(完整版)2019年复旦附中自招数学试卷

合集下载

2019年上海中学自招数学试卷

2019年上海中学自招数学试卷

2019上海中学自主招生试卷及答案1、已知0a ≠,求2323a a a a a a++=___________ 【答案】3或1-【解析】①0a >时,23231113a a a a a a++=++=; ②0a <时,23231111a a a a a a++=-+-=-; 2、因式分解:332x x -+【答案】()()212x x -+【解析】拆项()()3323222121x x x x x x x x -+=--+=--- ()()()()()()()2211211212x x x x x x x x x =+---=-+-=-+ 3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________【答案】3【解析】设m ,n 分别为20ax ax b ++=与20ax bx b ++=的两个实数根,1m n ⋅=,1n m ∴=,由题意得20am an b ++=①与20an bn b ++=②,将1n m=代入到20an bn b ++=有2110a b b m m++=,变形得20bm bm a ++=③,由①③联立得()()()20b a m b a m a b -+-+-=,讨论:1)0b a -=,0b a =≠时,m ,n 为210x x ++=的实数根,22131024x x x ⎛⎫++=++> ⎪⎝⎭恒成立,所以此种情况无解;2)0b a -≠时,有210m m +-=,有11m m -=-,且222221123m n m m m m ⎛⎫+=+=-+= ⎪⎝⎭4、求三边为整数,且最大边小于16的三角形个数为________个【答案】372【解析】设较小的两边为x 、y ,且x y ≤,则最大边为15的三角形有如下情况:15x y ≤≤,15x y +>①1x =时,15y =;②2x =时,15y =,14y =;③3x =时,15y =,14y =,13y =;④4x =时,15y =,14y =,13y =,12y =;⑤5x =时,15y =,14y =,13y =,12y =,11y =;⑥6x =时,15y =,14y =,13y =,12y =,11y =,10y =;⑦7x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =;⑧8x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =,8y =; ⑨9x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =; ……共有12345678765432164++++++++++++++=种同理:最大边为14的有1234567+765432156++++++++++++=种 最大边为13的有123456765432149++++++++++++=最大边为12的有12345665432142+++++++++++=最大边为11的有1234565432136++++++++++=最大边为10的有123455432130+++++++++=最大边为9的有12345432125++++++++=最大边为8的有1234432120+++++++=最大边为7的有123432116++++++=最大边为6的有12332112+++++=最大边为5的有123219++++=最大边为4的有12216+++=最大边为3的有1214++=最大边为2的有112+=最大边为1的有1综合共有:1246912162025303642495664=372++++++++++++++种5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________ 【答案】737+6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________【答案】815【解析】利用比例,延长AF 、DC 交于点G ,//AB CD ,::1:4AM MG AE DG ∴== ::1:2AN NG AB DG ∴==:3:2AM NM ∴=,:3:2AM NM ∴=且::2:1DN NB AD BF ==,2224825531515DMN DAN ABD S S S ==⨯=⨯= 7、已知1a >a a x x -+=143a -+- 【解析】8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、1002 【答案】D9、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADEACB 时,AE =_________ 【答案】32或83【解析】进行分类,按照斜A 形分为两类,画图计算可得32或83 10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥【答案】见解析【解析】延长BH ,CP 交于点M ,联结AM ,借用垂直平分线求证AB AM AC ==,从而易得AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?【答案】216个附:无答案试卷题目1、已知0a ≠,求2323a a a a a a++=___________ 2、因式分解:332x x -+3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________4、求三边为整数,且最大边小于16的三角形个数为________个5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________7、已知1a >,解方程:a a x x -+= 8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、10029、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADE ACB 时,AE =_________10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?。

