结构
CP的概念
几个指标的概念
RSRP(Reference Signal Received Power)主要用来衡量下行参考信号的功率,和WCDMA中 CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能 量,这点和RSCP指的是全带宽能量有些差别;
下行峰值速率计算(3)
3) SCH信号时域占用第0个和第5个子帧的第一个时隙的第5个和第6个符号,分 别对应SSS(从同步信号)和PSS(主同步信号),如上图所示。频域占用中间的6个 RB。从时域上一帧及整个频率上来考虑,SCH的开销为 (2*12*2*6)/(12*14*100*10)=0.1714%。 4) BCH时域上占用第一个子帧的第7、8、9、10符号,每4帧出现一次,频率占 用中间6RB。因此BCH的开销为(4*12-4)*6/(4*12*14*100)=0.3929%。 这样下行在采用64QAM、2*2 MIMO以及编码率为1情况下,峰值速率为: 100*12*14*(1-2/21-4/21-0.1714%-0.3929%)*2*6*1000= 142.86Mbps. 100 ---- 100个RB; 12 ----- 每个RB12个子载波; 14 ----- Normal CP情况下,每个子帧14个符号; 2 ------ 采用2*2 MIMO复用模式情况下,速率加倍; 6------ 64QAM每个符号对应6个bit; 上面只是一个简单的估算,实际中用户少的时候,PDCCH占用的符号数可以减 小,此时单用户峰值速率可以提高。此外,上面假设编码效率是1,实际中不 可能完全做到1。目前实际中测到的最大速率基本在140M左右。协议规定的理 论峰值速率在150.75Mbps。
LTE基础知识汇总
目录系统消息汇总: (2)1. 各系统状态转移图 (2)2. 核心网信令跟踪解除 (3)3. 核心网UE标识 (3)4. RRC过程总结 (4)5. 测量事件汇总 (4)6. RRU类型查询 (4)7. A3 (6)8. 小区间干扰协调(ICIC) (6)9. 多天线支持 (7)10. 如何查询是双模站点 (7)11. X2接口配置 (8)12. CHR常见释放原因 (9)13. 关于TM模式 (10)14. 关于帧结构 (12)15. 关于LTE频率和频点的计算如下: (12)16. LTE系统信令流和数据流 (13)17. 单个RE(子载波的计算) (14)18. 发射分集、空间复用、单流、双流的区别 (14)19. 关于频段及频点 (14)1、TD-LTE频段 (14)2、TD-LTE频点号是如何定义的? (15)3、TD-LTE的最高下行速率如何计算? (15)3.1 计算方法 (15)3.2 参考信号的占用情况与MIMO是否使用有关。
(15)3.3 考虑同步信号信道占用情况 (15)3.4 带宽如果是20M, (15)用中心频段-起始频段+起始频点 (15)3.5 DwPTS是否有数据业务开销? (16)4、如何计算LTE最高业务速率? (16)20. 关于LTE小问题 (16)1、LTE中CP详解 (16)1.1 CP作用(其实本质上影响的是时延:多径时延和传播时延。
cp越长,传播时延容忍度越大,允许的传播时延越大,覆盖越大。
) (16)1.2 常规CP与扩展CP (17)2、LTE中PA与PB详解 (17)3、RSRP简述 (17)3.1 RSRP定义 (17)3.2 RSRP低是否意味着接收参考信号困难? (17)3.3 如何获得RSRP (17)系统消息汇总:1.各系统状态转移图2.核心网信令跟踪解除LST UTRCTSK:;RMV UTRCTSK:IDTYPE=1,IMSI="460025343000020";3.核心网UE标识4.RRC过程总结5.测量事件汇总6.RRU类型查询1、选择DBS3900LTE:2、查询RRU所在的柜号、框号、槽位号,命令:DSP BRD;3 查询RRU的类型,命令:执行F9:7.A38.小区间干扰协调(ICIC)小区间干扰原因●由于OFDMA/SC-FDMA本身固有的特点,即一个小区内所有UE使用的RB(ResourceBlock)彼此正交,所以小区内干扰很小。
LTE 学习入门级简单易懂
• 系统概述 • 物理层时频资源 • 上行物理信道 • 下行物理信道 • 传输信道 • 协议栈介绍
• OFMD&SC-FDMA • 多天线技术 • 基本过程 • 总结
• 由于目前LTE 上行仅支持单射频链路的传输,不需要区分空间上的资源,所以上行还没 有引入天线端口的概念
• 目前LTE 下行定义了如下三类天线端口,分别对应于天线端口序号0~5。 – 小区专用(Cell-specific)的参考信号传输天线端口:天线端口序号p 分别满足如下关 系: • p = { 0 },p ∈ { 0,1 } 和p ∈ {0,1,2,3} ; – MBSFN 参考信号传输天线端口:天线端口p = 4; – 终端专用(UE-specific )参考信号:天线端口p = 5。
frequency
180 kHz
