随机变量及其分布
1随机变量及其分布
例 掷币问题 一枚硬币掷一次,可能的结果有两个:“出正面”, “出反面”与数值无关。 但如果令A:出正面,对应数值1 Α :出反面,对应数值0 就可引入变量 Χ :一次试验中出现的次数。 于是, 0 Α 出现 Χ= Α 出现 1
这样,就有如下的等价关系:
“Α出现” (Χ=0 ⇔ ) “Α出现” (Χ=1 ⇔ )
于是X的概率分布为
则有
P{X=1}=P{出现正面}= 1 , 2 P{X=0}=P{出现反面}= 1 . 2
两点分布:只有两个可能取值的随机变量所服从的分布, 称为两点分布 0—1分布:只取0和1两个值的随机变量所服从的分布,称 为0—1分布. 其概率分布函数为:
P(ξ = k ) = p k (1 − p)1− k , k = 0,1
随机变量常用 Χ , Υ , Ζ 或 ξηζ 来表示。
2 分类
P39
1) 仅可取有限个或可列个数值的随机变量,称为 离散型r.v. 2) 可取得某一区间内的任何数值(此时不可列) 的 称为连续型 的r.v.称为连续型r.v. 例如 降雨量 测量的误差 3) 既非离散型又非连续型的r.v. 有的书称为奇异型r.v.
定义2.5(密度函数) 一个随机变量X称为连续型随机变量, 如果存在一个非负 可积函数f(x), 使得
F ( x) = P{X ≤ x}= ∫ f11)
并称f(x)为X的概率密度函数, 简称为密度函数.
密度函数的性质 密度函数具有下列性质: (1)f(x)≥0, x∈(−∞, +∞);
i ) 存在对应关系,即对 ∃ 唯一的数值 ii ) Χ 定义在样本空间 Χ 的取值也有随机性 ∀w ∈ Ω, Χ ( w )与之对应。 Ω 上。
iii )由实验结果的随机性知
随机变量及其分布
记
p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率
随机变量及其分布总结
随机变量及其分布1、基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件A B C 、、,其中任何两个都是互斥事件,则说事件A B C 、、彼此互斥. 当A B 、是互斥事件时,那么事件A B +发生(即A B 、中有一个发生)的概率,等于事件A B 、分别发生的概率的和,即()()(P A B P A P B +=+.⑵对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1. ()1()P A P A =-.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当A B 、是相互独立事件时,那么事件A B ⋅发生(即A B 、同时发生)的概率,等于事件A B 、分别发生的概率的积.即()()()P A B P A P B ⋅=⋅.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的.⑷独立重复试验①一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.②独立重复试验的概率公式p ,那么在n 次独立重复试验中这个试验恰好发生k 次的概率()()(1)0,12,.,k k n k n n P k n k C p p -==-⑸条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 发生的概率.知识结构公式:()(),()0.()P AB P B A P A P A => 2、离散型随机变量 ⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母,,,X Y ξη等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X 是随机变量,(,Y aX b a b =+是常数)则Y 也是随机变量 并且不改变其属性(离散型、连续型).3、离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X 可能取的不同值为12,x x ,…,i x ,…,n x ,X )i i X x p ==,则称表为随机变量的概率分布,简称的分布列.性质:①0,1,2,...;i p i n ≥= ②1 1.n i i p ==∑⑵两点分布则称X 服从两点分布,并称(1)p P X ==为成功概率.⑶二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1).k k n k n P X k C p p -==-我们称这样的随机变量X 服从二项分布,记作()p n B X ,~,并称p 为成功概率.判断一个随机变量是否服从二项分布,关键有三点:①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了n 次;① 等概率性:在每次试验中事件发生的概率均相等.② 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.p k n⑷超几何分布一般地, 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,于是得到随机变量X其中{}min ,m M n =,*,,,,n N M N n M N N ∈≤≤. 我们称这样的随机变量X 的分布列为超几何分布列,且称随机变量X 服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.M N n 其意义分别是总体中的个体总数、N 中一类的总数、样本容量.4、离散型随机变量的均值与方差⑴离散型随机变量的均值则称()1122i i n n E X x p x p x p x p =+++++为离散型随机变量X 的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.⑵离散型随机变量的方差则称21()(())n ii i D X x E X p ==-∑为离散型随机变量X 的方差,为随机变量X 的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度. ()D X 越小,X 的稳定性越高,波动越小,取值越集中;()D X 越大,X 的稳定性越差,波动越大,取值越分散.。
第四章 随机变量及其分布
第一节 随机变量及其分布函数
一、 随机变量的概念
1、含义:用来表示随机现象结果的变量。 ①样本点本身是用数量表示的; T ②样本点本身不是用数量表示的。 H 总之,不管随机试验的结果是否具有数量的性 质,都可以建立一个样本空间和实数空间的对 应关系,使之与数值发生联系,用随机变量的 取值来表示事件。 2、定义:定义在样本空间Ω={ω}上的实值 函数X=X(ω)称为随机变量,常用大写英文字 母或小写希腊字母来表示,相应地,用小写英 文字母表示其取值。
为了方便地表示随机事件的概率及其运算,我 们引入了分布函数的概念。
定义:设X 是一随机变量,对x R,
称F ( x ) P ( X x )为随机变量X的分布函数;
并称X 服从分布F ( x ),记为X ~ F ( x ).