2019年上海中学自主招生数学试卷-附答案详解

2019年上海中学自主招生数学试卷-附答案详解

2019年上海中学自主招生数学试卷1.已知a≠0,求a|a|+a2|a2|+a3|a3|=______.2.因式分解:x3−3x+2=______.3.已知两二次方程ax2+ax+b=0与ax2+bx+b=0各取一根,这两根乘积为1,求这两根的平方和为______.4.求三边为整数,且最大边小于16的三角形个数为______个.5.已知点C(3,5),D(0,1),A、B两点在x轴上且AB=2.已知点A在x轴右侧,求C ABCD的最小值为______.6.如图,正方形ABCD边长为2,点E、F分别为边AB、BC中点,AF分别交线段DE、DB于点M、N,则S△DMN=______.7.已知a>1,解方程:√a−√a+x=x.8.已知:|x i|<1(i=1,2,3,…,n),且|x1|+|x2|+⋯+|x n|=1000+|x1+x2+⋯+x n|,则n的最小值为()A. 999B. 1000C. 1001D. 10029.已知,在△ABC中,AB=8,AC=6,点D、E分别在边AC、AB上,且AD=2.当△ADE∽△ACB时,AE=______.10.如图,在△ABC中,AB=AC,过点B在∠ABC内部作任一射线,作AH⊥射线于点H,在图上取一点P,使得HP//BC,且HP=12BC.联结AP、CP,求证:AP⊥CP.11.一个正方形上每条边上有三个四等分点,由这些四等分点,最多可组成多少个三角形?答案和解析1.【答案】3或−1【解析】解:当a>0时,|a|=a,∴a|a|+a2|a2|+a3|a3|=1+1+1=3,当a<0时,|a|=−a,a |a|+a2|a2|+a3|a3|=−1+1−1=−1,∴,a|a|+a2|a2|+a3|a3|的值为3或−1,故答案为3或−1.分两种情况求:当a>0时,|a|=a,当a<0时,|a|=−a,即可求解.本题考查绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】(x−1)2(x+2)【解析】解:原式=x3+2x2−2x2−4x+x+2=x2(x+2)−2x(x+2)+(x+2)=(x2−2x+1)+(x+2)=(x−1)2(x+2).故答案为:(x−1)2(x+2).根据分组分解法的法则原则将x3−3x+2分组,再利用提公因式法和完全平方公式进行因式分解即可.本题考查分组分解法分解因式,掌握分组分解法的分组原则,即因式分解在组内能进行,在组与组之间也能进行,是正确解答的关键.3.【答案】3【解析】解:设方程两根分别为:m、1m ,则{am2+am+b=0bm2+bm+a=0相减可得:(a−b)(m2+m−1)=0,若a≠b,则m2+m−1=0,得m−1m=−1,∴m2+1m2=(m−1m)2+2=3,故答案为3.设方程两根分别为:m、1m ,则{am2+am+b=0bm2+bm+a=0,两式相减得到(a−b)(m2+m−1)=0,即可得到m2+m−1=0,得m−1m =−1,进而得到m2+1m2=(m−1m)2+2=3.本题考查了一元二次方程ax2+bx+c=0根与系数的关系的应用,用到的知识点:x1+x2=−ba ,x1⋅x2=ca.4.【答案】372【解析】解:设较小的两边长为x、y且x≤y,则x≤y<16,x、y∈N∗.当x=1时,y=1~15,三角形有15个;当x=2时,y=2~15,三角形有27个;当x=3时,y=3~15,三角形有36个;当x=4时,y=4~15,三角形有42个;当x=5时,y=5~15,三角形有45个;当x=6时,y=6~15,三角形有45个;当x=7时,y=7~15,三角形有42个;…当x=15时,y=15,三角形有1个.所以不同三角形的个数为15+27+36+42+45+45+42+36+28+21+15+10+6+3+1=372.故答案为:372.根据题意,设较小的两边长为x、y且x≤y,可得关系式x≤y<16,x、y∈N∗;分别令x=1、2、3、4、5、......、15,分别求得y的可取值,由分类计数原理,计算可得答案.本题考查了三角形三边关系,关键是列出约束条件,然后寻找x=1、2、3、4、5、......、15时,y的取值个数的规律,再用分类计数原理求解.5.【答案】7+√37【解析】解:如图:将D沿x轴正方向平移2个单位得D′,再作D′关于x轴的对称点D′′,∵DD′//AB,DD′=AB,∴四边形ABDD′为平行四边形,∴BD=AD′,∵D′关于x轴的对称点为D′′,∴BD=AD′′,∴BD+AC=AD′′+AC≥D′′C,∵C(3,5),D(0,1),∴D′′的坐标为(2,−1),∴D′′C=√(3−2)2+(5+1)2=√37,∵CD=√(3−0)2+(5−1)2=5,∴C ABCD的最小值为AB+CD+D′′C=7+√37.故答案为:7+√37.将D沿x轴正方向平移2个单位得D′,再作D′关于x轴的对称点D′′,先证明四边形ABDD′为平行四边形得BD=AD′,再由D′关于x轴的对称点为D′′得BD=AD′′,从而得BD+AC= AD′′+AC≥D′′C,再由两点距离公式求出D′′C、CD、AB即可.本题主要考查了最短距离问题,将D沿x轴正方向平移2个单位得D′,再作D′关于x轴的对称点D′′,将BD+AC转化为AD′′+AC是解决此题的关键.6.【答案】815【解析】解:∵正方形ABCD 的边长为2,E ,F 分别是AB ,BC 的中点,∴AD =AB =2,AE =BF =1,∠EAD =∠FBA =90°,∴DE =AF =√22+12=√5,△ADE 和△BAF 中,{AD =AB ∠EAD =∠FBA AE =BF,∴△ADE≌△BAF(SAS),∴∠ADE =∠BAF ,而∠BAF +∠DAM =90°,∴∠ADM +∠DAM =90°,∴AM ⋅DE =AE ⋅AD ,即AM ×√5=1×2,∴AM =2√55,∴DM =√AD 2−AM 2=√22−(2√55)2=4√55, ∵AD//CB , ∴AN :NF =AD :BF =2:1,∴AN =23AF =2√53, ∴MN =2√53−2√55=4√515, ∴S △DMN =12DM ⋅MN =12×4√55×4√515=815. 故答案为:815. 根据正方形的性质及勾股定理得DE 的长,根据全等三角形的判定与性质得∠ADM +∠DAM =90°,然后由相似三角形的对应边成比例及三角形的面积公式可得答案. 此题考查的是全等三角形的判定与性质、相似三角形的判定与性质、正方形的性质,掌握其性质定理是解决此题关键.7.【答案】解:设y =√a +x ,则y 2=a +x①,则原式变形为:√a −y =x ,∴x 2=a −y②,∴(x+y)(x−y+1)=0,∴x+y=0或x−y+1=0,当x+y=0时,∵x≥0,y≥0,∴x=y=0,∴a=0,此种情况不符合题意;当x−y+1=0时,代入①得:(x+1)2=a+x,,解得:x=−1±√4a−32∵x≥0,(a>1),∴x=−1+√4a−32∴原方程的解为:x=−1+√4a−3(a>1).2【解析】设y=√a+x,代入原方程可得√a−y=x,两式平方后相减可得x2−y2=−y−x,分解因式可得x+y=0或x−y+1=0,分情况计算可得方程的解.本题考查了解无理方程,利用换元法将原方程变形后进行因式分解可解答.8.【答案】D【解析】解:∵n个有理数x1、x2...x n满足:|x i|<1(i=1,2,3,…,n),∴|x1|<1,|x2|<1,|x3|<1,...,|x n|<1;∴|x1|+|x2|+⋯+|x n|<1+1+...+1=n,即|x1|+|x2|+⋯+|x n|<n,∵|x1|+|x2|+⋯+|x n|=1000+|x1+x2+⋯+x n|,且|x1+x2+⋯+x n|≥0,∴1000+|x1+x2+⋯+x n|≥1000,即|x1|+|x2|+⋯+|x n|≥1000;∴1000≤|x1|+|x2|+⋯+|x n|<n,∴n>1000,∵n为整数,∴n的最小值为1002.本题利用绝对值和整数问题的相关内容求解即可.本题考查绝对值和整数的相关内容,解题的关键是熟记绝对值的性质.9.【答案】83【解析】解:∵△ADE∽△ABC,∴ADAC =AEAB,即26=AE8,解得AE=83.故答案为:83.根据相似三角形对应边成比例解答即可.本题考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.10.【答案】证明:如图,延长CP、BH,交点为点Q,连结AQ,∵HP//BC,∴△QHP∽△QBC,∴QHQB =HPBC=QPQC,∵HP=12BC,∴QH=12QB,QP=12QC,∴QH=HB,QP=PC,∵AH⊥QB,∵AB =AC ,∴AC =AQ ,又∵QP =PC ,∴AP ⊥CP .【解析】延长CP 、BH ,交点为点Q ,连结AQ ,由HP//BC 推出△QHP∽△QBC ,得到QH QB =HP BC =QP QC =12,推出QH =HB ,QP =PC ,再根据等腰三角形的判定与性质求解即可. 此题考查了平行线的性质及等腰三角形的性质,熟记平行线的性质、等腰三角形的性质及作出合理的辅助线是解题的关键.11.【答案】解:根据题意得,C 123−4=216,∴最多可组成216个三角形.【解析】一个正方形上每条边上有3个四等分点,从12个点中无顺序差别地选择3个点进行组合组成一个三角形,但在同一条边上的3个点构不成三角形,由此解答即可. 本题主要考查了排列组合,考虑到在同一条边上的3个点构不成三角形时解决此题的关键.。