> 多天线, eNB 和 eNBT • MIMO, antenna beams, TX- and RX diversity, interference rejection • High bit rates and high capacity
• 灵活带宽
– 6 不同的带宽,1.4MHz ~ 20 MHz
System bandwidth NRB
时域结构2
One radio frame (10 ms) = 10 subframes =20 slots
#0
#1
#2
#3
#4
#5
#6
#7
#8
#9
P-SCH S-SCH
1st half frame (5 ms) = 5 subframes
《LTE网络规划》课件
加密与认证
详细阐述LTE网络中使用的加密 技术和认证协议,以确保数据 传输的安全性。
防火墙与入侵检测
讨论如何通过部署防火墙和入 侵检测系统来增强LTE网络的安 全防护。
安全漏洞与防范措施
分析LTE网络中可能存在的安全 漏洞,并提出相应的防范措施 和解决方案。
站点勘测
现场勘测站点条件
01
对候选的站点进行实地勘测,了解站点的地理位置、周围环境
、可用资源等情况,评估站点的可用性和合理性。
确定站点布局和天线配置
02ห้องสมุดไป่ตู้
根据需求分析和仿真结果,确定LTE网络的站点布局和天线配置
,确保网络覆盖和容量的均衡发展。
制定站点实施方案
03
根据现场勘测结果和网络规划需求,制定详细的站点实施方案
02
LTE网络架构与技术原理
LTE网络架构
LTE网络架构主要由EPC( Evolved Packet Core)和
eNodeB两部分组成。
EPC负责核心网的功能,包括移 动管理实体(MME)、服务网 关(SGW)和公共数据网网关(
PGW)。
eNodeB负责无线接入网的功能 ,是LTE网络中最重要的组成部 分,负责提供无线资源、调度、
《LTE网络规划》PPT课件
• LTE网络概述 • LTE网络架构与技术原理 • LTE网络规划流程 • LTE网络优化 • LTE网络安全与管理 • LTE网络发展趋势与挑战
01
LTE网络概述
LTE网络定义
LTE网络是一种基于OFDMA和MIMO 技术的4G无线通信网络,全称为 Long Term Evolution。
LTE整理知识点
LTE整理知识点LTE技术是目前移动通信技术的主流,并且被广泛应用于4G网络。
下面是关于LTE技术的整理知识点。
1. LTE的全称是长期演进技术(Long-Term Evolution),它是一项为了提高无线网络性能、容量和覆盖范围的技术演进。
2.LTE的目标是提供高质量、高速率和低延迟的移动宽带通信服务。
3. LTE的基站被称为eNodeB,它负责无线信号的传输和接收,同时还负责与移动终端设备之间的通信和数据传输。
4.LTE网络采用OFDMA(正交频分多址)和SC-FDMA(单载波频分多址)技术,以提供高速率和高容量的数据传输。
5.LTE网络的主要频段是700MHz、800MHz、1800MHz、2100MHz和2600MHz等。
6.LTE网络支持多天线技术(MIMO),通过增加天线数目可以提高网络容量和覆盖范围。
7.LTE网络支持多个调制解调器(MCU),可以同时传输多个数据流,提高网络的吞吐量。
8.LTE网络支持双通道技术,即上行和下行通道可以同时使用,提高网络的容量和速率。
9.LTE网络提供了多种QoS(服务质量)保证机制,以满足不同应用的需求,如视频流媒体、语音通话和实时游戏等。
10. LTE网络支持IP(Internet Protocol)承载,可以直接与Internet连接,实现无缝的互联互通。
11.LTE网络支持移动性管理,可以实现平滑的切换和运营商间的漫游。
12.LTE网络支持组播和广播服务,可以实现实时的流媒体和应急通信。
13. LTE网络可以支持LTE-Advanced(LTE-A),提供更高的速率、更大的网络容量和更强的性能。
14.LTE网络可以与其他移动通信技术(如GSM、CDMA和WiMAX等)进行互操作,实现网络的平滑演进。
15.LTE技术在应用方面广泛应用于移动宽带、物联网和工业控制等领域,为人们的生活和工作提供了更加便捷和高效的通信服务。
综上所述,LTE技术是目前移动通信技术的主流,具有高速率、高容量、低延迟和良好的移动性管理等特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 LTE前世今生 第二部分 LTE基础技术 第三部分 LTE传输技术
第二部分 LTE基础技术
第一章 LTE协议结构
第一节 LTE的扁平化网络架构 第二节 LTE的协议栈架构
第二章 E-UTRAN物理层
第一节 LTE无线帧结构 第二节 LTE物理资源分配 第三节 LTE物理信道
LTE的扁平化网络架构
MME/SAE Gateway
MME/SAE Gateway
网络结构扁平化
全IP
EPC
与传统网络互通
S1
S1
S1
S1
X2 eNB
X2
RNC+NodeB=eNodeB
Uu
eNB
X2
E-UTRAN eNB
媒体面控制面分离
UE
E-UTRAN只有一种节点网元—E-Node B
系统网元
寻呼支持
包标记
数据包路由和转发 DHCPv4和DHCPv6