注:(1)分布函数表示的是随机事件的概率。 (2)分布函数与微积分中的函数没有区别。
P ( X 0) F (0) F (0 0) 0.8 0.3 0.5 P ( X 1) F (1) F (1 0) 1 0.8 0.2
X P
1 0.3
0 0.5
1 0.2
思考:X还能取 到其他数值吗?
例4 一汽车沿一街道行驶,需要经过三个设有红绿信号 灯的路口,且信号灯的工作相互独立,以X表示汽车首 次遇到红灯已通过的路口数,求X的概率分布列。 解:记Ai—汽车在第i个路口遇到红灯,i=1,2,3. 1 P ( Ai ) P ( Ai ) , 且A1 , A2 , A3相互独立. 2 X的可能取值为 0, 1, 2, 3.
共有10个不同的样本点
记X表示“空格个数”,则有
X ( ) 2
X ( ) 1 X ( ) 0
概率论与数理统计课件:随机变量及其分布
随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律
为
k
P X k p(
1 p)1k k 0,1
(0 p 1)
随机变量及其分布
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回
高等数学之随机变量及其分布
§2.1、随机变量及其分布
一. 随机变量的概念
1、定义
定义1设 E 是随机试验,它的样本空间是 {e}. 如 果对于每一个e , 有一个实数X (e) 与之对应, 这样就得到一个定义在上的单值实值函数X (e),
称X (e)为随机变量. 简记为r.v X.(random var iable)
1, 2, 3, . 实例3 设某射手每次射击打中目标的概率是0.8, 现该射手射了30次,则随机变量 X 记为“击中目标 的次数”,则 X 的所有可能取值为:
0, 1, 2, 3, , 30.
(2)连续型 随机变量所取的可能值可以连续地充 满某个区间,叫做连续型随机变量. 实例 随机变量 X 为“灯泡的寿命”.
3.随机变量的分类
随机变量
离散型 非离散型
连续型 其它 (1)离散型 随机变量所取的可能值是有限多个或 无限多个(可列个), 叫做离散型随机变量. 实例1 观察掷一个骰子出现的点数. 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6.
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:
P{X a} 0. 证明 0 P{X a} P(a x X a) F(a) F(a x)
由于F(x)连续,当Δx->0,F(a-Δx)=F(a) 由此可得 P{a X b} P{a X b} P{a X b}
P{a X b} F(b) F(a)
连续型随机变量的概率与区间的开闭无关
说明
(1) 分布函数主要研究随机变量在某一区间内取值 的概率情况.
(2) 分布函数是一个普通的函数,正是通过它,我 们可以用数学分析的工具来研究 随机变量.