2019年上海中学自主招生数学试卷

2019年上海中学自主招生数学试卷

2019年上海中学自主招生数学试卷
一、填空题(共11小题,每小题0分,满分0分)
1.已知a≠0,求++=.
2.因式分解:x3﹣3x+2=.#MUSTA
3.已知两二次方程ax2+ax+b=0与ax2+bx+b=0各取一根,这两根乘积为1,求这两根的平方和为.
4.求三边为整数,且最大边小于16的三角形个数为个.
5.已知点C(3,5),D(0,1),A、B两点在x轴上且AB=2.已知点A在x轴右侧,求
C ABCCD的最小值为.
6.如图,正方形ABCD边长为2,点E、F分别为边AB、BC中点,AF分别交线段DE、DB于点M、N,则S△DMN=.
7.已知a>1,解方程:=x.#MUSTA
8.已知:|x i|<1(i=1,2,3,…,n),且|x1|+|x2|+…+|x n|=1000+|x1+x2+…+x n|,则n的最小值为()
A.999B.1000C.1001D.1002
9.已知,在△ABC中,AB=8,AC=6,点D、E分别在边AC、AB上,且AD=2.当△ADE∽△ACB时,AE=.
10.如图,在△ABC中,AB=AC,过点B在∠ABC内部作任一射线,作AH⊥射线于点H,在图上取一点P,使得HP∥BC,且HP=BC.联结AP、CP,求证:AP⊥CP.
11.一个正方形上每条边上有三个四等分点,由这些四等分点,最多可组成多少个三角形?。

复旦大学自主招生试题数学

复旦大学自主招生试题数学

复旦大学自主招生数学1、当a和b取遍所有实数时,函数f a,b=a+5−3cos+a−2sin所能取到的最小值()2、记2012!=1×2×3×⋯×2012从1到2012之间所有整数的连乘积,则2012!的值的尾部(从个位往前计数)连续的0的个数是()3、已知数列a n满足:3a n+1+a n=4n≥1,且a1=9,其前n项和为S n,则满足不等式S n−n−6<1125的最小整数n是()4、在如果所示三棱柱中,点A、BB1的中点M以及B1C1的中点N所决定的平面把三棱柱切割成体积不相同的两部分,则小部分的体积和大部分的体积之比为()5、方程x−=1有()解6、方程3x2−e x=0的实根是()7、设f x=x8−x5+x2−x+1,则f x有性质()8、证明2是一个无理数9、若对一切实数x都有x−5+x−7>a,则实数a的取值范围是()10、设某个多边形Σ的顶点在复平面中均是形式为1+z+z2+⋯+z k−1的点,其中z≤1,则点z=0有性质()多边形Σ上的点。

11、如图,半径为r的四分之一的圆ABC上,分别以AB和AC为直径作两个半圆,分别标有a的阴影部分面积和标有b的阴影部分面积,则这两部分面积a和b的大小关系是?12、设x,y,z>0满足xyz+y+z=12,则log4x+log2y+log2z的最大值为()13、设实数r>1,如果复平面上的动点z满足z=r,则动点ω=z+1z的轨迹是()焦距的椭圆。