上下行传输层数据 (client、relay、
包标记
server)
LTE的扁平化网络架构的优点
网络扁平化使得系统延时减少,从而改善用户体验,可开 展更多业务
网元数目减少,使得网络部署更为简单,网络的维护更加 容易
取消了RNC的集中控制,避免单点故障,有利于提高网络稳 定性
NAS信令以及安全 性功能 3GPP接入网络移 动性导致的CN节点 间信令 空闲模式下UE跟 踪和可达性 漫游 鉴权 承载管理功能 (包括专用承载的 建立)
支持UE的移动性切 基于用户的包过滤
换用户面数据的功能 合法监听
E-UTRAN空闲模式 IP地址分配
下行分组数据缓存和 上下行传输层数据
蜂窝移动通信系统从70年代发展至今,根据其发展历程和发展 方向,可以划分为三个阶段,即: 第一代,模拟蜂窝通信系统,简称1G; 第二代,数字蜂窝移动通信系统,简称2G; 第三代,IMT-2000,简称3G。
第三代移动通信简介
在1985年,国际电信联盟(ITU)提出了第三代移动通信系统的概念,当时 被称为未来公共陆地移动通信系统(FPLMTS)。后来考虑该系统预计在 2000年左右开始商用,且工作于2000 MHz的频段,故1996年ITU采纳日本等 国的建议,将FPLMTS更名为国际移动通信系统IMT-2000。
通过本文档的学习,您可以掌握以下技能:
了解移动通信的发展过程以及LTE的位置和网络 结构。 了解E-UTRAN的协议结构和基本技术。 了解LTE应用的上下行传输技术。
第一部分 LTE前世今生 第二部分 LTE基础技术 第三部分 LTE传输技术
第一部分 LTE前世今生
第一章 LTE前世篇
GERAN
Gb UTRAN Iu
PDN SAE S7 GW
hPCRF S9
Evolved RAN X1
eNB
GPRS Core
S8b
S4 S3 S10
VPCRF
S7
Rx+
HSS
S6
Operator IP
X1
X2
MME
S5 Inter AS
Gi
servicencluding IMS,
PSS, ...)
S11
eNB
S1-U Serving SAE GW
Evolved Packet Core
S2 IP Access
TDD LTE的网元功能
E-Node B
MME
Serving GW
PDN GW
具有现3GPP Node B 全部和RNC大部分功 能,包括: 物理层功能 MAC、RLC、PDCP功 能 RRC功能 资源调度和无线资 源管理 无线接入控制 移动性管理
核心网络:基于ANSI-41
3G 标准
TD-SCDMA
核心网络:基于MAP
CDMA技术是3G的主流技术
向4G演进策略
向LTE演进——分久必合!
LTE
多种技术体制将长期并存,并最终演进到单一网络
第一部分 LTE前世今生
第一章 LTE前世篇
第一节 移动通信的发展 第二节 向LTE演进
第二章 LTE今生篇
第一节 什么时候LTE 第二节 LTE网络结构
9
什么是LTE
LTE:3GPP Long Term Evolution LTE采用优化的UTRAN结构 LTE工程目的是确保3GPP在未来的持续竞争力
LTE是什么
LTE根据双工方式的不同,分为FDD和TDD两种模式 LTE采用基于OFDM和MIMO的空中接口方式,用户峰值速率:UL
RRC PDCP RLC MAC PHY
MME NAS Security
Idle State Mobility Handling
SAE Bearer Control
Serving Gateway S1
17
LTE的扁平化网络架构
eNB Inter Cell RRM RB Control
Connection Mobility Cont. Radio Admission Control
eNB Measurement Configuration & Provision
Dynamic Resource Allocation (Scheduler)
100Mbps,DL 50Mbps 简化的网络架构,采用flat all-in-ip网络架构,减少系统时延
控制面时延:从驻留态转为激活态小于100ms,从休眠态转为 激活态小于50ms
用户面时延:最小可达到5ms 控制面处理能力:单小区5M带宽内不少于200用户 频谱利用率:1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz 频谱利用率相对于3G提高2-3倍
国际上目前最具代表性的第三代移动通信技术标准有三种,它们分别是 CDMA2000 WCDMA TD-SCDMA
其中,CDMA2000和WCDMA属于FDD方式;TD-SCDMA属于TDD方式,并且其上、 下行工作于同一频率。
3G—X-CDMA
WCDMA
核心网络:基于MAP
CDMA2000
第一节 移动通信的发展 第二节 向LTE演进
第二章 LTE今生篇
第一节 什么是LTE 第二节 LTE网络结构
3
移动通信的发展
移动通信发展的最终目标是实现任何人(whoever)可以在任何 时候(whenever)、任何地方(wherever)与其它任何人( whomever)以任何方式(whatever)进行通信。