2.分布函数的性质
随机变量及其分布
f ( x) lim
x 0
xLeabharlann x xlim P{x X x x} lim x
f (x)dx .
x 0
x
x 0
x
故 X的密度 f(x) 在 x 这一点的值,恰好是 X落在区间 (x,x+△x] 上的概率与区间长度 △x之比的极限. 这里,如果把概率理解为质 量, f (x)相当于线密度.
f (x)
a
ba
当x b时,
x
a
b
x
F (x) f (t)dt f (t)dt f (t)dt f (t)dt 1.
a
b
因此X ~ U(a, b)的分布函数为:
0
F ( x)
P( X
x)
x b
a
a 1
xa a xb
xb
例1 长途汽车起点站于每时的10分、25分、55分发
车,设乘客不知发车时间,于每小时的任意时刻随
解: 设X表示400次独立射击中命中的次数,则
X~B(400, 0.02),故 P{X2}=1- P{X=0}-P {X=1} =1-0.98400-(400)(0.02)(0.98399) =0.9972
例5 设有80台同类型设备,各台工作是相互独立的, 发生故障的概率都是0.01, 且一台设备的故障只能 由一个人处理. 考虑两种配备维修工人的方法,其一 是由4人维护,每人负责20台;其二是由3人共同维护 30台.试比较这两种方法在设备发生故障时不能及 时维修的概率大小.
称A为几乎不可能事件,B为几乎必然事件.
(4) 若x是f(x)的连续点,则 dF(x) F(x) f (x)
dx
设随机变量X的分布函数
F
第二章 随机变量及其分布
2. 二项分布的推导过程与说明
3. 举例( 例2,例3,例4 )
C. 泊松分布
1. 定义:如果随机变量X的概率密度如下:
P(X k)
λ k k!
e
λ
,
k =0,1,2,… ( >0) ,
(2.4)
则称X服从参数为 的泊松分布,记作:
X ~ ()
2. 说明
3. 举例
返回目录
§3 随机变量的分布函数
P{X=4}=0.218 P{X=5}=0.175 P{X=6}=0.109 P{X=7}=0.055
P{X=k} < 0.001 , 当 k ≥ 11时
P{ X=8 }=0.022 P{ X=9 }=0.007 P{X=10}=0.02
例3:
某人进行射击,设每次射击的命中率为0.02,独立射 击400次,试求至少击中两次的概率。
解:以p表示每组信号灯禁止汽车通过的概率,
X所有可能取值为0,1,2,3,4。得X的分布律 为:P{X= k}= (1-p)k p , k=0,1,2,3, P{X= 4}= (1-p)4。用表格表示如下:
X
01
2
34
pk
p (1-p) p (1-p)2 p (1-p)3 p (1-p)4
代入p=1/2可得结果,可验证此结果满足分布 律两性质。
• 而有的实验结果与数值无直接关系,我们可 以把它映射为数值来表示,如:硬币抛掷中出 现正面用“0”来表示,出现反面用“1”来表示。
例1:在一袋中装有编号分别为1,2,3的3只球,
在袋中任取一只球,放回,再取一只球,记录它 们的编号。考察两只球的编号之和。则实验的样 本空间S={e}={(i,j)} i,j=1,2,3。 i,j分别为第一,第 二次取到球的号码。 以X表示两球号码之 和,得到样本空间 的每一个样本点e, X都有一值与之对 应,如图2-1。
随机变量及其分布
随机变量及其分布
定义2.1
设随机试验的样本空间为 e,X X e 是定义在样本
空间 Ω 上的实值单值函数,称之为随机变量(Random variable)。
定义2.2
设 X 是随机变量,x 为任意实数,函数
F x PX x
称为 X 的分布函数(Distribution function)。
3.