14、对函数f:0,1→0,1,定义f1x=f x,L,f n x=f f n−1x,n=1,2,3,⋯,满足f n x=x的点x∈0,1称为f的一个n周期点,现设f x=2x,0≤x≤122−2x,12≤x≤1,问f的一个n周期点的个数是()15、已知数列a n 满足:a 1=22的等比数列,则k=1na k =()16、设集合X 是实数集R 的子集,如果点x 0∈R 满足:对任意a >0,都存在,使得0<x −x 0<ax 0为集合X 的聚点,则下列集合:①∈Z ,n ≥0,②R \0,∈Z ,n ≠0,④Z 中,以0为聚点的集合有()17、在一个底面半径为12,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、圆柱侧面及两个底面之一都相切的小球,最多可以放入这样的小球个数是()18、经过坐标变换x ‘=x cos θ+y sin θy ’=−x sin θ+y cos θ将二次曲线3x 2−23xy +5y 2−6=0转化为形如x ‘2a 2±y ’2b 2=1的标准方程,求θ并判断二次曲线的类型()19、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1与C 2分别是以y =±k 1x −1+1和y =±k 2x −1+1为渐近线且通过原点的双曲线,则C 1与C 2的离心率之比等于()20、设非零向量a=a1,a2,a3,b =b1,b2,b3,c=c1,c2,c3为共面向量,x=x1,x2,x3是未知向量,则满足a∙x=0,b ∙x=0,c∙x=0的向量x的个数为()21、将同时满足不等式x−ky−2≤0,2x+3y−6≥0,x+6y−10≤0k>0的点x,y组成的集合D称为可行域,将函数y+1x称为目标函数,所谓规划问题就是求解可行域中的点x,y使目标函数达到在可行域上的最小值。

上海四校自招-数学复旦附中卷_含答案

上海四校自招-数学复旦附中卷_含答案

a2 b2 (ab)2
(ab)2
(7)2
49
49
4. 【注】原题应为 p 是奇质数 (2x p)(2 y p) p2
则 2x p 1, 2y p p2
∴ x p 1 , y p2 p
2
2
5. 显然 x 0
两边平方得 x2 x 1 1 1 2 (x 1)(1 1)
xx
xx
两边同乘 x ,得 x3 x2 x 2 2 (x2 1)(x 1)
因此,经过 70s 时,甲乙位于同一条边
7. 设点 P 速度为 6 , Q 的速度为 3 , R 的速度为 2 ,边长 AB 6
则 SAPR
3 AP·AR 4
3 6t (6 2t) 4
SBPQ
3 BP·BQ 4
3 3t (6 6t) 4
SCQR
3 CQ·CR 4
3 2t (6 3t) 4
【高中知识点】解析几何——圆的方程、两根差公式、分离变量、均值不等式
9. 【注】原题应为“有且仅有一个实数根”,这样表达的更准确一些 原方程
2x 3
ax
(x 1)(x 2) (x 1)(x 2)
2x 3 ax
x 1
x
2
4x2 12x 9 ax
x
3 2
x 2
a
4x
9 x
12
坐标;
2015 年初升高·自招真题解析·数理化
1
(3) 设点 P 是 x 轴上的任意一点,分别连结 AC 、 BC 。比较 PA PB 与 AC BC 的大小关系,说明理 由。
【试卷总结与分析】
1. 高中知识点分析
涉及到的重要高中知识点几乎很少,但有些考察的并不浅,如第 9, 10, 11 题 并不是简单的通过初中知识就能解决的,需要较好的掌握才足以解决问题(如参变分离思想,对勾函 数的图像,均值不等式等) 因此,建议考生对于高中的这些特有的思想和知识,又与初中知识相关的,加强补习与训练,才能在 考试中占据优势

2019届复旦附中初升高自招数学试卷

2019届复旦附中初升高自招数学试卷

2019年复旦附中自招数学试卷(一)1. 两个非零实数a 、b 满足ab a b =-,求a b ab b a +-的值.2. 已知|211||3||8|m m m -=-+-,求m 的取值范围.3. 若关于x 的不等式020192018ax ≤+≤的整数解为1、2、3、…、2018,求a 的范围.4. 已知ABC 、A BC ''边长均为2,点D 在线段BC '上,求AD CD +的最小值.5. 已知x 、y 为实数,求2254824x y xy x +-++的最小值.6. 在ABC 中,2B C ∠=∠,AD 为A ∠的角平分线,若2AB BD BD AB-=,求tan C ∠的值.(二)1. 等腰梯形ABCD 中,13AB CD ==,6AD =,16BC =,CE ⊥AB .(1)求CE 的长;(2)求BCE 内切圆的半径.2. 定义当0x x =时,0y x =,则称00(,)x x 为不动点.(1)若5x a y x b +=+有两个不动点(6,6)、(6,6)--,求a 、b 的值; (2)若5x a y x b+=+有关于原点对称的不动点,求a 、b 满足的条件.3. 已知()S n 为n 的各位数字之和,例(2019)201912S =+++=.(1)当19502019n ≤≤时,找出所有满足[()]4S S n =的n ;(2)当n 为正整数时,找出所有满足()[()]2019n S n S S n ++=的n .(三)1. 平行四边形两条邻边为7和8,两条对角线为m 、n ,求22m n +的值.2. 已知正整数x 、y 满足2127xy x y ++=,求x y +的值.3. 斐波那契数列为{1,1,2,3,5,8,}n a =⋅⋅⋅,记数列n b 为n a 中每一项除以4的余数,问{}n b 中第2019次出现1时的序数(即第几个数).参考答案(一) 1. 222()22a b a b a b ab ab b a a b a b a b+-+-=-==--- 2. 结合绝对值意义或者图像,3m ≤或8m ≥3. 由101a <-≤,201920182019a ≤-<可得,201912018a -≤<- 4. 4AD CD AD A D AA ''+=+≥=,即最小值为45. 配方,224()(1)33x y x -+++≥,即最小值为36.求出1AB BD=,由正弦定理,sin()sin 223sin sin()22C AB ADB C BD BAD ππ-∠==∠-,结合诱导公式、三倍角公式、化切,可求得tan 12C =,由二倍角公式可求tan 1C = (二) 1.(1)锐角三角比,19213;(2)在13、12、5的三角形中求得内切圆半径2r '=,结合相 似比,213321613r r =⇒=,即所求内切圆半径为3213 2.(1)36a =,5b =;(2)0a ≥且25a ≠,5b =3.(1)找规律,()22S n =或()4S n =,符合的有1957、1966、1975、1984、1993、2002、2011;(2)先确定范围,()28S n ≤,[()]10S S n ≤,∴1981n ≥,再分析讨论,符合的有1987、1990、1993、2005、2008、2011(三)1. 由余弦定理,22226m n +=2. 127121x y x -=≥+,可得42x ≤,结合正整数的条件,分析可得,有(1,42)、(2,25)、(7,8)这些解(x 、y 可换),∴x y +的值为43、27、153. 分析可得,{}n b 周期为6,且前六项为1、1、2、3、1、0,每个周期出现3次“1”,20193673÷=,即第2019次出现1时,在第673个周期内最后一个“1”,即序数为672654037⨯+=。

复旦大学自主招生考试数学试题及答案

复旦大学自主招生考试数学试题及答案

1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。

A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。

A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。

复旦附中九年级中考自招数学试卷(含解析)

复旦附中九年级中考自招数学试卷(含解析)

的取值范围是______________.
【答】 a 2 .
A
D
【解析】以 AD 中点为圆心 a 为半径作圆应与 BC 有交点, 2
a 1 a 2. 2
B
C
7. 已知锐角 ABC 的三边长恰为三个连续正整数,AB BC CA ,若 BC 边上的高为 AD,
则 BD DC ______________.
17. 设 x 是实数,不大于 x 的最大整数叫做 x 的整数部分,记作x ,如1.2 1, 3 3 ,
1.3 2 ,
(1) S
1
1
10 11 12 1112 12
10 11 1112
1
,求90S ;
2016 2017 12
2016 2017 (2)解关于ຫໍສະໝຸດ x的方程:x2
A
D
B
C
7. 已知锐角 ABC 的三边长恰为三个连续正整数,AB BC CA ,若 BC 边上的高为 AD, 则 BD DC ______________. A
B
DC
8. 已知实数 m,n(其中 m n 1 )分别满足:19m2 99m 1 0 , n2 99n 19 0 ,则 mn 4m 1 ______________. n
A
D
A
D
B
B
B
E
C
B
EH
C
【答】 3 或 3 . 2
【解析】设 BE x ,过 B 作 BH BC 于 H ,
(1) BEC 90 , AEB 45 , x AB 3 ,
(2) BCE 90 , B 在 CD 上, H 与 C 重合,
由 BB AE , BB 2 x 3 , BH BB 3

兰生复旦中学2019年自主招生测试题

兰生复旦中学2019年自主招生测试题

兰生复旦中学2019届九年级自主招生数学模拟试题3班级 座号 姓名 成绩一、填空、选择题(每题5分共50分)1、从1-,1,2这三个数中,任取两个不同的数作为一次函数y ax b =+的系数,a b ,则一次函数y ax b =+的图象不经过第三象限的概率是 .2、 定义一种运算*“”:当a b ≥时,22a b a b *=+;当a b <时,22a b a b *=-,则方程212x *=的解是3、 方程2(2000)1999200110x x +⨯-=较小的一个根是________.4、 已知:如图,⊙O 是△ABC 的外接圆,AD 是BC 边上的高,BD =8cm ,CD =3cm ,AD =6cm ,则直径AM =________cm .5、科学家研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153 cm ,下肢长为92 cm ,该女士穿的高跟鞋鞋跟的最佳高度约为______________ cm.(精确到0.1 cm)6、使不等式2x x <成立的x 的取值范围是( )A .1x >B .1x <-C .11x -<<D . 10x -<<或01x <<7、按下列图示的程序计算,若开始输入的值为x =3,则最后输出的结果是A .6B .21C .156D .2318、如图,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有 ( )(A )4个 (B )8个 (C )12个 (D )16个9、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为( )A.512B.2C.25D.513 10、 如图,在梯形ABCD 中,AD //BC ,对角线AC ⊥BD ,且AC =12,BD =9,则此梯形的 中位线长是 ( )A .10B .212 C .152 D .12 第9题 第10题A第4题 B CD M · O输入x 计算(1)2x x +的值>100输出结果否 是 P y -5-555.................... A D B二、解答题11、(8分)京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?12、(10分)用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(4分)(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.(6分)EB AC B A MC D M 图3 图4 图1 图213、如图Rt △ABC 的两条直角边4BC 3AC ==、, 点P 是边BC 上的一动点(P 不与B 重合)以P 为圆心作⊙P 与BA 相切于点M 。