F lim F x 0,F lim F x 1 。
x
x
4. F x为右连续,即
F
x0
Hale Waihona Puke 0limx x0
F
x0
F
x0
,x0
R
概率论主要是利用随机变量来描述和研究随机现象,而利用 分布函数就能很好地表示各事件的概率。例如,
PX a 1 PX a 1 Fa PX a Fa 0 PX a Fa Fa 0
对于任意实数 x1,x2 x1 x2 ,有
Px1 X x2 PX x2 PX x1 F x2 F x1 (2.1)
因此,若已知 X 的分布函数,我们就能知道 X 落在任一区
间 x1,x2 上的概率。从这个意义上说,分布函数完整地描述
了随机变量的统计规律性。
如果将 X 看成是数轴上的随机点的坐标,那么,分布函数F x
概率学与数理统计
Pa X b PX b PX a Fb 0 Fa
Pa X b PX a Pa<X b
Fa Fa 0 Fb Fa
Fb Fa 0
随机变量的分类:
1. 离散型随机变量:随机变量只取数轴上的有限个或可列个点。 2. 连续型随机变量:随机变量的可能取值充满数轴上的一个或 若干区间。 3. 奇异型随机变量:既不是离散型随机变量,也不是连续型随 机变量。在理论上很有价值,而实际问题中很少有应用。
随机变量及其分布
也可以是等式或是不等式。 X ∈ L 也可以是等式或是不等式。
如在掷骰子试验中,用X表示出现的点数,则 如在掷骰子试验中, 表示出现的点数, A=“出现偶数点”可表示为: X=2} X=4} X=6} A=“出现偶数点”可表示为:{X=2}∪ {X=4} ∪{X=6} 出现偶数点 B=“出现的点数小于4 可表示为: 4} {X≤ B=“出现的点数小于4”可表示为:{X< 4}或{X≤3} 出现的点数小于
F(x) = P( X ≤ x)
为随机变量X的分布函数 随机变量X
F(x)是一个 F(x)是一个 普通的函数! 值域为 值域为 [0,1]。
定义域为 定义域为
(-∞,+ ); (- ,+∞); ,+
分布函数的性质
单调不减性 右连续性 非负有界性 规范性
若x1 < x2 , 则F ( x1 ) ≤ F ( x2 )
2)
∑p
k =1
∞
k = 1, 2,
k
=1
设离散型随机变量X的分布律为 例3 设离散型随机变量 的分布律为 P(X= xi) = pi i = 1、2、… ( 、 、 其中 0 < p <1 ,求 p 值。
解:
1= ∵ ∑ P ( X = xi )
i =1
+∞
p =∑p = 1 p i =1
i
一般地, 一般地,对离散型随机变量 X~P(X= xk)= k, k=1, 2, … ~ ( )=p = 其分布函数为
F ( x) = P ( X ≤ x ) =
k : xk ≤ x
∑
pk
分布律确定事件的概率 例2中,得到 的分布律为 中 得到X的分布律为
随机变量及其分布
随机变量及其分布一、随机变量用来表示随机现象结果的变量称为随机变量。
常用大写字母X,Y,Z等表示随机变量,而它们的取值用相应的小写字母x,y,z等表示。
假如一个随机变量仅取数轴上有限个点或可列个点(见图1.3-1),则称此随机变量为离散随机变量,或离散型随机变量。
假如一个随机变量的所有可能取值充满数轴上一个区间(a,b)(见图1.3-2),则称此随机变量为连续随机变量,或连续型随机变量,其中a可以是-∞,b可以是+∞。
[例1.3-11产品的质量特性是表征产品性能的指标,产品的性能一般都具有随机性,所以每个质量特性就是一个随机变量。
例如:(1)设X是一只铸件上的瑕疵数,则X是一个离散随机变量,它可以取0,1,2,…等值。
可用随机变量X的取值来表示事件:“X=0”表示事件“铸件上无瑕疵”,“X=2”表示事件“铸件上有两个瑕疵”,“X>2”表示事件“铸件上的瑕疵超过两个”等等。
这些事件有可能发生,也可能不发生。
因为X取0,1,2,…等值是随机的。
类似地,一平方米玻璃上的气泡数、一匹布上的疵点数、一台车床在一天内发生的故障数都是取非负整数{0,1,2,3,…}的离散随机变量。
(2)一台电视机的寿命X(单位:小时)是在[0,∞)上取值的连续随机变量:“X=0”表示事件“一台电视机在开箱时就发生故障”,“X ≤10000”表示事件“电视机寿命不超过10000小时”,“X>40000”表示事件“电视机寿命超过40000小时”。
(3)检验一个产品,结果可能是合格品,也可能是不合格品。
设X表示检验一个产品的不合格品数,则X是只能取0或1两个值的随机变量。
“X=0”表示合格品,“X= 1”表示不合格品。
类似地,检验10个产品,其中不合格品数X是仅可能取0,1,…,10等11个值的离散随机变量。
更一般的,在n个产品中的不合格品数X是可能取0,1,2,…,n等n+1个值的离散随机变量。
二、随机变量的分布随机变量的取值是随机的,但内在还是有规律性的,这个规律性可以用分布来描述。
随机变量及其分布
随机变量(random variable)表示随机试验各种结果的实值单值函数。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。
所谓随机变量,就是试验结果和实数之间的一个对应关系,这与函数概念本质上是相同的,只不过在函数概念中,函数f(x)的自变量是实数x,而在随机变量的概念中,随机变量X的自变量是试验结果。
(1)恰好有三家煤矿必须整改的概率;
(2)至少关闭一家煤矿的概率。(精确到 )
粒种子分种在甲、乙、丙 个坑内,每坑 粒,每粒种子发芽的概率为 ,若一个坑内至少有 粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。
(1)求甲坑不需要补种的概率;
(2)求 个坑中需要补种的坑数 的分布列;
设随机变量 服从标准正态分布 ,若 ,则 ()