2019届复附浦分初升高自招数学试卷

2019届复附浦分初升高自招数学试卷

2019年复旦附中浦东分校自招数学试卷1. 已知14a a +=,求441a a +的值2. 已知280x mx ++=与2420x x m ++=有公共实根t ,求t 的值3. 求(0,0)关于直线4y x =+翻折后的坐标4.5. 如图,已知AB 为直径,25DCB ︒∠=,求ABD ∠6. 已知2234y x mx m =+-(0)m >与x 轴交于A 、B ,若1123OB OA -=,求m 的值7. 直线y kx b =+经过两点(,)A t t 、(,5)B m m ,0t >,0m >,当m t 为整数,求整数k8. 已知四位数09x yz xyz =⨯,求这个四位数9. 正方形四个顶点都有人,同时从一个顶点走向另一个顶点(随机选边,概率均为12), 求有人相遇的概率10. ()F x 是关于x 的五次多项式,(2)(1)(0)(1)0F F F F -=-===,(2)24F =,(3)360F =,求(4)F11. 已知227100x ax a ++-=无实根,则下列选项必有实根的是( )A. 22320x ax a ++-=B. 22560x ax a ++-=C. 2210210x ax a ++-=D. 22230x ax a +++=12. 直角三角形ABC 中,90C ︒∠=,sin B n =,当B ∠为最小内角时,则n 的范围( )A. 02n <≤B. 112n -<<C. 102n <≤ D. 122n <≤13. 已知2a b +=,22(1)(1)4a b b a--+=-,则ab 的值为( ) A. 1 B. 1- C. 12- D. 1214. 已知互不相等的整数数列12{,,,}n i i i ⋅⋅⋅,2n ≥,当p q <时,p q i i >,称为“逆序”,若正整数数列126{,,,}a a a ⋅⋅⋅中,“逆序”有2组,则651{,,,}a a a ⋅⋅⋅中“逆序”有( )组A. 34B. 28C. 16D. 1315. 已知[]x 为不超过x 的最大整数,解方程2[]3x x -=16. 如图已知8AO =,AB AC =,4sin 5ABC ∠=,COE ADE S S =(1)求BC 的长;(2)求经过C 、E 、B 的二次函数的解析式17. 已知AB 为直径,C 是AC 中点,DF 为切线,切点为点B(1)求证:AC CD =;(2)若2OB =,E 为OB 中点,求BH参考答案 1. 422411[()2]2194a a a a+=+--= 2. 6m =-,2t =3. (4,4)-4. 10=20-=,2x =,8y =12= 5. 联结AD ,65︒ 6. 3()()22m m y x x =+-,32m OA =,2m OB =,2m = 7. 5m t k m t -=-,设m nt =,n ∈*N ,∴514511n k n n -==+--,n 取2、3、5,k 为9、7、6 8. 由末两位相同可得,5z =,2y =或7,分析可得四位数为2025或60759. 不相遇的情况有都顺时针或都逆时针两种情况,427128-= 10. 5432()286F x x x x x x =+--+,(4)1800F =11. 25a <<,A 选项,4(1)(2)a a ∆=--在25a <<的情况下恒大于零,故选A12. 045B ︒︒<≤,02n <≤,选A 13. 代入整理出方程2210a a --=,1ab =-,选B14. 26213C -=,选D15. 结合取整函数图像,23x <<,[]2x =,∴x =16.(1)12;(2)22(36)27y x =-17.(1)等腰直角三角形,证明略;(2。

上海市复旦附中2019-2020学年高三下学期数学综合练习试卷(含答案)

上海市复旦附中2019-2020学年高三下学期数学综合练习试卷(含答案)

复旦附中高三数学综合练习 51
2020.04
一. 选择题
1.设 m∈R 且 m≠0,“不等式 m + 4 > 4 ”成立的一个充分不必要条件是( ) m
A. m>0
B.m>1
2.命题:“若 x2 = 1, 则 x=1”的逆否命题为( )
C.m>2
D.m≥2
A.若 x≠1,则 x≠1 或 x≠-1
B.若 x≠1,则 x=1 或 x=-1
6.如图,已知圆锥的侧面积为 15π,底面半径 OA 和 OB 互相垂直,且 OA=3, P 是母线 BS 的中点。 (1)求圆锥的体积; (2)求异面直线 SO 与 PA 所成角的大小.(结果用反三角函数值表示)
ห้องสมุดไป่ตู้
7.已知函数 f (x=) sin ω x(cosω x − 3 sin ω x) + 3 (ω >0)的最小正周期为 π .
C
:
y
=
tan θ
( θ 为参数)的两个顶点之间的距离为____
(6)若从一副 52 张的扑克牌中随机抽取 2 张,则在放回抽取的情形下,两张牌都是 K 的概率为____(结果用最 简分数表示)
(7)以椭圆 C : x2 + y2 = 1 在 x 轴上的顶点和焦点分别为焦点和顶点的双曲线方程为____ 54
M、N,若 A、B 两点纵坐标之差的绝对值 | yA − yB |= a(a > 0) ,求 S AMD 和 S BND ; (3)请你在上述问题的启发下,设计一种方法求抛= 物线 y2 2 px ( p > 0 )与弦 AB 围成的“弓形”的面积,并
求出相应面积.
10. 已知数列{an}是无穷数列,满足 lg an+1 = | lg an − lg an−1 | (n = 2,3,4,...) . (1= )若 a1 2= , a2 3, 求 a3、a4、a5 的值; (2)求证:“数列{an}中存在 ak (k ∈ N *) 使得 lg ak = 0 ”是“数列{an}中有无数多项是 1”的充要条件; (3)求证:存在正整数 k,使得1 ≤ ak < 2.

2019年上海复旦大学自主招生数学试题Word版

2019年上海复旦大学自主招生数学试题Word版

2019年复旦大学自主招生考试数学试题1.若x>y >1,0<a<b<1,则下列各式中一定成立的是________.A.>B.<C.> D.<2.设a>0,a1,函数f(x)=11xx-+在(1,+)上单调递减,则f(x)_________.A.在(−,−1)上单调递减,在(−1,1)上单调递增B.在(−,−1)上单调递增,在(−1,1)上单调递减C.在(−,−1)上单调递增,在(−1,1)上单调递增D.在(−,−1)上单调递减,在(−1,1)上单调递减3.若要求关于x的函数lg的定义域是(),则a,b 的取值范围是________.A.B.a<0 C.−4a<0D.a=b =04.设是有理数集,集合X={X|X=2+,a,b},在下列集合中(1){2x|x};(2){x/};(3){1/x| x } ;(4){x2|x }中和X相同的集合有________个.A.4个B .3个C .2个D.1个5.设x,y,z>0满足xyz+y+z=12,则++的最大值是________.A.3 B.4 C.5 D.66.定义全集X的子集A的特征函数为f A(X)=1,,0,,Xx Ax A∈⎧⎨∈⎩,这里,XA表示在A在X中的补集,那么,对A,B,下列命题中不准确的是_________。