A. B. C. D.
设随机变量 ,且 ,则c等于()
设 的概率密度函数为 ,则下列结论错误的是()
(A) (B)
(C) 的渐近线是 (D) ~
设随机变量 服从正态分布 ,记 ,则下列结论不正确的是()
A. B.
C. D.
在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布 。已知成绩在90分以上(含90分)的学生有12名。
特殊的离散型随机变量:
1.两点分布
如果随机变量X的分布列为:
X
1
0
P
p
q
其中0<p<1,q=1-p,则称离散型随机变量X服从参数为P的两点分布。
两点分布也称为(0—1)分布。也即是伯努利实验的分布。
篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的分布列。
概率论与数理统计:随机变量及其分布
以X记 A在 n 次试验中发生 的次数,X为一个随机变量 其分布律为
n k P( X = k ) = p (1 p) n k 记 q = 1 p k
n k nk P( X = k ) = p q k
n k n k L p q L k 称这样的分布为二项分布 二项分布.记为 称这样的分布为二项分布 记为 X ~ b(n, p).
X
0
1
1
2
2
3
5 3 2 0.6 0.4 3
4
5
pk (0.4)6 0.4 0.65 4
二项分布随机数演示 二项分布随机数演示
例3 某人进行射击 , 设每次射击的命中率为 0.02, 独立射击 400 次 , 试求至少击中两次的概 率 . 解 设击中的次数为 X ,
X
pk
1 1 6
2 1 6
3 1 6
4 1 6
5 1 6
6 1 6
均匀分布随机数演示 均匀分布随机数演示
3.二项分布 二项分布
n 重伯努利试验
伯努利资料
设试验 E 只有两个可能结果 : A 及 A, 设 P ( A) = p (0 < p < 1), 此时P( A) = 1 p.
将 将 E 独立地重复地进行 n 次 , 则称这一串重 复的独立试验为 n 重伯努利试验 .