A.A B.(x)=1−,C.(x)=,D.(x)=+,7.如果一个函数f (x )在其定义区间对任意x ,y 都满足()()22x y f x f y f ++⎛⎫≤⎪⎝⎭,则称这个函数是下凹函数,下列函数(1)f (x )=2x(2)f (x )=x3(3)f (x )=(x >0) (4)f (x )=,0,2,0,x x x x <⎧⎨>⎩ 中是下凹函数的有_______.A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4) 8.若实数x 满足对任意正数a >0,均有x 2<1+a ,则x 的取值范围是________. A .(−1,1) B .[−1,1] C .(−) D .不能确定9.设函数y =210x的图像是曲线C ,曲线C 1和C 2关于直线x =1对称,曲线C 2和C 1关于直线y =x 对称,则C 2是下列哪个函数的图像?A .y =1−2lg xB .y =2−2lg xC .y =2lg x +1D .y =2lgx +210.下列曲线中哪一条拿住两端后不打结?________.A .B .C .D .11.用同样大小的一种正多边形平铺整个平面(没有重叠),有几种正多边形可以铺满整个平面而不留缝隙?______.A .2种B .3种C .4种D .5种12.一个菱形边长与其内切圆的直径之比为k:1(k>1),则这个菱形的一个小于2π的内角等于__________.A .arctan (21k k -B .21k -C .arctan (211k k --) D .arctan211k -13.设a ,b 是实常数,则二元一次方程组1,2,ax by x y a b +=⎧⎨-=--⎩无解的充分必要条件是______.A .2a+b =0且aB .2a+b =0且a+b−1C .a =1,b =−2或a =−1,b=2D .2a+b =014.已知关于x 的方程+22cos 2x=a 在区间(0,2π)内有两个不同的根,则常数a 的取值范围是________.A .(−1,3)B .(−1,2)(2,3) C .[−1,3] D .[−1,2)2,3]15.设X ={0,1,2,3,4,5,6,7,8,9},定义X 上的运算符如下:对任意m ,n m n等于m+n 除以10的余数,给定初值n 0X ,记n 1=n 0n 0,n k =n k −1n 0,k=1,2,3……,则使得数列{n k }取遍X 中所有元素的初值n 0的集合是_______.A .B .XC .{1,3,9}D .{1,3,7,9}16.“要使函数f (x )成立,只要x 不在区间[a ,b ]内就可以了”的意思是_________. A .如果f (x ),则x[a ,b ]B .如果x[a ,b ],则f (x )<0C .如果x[a ,b ],则f (x )D .前面三个解释都不准确17.实轴R 中的集合X 如果满足:任意非空开区间都含有X 中的点,则称X 在R 中稠密,那么,“R 中集合X 在R 中不稠密”的充分必要条件是_________.A .任意非空开区间都不含有X 中的点B .存在非空开区间不含有X 中的点C .任意非空开区间都含有X 的补集中的点D .存在非空开区间含有X 的补集的点18.某种细胞如果不能分裂而死亡,并且一个细胞死亡和分裂为两个细胞的概率都为1/2,现在有两个这样的细胞,则两次分裂后还有细胞存活的概率是________.A .3964B .2564C .3164D .296419.设有n +1个不同颜色的球,放入n 个不同的盒子中,要求每个盒子至少有一个球,则不同的放法有_______.A.(n+1)!种B.n(n+1)!种C.12(n+1)!种D.12n(n+1)!种20.设X是含n(n>2)个元素的集合,A,B是X中的两个互不相交的子集,分别含有m,k(m,k)个元素,则X中既不包含A也不包含B的子集个数是_________.A.B.C.D.21.三棱柱ABC−A’B’C’的底是边长为1的正三角形,高AA’=1,在AB上取一点P,设三角形PA’C’与底的二面角为,三角形PB’C’与底的二面角为,则tan()的最小值为_______.A.33B.63C.83D.38-22.半径为R的球的内部装有4个有相同半径r的小球,则小球半径r可能的最大值是________.A323+. B636+C13+RD525+R23.平面上三条直线x−2y+2=0,x−2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是_________.A.只有唯一值B.可取两个不同值C.可取三个不同值D.可取无穷多个值24.设三角形ABC的三边之比AB:BC:CA=3:2:4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是_______.A.715715,666a b a⎛⎫±⎪⎪⎝⎭B.715715,888a b a⎛⎫±⎪⎪⎝⎭C . 715715,6666a b b a ⎛⎫±±⎪ ⎪⎝⎭D . 715715,8888a b b a ⎛⎫±±⎪ ⎪⎝⎭ 25.设实数a ,b ,c 0,,,bc ca aba b c成等差数列,则下列不等式一定成立的是______. A .|b||ac|B .b2|ac| C .a2D .|b|||||2a c +≤26.已知x 2−(tan )x +1=0(0<<π),且满足x +x 3+…+x2n+1+…=32,则的值是______.A .5,66ππB,63ππ C .2,33ππD .25,,,3366ππππ27.设a >0,极坐标方程,0,所表示的曲线大致是______28.设数列{a n },{b n }满足b n = a n −a n −1,n =1,2,3…,如果a 0=0,a 1=1,且{b n }是公比为2的等比数列,又设S n =a 1+a 2+…+a n ,则limnn nS a →∞=__________.A .0B .12C .1D .229.复平面上点z o =1+2i 关于直线l :|z −2−2i|=|z |的对称点的复数表示是_______. A .−IB .1−IC .1+ID .i30.设实数r >1,如果复平面上的动点z 满足|z |=r ,则动点w =z +的轨迹是________. A .焦距为4的椭圆 B .焦距为4r 的椭圆 C .焦距为2的椭圆D .焦距为2r的椭圆31.给定一组向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),c =(c 1,c 2,c 3),如果存在不全为0的实数k 1,k 2,k 3,使得k 1a +k 2b +k 3c =0(0表示0向量),则称向量组a ,b ,c 是线性相关的,下面各组向量中,哪一组向量a ,b ,c 是线性相关的?___________.A .a =(1,2,1),b =(−1,3,2),c =(3,1,0)B . a =(1,2,1), b =(−1,3,2), c =(0,1,−1)C . a =(1,2,0), b =(−1,3,2), c =(0,1,−1)D . a =(1,2,1), b =(−1,0,2), c =(0,1,−1) 32.设向量x =(cos cos),y =cos sin 333θψθψθ⎫⎪⎭,其中02πθ≤≤,如果|x |=|y |,则向量x 和y 的最大值是_________. A .2πB .3π C .23π D .6π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年复旦附中自招数学试卷 (一)
1. 两个非零实数a 、b 满足ab a b =-,求
a b ab b a
+-的值.
2. 已知|211||3||8|m m m -=-+-,求m 的取值范围.
3. 若关于x 的不等式020192018ax ≤+≤的整数解为1、2、3、…、2018,求a 的范围.
4. 已知ABC 、A BC ''边长均为2,点D 在线段BC '上,求AD CD +的最小值.
5. 已知x 、y 为实数,求2254824x y xy x +-++的最小值.
6. 在ABC 中,2B C ∠=∠,AD 为A ∠的角平分线,若
2AB BD BD AB
-=,求tan C ∠的值.
(二)
1. 等腰梯形ABCD 中,13AB CD ==,6AD =,16BC =,CE ⊥AB .
(1)求CE 的长;(2)求BCE 内切圆的半径.
2. 定义当0x x =时,0y x =,则称00(,)x x 为不动点.
(1)若5x a y x b +=
+有两个不动点(6,6)、(6,6)--,求a 、b 的值; (2)若5x a y x b
+=
+有关于原点对称的不动点,求a 、b 满足的条件.
3. 已知()S n 为n 的各位数字之和,例(2019)201912S =+++=.
(1)当19502019n ≤≤时,找出所有满足[()]4S S n =的n ;
(2)当n 为正整数时,找出所有满足()[()]2019n S n S S n ++=的n .
(三)
1. 平行四边形两条邻边为7和8,两条对角线为m 、n ,求22m n +的值.
2. 已知正整数x 、y 满足2127xy x y ++=,求x y +的值.
3. 斐波那契数列为{1,1,2,3,5,8,}n a =⋅⋅⋅,记数列n b 为n a 中每一项除以4的余数,问{}n b 中第2019次出现1时的序数(即第几个数).
参考答案
(一) 1. 222()22a b a b a b ab ab b a a b a b a b
+-+-=-==--- 2. 结合绝对值意义或者图像,3m ≤或8m ≥
3. 由101a <-≤,201920182019a ≤-<可得,201912018
a -≤<- 4. 4AD CD AD A D AA ''+=+≥=,即最小值为4
5. 配方,224()(1)33x y x -+++≥,即最小值为3
6.
求出1AB BD
=,由正弦定理,sin()sin 223sin sin()22
C AB ADB C B
D BAD π
π-
∠==∠-,结合诱导公式、三
倍角公式、化切,可求得tan 12C =,由二倍角公式可求tan 1C = (二) 1.(1)锐角三角比,
19213
;(2)在13、12、5的三角形中求得内切圆半径2r '=,结合相 似比,213321613r r =⇒=,即所求内切圆半径为3213 2.(1)36a =,5b =;(2)0a ≥且25a ≠,5b =
3.(1)找规律,()22S n =或()4S n =,符合的有1957、1966、1975、1984、1993、2002、2011;(2)先确定范围,()28S n ≤,[()]10S S n ≤,∴1981n ≥,再分析讨论,符合的有1987、1990、1993、2005、2008、2011
(三)
1. 由余弦定理,22226m n +=
2. 127121
x y x -=≥+,可得42x ≤,结合正整数的条件,分析可得,有(1,42)、(2,25)、(7,8)这些解(x 、y 可换),∴x y +的值为43、27、15
3. 分析可得,{}n b 周期为6,且前六项为1、1、2、3、1、0,每个周期出现3次“1”,20193673÷=,即第2019次出现1时,在第673个周期内最后一个“1”,即序数为672654037⨯+=。

相关文档
最新文档