(3)随机变量与随机事件的关系 随机变量与随机事件的关系 随机事件包容在随机变量这个范围更广的概 念之内.或者说 : 随机事件是从静态的观点来研究 念之内 或者说 随机现象,而随机变量则是从动态的观点来研究随 随机现象 而随机变量则是从动态的观点来研究随 机现象. 机现象 (4) 随机事件可以用随机变量表示
4. 泊松分布
随机变量及其分布总结
随机变量及其分布总结一、随机变量随机变量(Random Variable)是概率论中的重要概念,它是表示一个随机实验的可能结果及这些结果发生的概率的指标,是随机现象中的重要解释指标。
随机变量由它的取值所确定,特点是:(1)它是一类不能确定的数,因此不能被直接测量,但是可以用概率来描述它;(2)它表示了实验结果的取值;(3)它可以表示有一定规律的实验结果,也可以表示没有规律的实验结果;(4)它用其取值及概率分布表示一个随机实验的结果,即实验结果的不确定性;(5)它可以用来描述随机实验中各可能结果对概率的影响,从而探究随机现象的规律性。
二、随机变量的分类根据随机变量的取值类型,随机变量可分为定型随机变量和随机变量。
(1)定型随机变量定型随机变量也称为离散型随机变量,它会取值完全可以确定的一组可数的取值。
其具体分类包括:(a)伽玛分布(Gamma Distribution):它是一种对数正态分布,可用来模拟某些自然现象,如系统失效时间的分布。
(b)指数分布(Exponential Distribution):这是一种特殊的定型随机变量,它可以用来模拟服从指数分布的概率分布函数或者指数函数,常用来描述生存分析中系统的衰减过程。
(c)伯努利分布(Bernoulli Distribution):这是一种概率分布,它是一种若干独立实验中,某个事件出现的概率。
(d)泊松分布(Poisson Distribution):它是描述某一时间段内发生的事件的概率分布,可用来模拟客流量等自然现象中的随机变量。
(2)随机变量随机变量又称为连续型随机变量,它的取值范围是无限的,其取值受随机实验影响,其取值不能确定,但可以描述它的概率分布。
具体分类包括:(a)正态分布(Normal Distribution):正态分布具有非常广泛的应用,它可用来描述许多现实世界中的现象,如智力、体重等。
(b)卡方分布(Chi-square Distribution):卡方分布是在实验设计中非常常见的概率分布,它包含了有关实验结果的统计量,如样本均值、样本方差等。
随机变量及其分布函数
3)引进分布函数 F ( x ) 后,事件的概率 可以用 F ( x ) 的函数值来表示。
(1) P{ X b} F (b)
( 2) P{a X b} P{ X b} P{ X a } F (b) F (a )
(3) P{ X b} 1 P{ X b} 1 F (b)
随机变量
离散型
可能值为离散可列个点, 如,次品数
连续型 可能值为某个区间, 如,年降水量
练习1:设随机变量X的分布律为:
X pk -1 0.3 0 0.2 2 0.5
求X的分布函数 F ( x ),并作图 . 练习2:设有函数
sinx, 0 x F ( x) 0, 其他
(2)随机变量取任意一个数值或取任何数值范围内 的概率是多少? 问:怎样可以描述随机变量的取值规律呢?
二. 分布函数 不妨将r.v.X 看成数轴上一个随机点的坐标 1, P{ X 1}与 1 对应 2, P{ X 2}与 2 对应
x,
x
P{ X x}与 x 对应
x
从而, P ( X x )为 x 的函数 1. 定义 分布函数
0 ( a ] b
性质 (1)有界
0 F ( x) 1
(2)单调增加 x1 x2 , 则 F ( x1 ) F ( x2 )
F ( ) lim F ( x ) 1
x
F ( ) lim F ( x ) 0
x
(3)右连续
F ( a 0) lim F ( x ) F ( a )
第二章 随 机 变 量
在上一章中,我们把随机事件看作样本空
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量及其分布
1. 在某项测量中,测量结果ξ服从正态分布),1(2σN )0(>σ,若ξ在(0,2)内取值的概率为0.8,则ξ在(]0,∞-内取值的概率为 。
2. 92
)22(x x - 展开式中的常数项是 。
3. 有5本不同的书,其中语文书2本,数学书2本,物理书1本。
若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 。
4. 在某种信息传递过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息。
若用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 。
5. 在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等。
已知当这四场比赛结束后,该班胜场多于负场。
(1) 求班级胜场多于负场的所有可能的个数和。
(2) 若胜场次数为X ,求X 的分布列及其数学期望。
6.某品牌汽车的 4S 店,对最近100为采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2起或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元。
用η表示经销一辆汽车的利润。
(1) 若以频率作为概率,求事件A:“购买该品牌汽车的3为顾客中,至多有1位采用分3
期付款”的概率P(A);
(2) 求η的分布列及其数学期望E η。
7.2011年3月11日,日本地震引起了核泄漏,现有A,B 两组反应堆,据有关技术部分析,A 组中的两个反应堆爆炸的概率都是32,B 组中两个反应堆爆炸的概率都是2
1,假设这四个反应堆是否爆炸互不影响。
(1)求A 组,B 组中各有一个反应堆爆炸的概率;
(2)求A,B 两组反应堆爆炸的个数ξ的分布列与期望。