【精品课件】复合材料概述

合集下载

复合材料ppt

复合材料ppt

疲劳性能与寿命预测
疲劳性能
复合材料的疲劳性能是指它们在周期性载荷下的抗断裂能力 。通过优化材料组合和结构设计,可以显著提高复合材料的 疲劳性能。例如,使用高强度纤维和优化基体树脂可以显著 提高复合材料的疲劳性能。
寿命预测
通过实验测试和分析,可以预测复合材料的使用寿命。这些 测试包括疲劳测试、环境因素测试和物理测试等。通过这些 测试和分析,可以评估复合材料在不同条件下的使用寿命, 并提供设计建议以延长其使用寿命。
复合材料ppt
2023-10-30
目录
• 复合材料概述 • 复合材料的力学性能 • 复合材料的热学性能 • 复合材料的应用领域 • 复合材料的未来发展趋势 • 复合材料的相关研究与文献综述
01
复合材料概述
定义与分类
复合材料定义
由两种或两种以上不同性质的材料通过物理或化学的方法组合成的新型材料 。
复合材料分类
根据组合成分的性质和比例,复合材料可分为金属基复合材料、非金属基复 合材料和纳米复合材料等。
复合材料的性能特点
性能可设计性
可以根据使用要求设计复合材料的性能,如强度、刚度、耐腐 蚀性等。
性能优势
可以发挥不同材料的优点,实现单一材料无法达到的性能。
性能可调整性
可以通过调整各组分材料的比例和制备工艺来调整复合材料的 性能。
连接器
复合材料也被用于制造连接器,如USB连接器等。
电池外壳
复合材料还可以用于制造电池的外壳,如锂离子电池的外壳等。
05
复合材料的未来发展趋势
高性能复合材料的研发
01
研发具有更高强度、韧性和耐 高温性能的高性能复合材料, 以满足现代工程和工业制造的 需求。
02

复合材料介绍课件(2024)

复合材料介绍课件(2024)

发展历程
复合材料的发展经历了从天然复合材料到人工合成复合材料的过程。随着科技的不断进步,复合材料的种类和性 能不断得到拓展和提升。
2024/1/28
4
主要类型与特点
主要类型
根据基体材料的不同,复合材料可分为树脂基复合材料 、金属基复合材料、陶瓷基复合材料和碳基复合材料等 。
特点
复合材料具有以下特点
利用复合材料的高比强度 和比刚度特性,制造航天 器的承载结构,如卫星、 火箭等。
航空发动机部件
将复合材料应用于航空发 动机的叶片、机匣等部件 ,提高发动机的推力和效 率。
20
汽车轻量化解决方案探讨
车身覆盖件
采用碳纤维复合材料制造车身覆 盖件,如车门、车顶等,降低车 身重量并提高安全性。
底盘结构件
利用复合材料的高强度和耐疲劳 性能,制造汽车底盘的结构件, 如横梁、纵梁等。
数字化与仿真技术
利用数字化建模和仿真技术,对复合材料制品的设计、制 造和性能进行预测和优化,缩短研发周期,降低成本。
绿色制造与可持续发展
开发环保型树脂、可再生资源和生物基复合材料等绿色原 材料,推广清洁能源和低碳技术,实现复合材料的绿色制 造和可持续发展。
13
设备选型及参数设置
2024/1/28
设备选型
2024/1/28
市场前景
随着科技的不断进步和环保意识的提高,复 合材料的应用领域将不断扩大,市场需求也 将持续增长。未来,复合材料将在新能源、 智能制造、生物医疗等新兴领域发挥更大的 作用,同时也将面临更高的性能要求和更严
格的环保标准。
6
02
复合材料组成与结构
2024/1/28
7
基体材料选择与性能

复合材料pdfPPT课件

复合材料pdfPPT课件
复合材料的热膨胀系数通常低于单一材料,使其在温度变化时能保 持较好的尺寸稳定性。
良好的热导性
某些复合材料具有良好的热导性,适用于需要散热或传热的场合。
耐高温性能
通过选择合适的基体和增强材料,复合材料可以在高温环境下保持 较好的力学性能。
电学性能
绝缘性能
大多数复合材料具有良好的绝缘性能,适用于电气 和电子设备中。
后处理与加工
固化处理
对成型的复合材料进行加热或自然固化,使其达到所需的物理和化 学性能。
机械加工
对固化后的复合材料进行切割、钻孔、打磨等机械加工,以满足产 品形状和尺寸的要求。
表面处理
对复合材料表面进行喷漆、电镀、阳极氧化等处理,以提高其耐腐蚀 性、装饰性等性能。
04
复合材料的性能特点
力学性能
成型工艺
手糊成型
在模具上涂刷脱模剂,然后铺贴一层纤 维布或毡,再涂刷一层树脂,如此反复
直至达到所需厚度。
模压成型
将预浸料或纤维与树脂混合物放入模 具中,在加热和加压的条件下固化成
型。
喷射成型
将树脂和固化剂分别通过喷嘴喷到模 具上,同时用喷枪将纤维切断并喷到 树脂中,形成复合材料层。
注射成型
将树脂和固化剂混合后注入到装有纤 维的模具中,然后在一定温度和压力 下固化成型。
复合材料的组成与结构
基体材料
聚合物基体
如环氧树脂、聚酰亚胺等,具有良好的可加工性和韧 性。
金属基体
如铝、镁、钛等合金,具有高比强度和优异的导电导 热性能。
陶瓷基体
如氧化铝、氮化硅等,具有高温稳定性和耐磨损性。
增强材料
纤维增强材料
如碳纤维、玻璃纤维、芳纶纤维等,具有高比 强度和模量。

复合材料概述PPT课件

复合材料概述PPT课件
因此,基体开裂并不导致突然失效,材料的最终失效应变 大于基体的失效应变。
.
2、高温力学性能 室温下,复合材料的抗弯强度比基体材料高约10倍,弹性模
量提高约2倍。复合材料的抗弯强度至700℃保持不变,然 后强度随温度升高而急剧增加;但弹性模量却随着温度升 高从室温的137GPa降到850℃的80 GPa。这一变化显然与 材料中残余玻璃相随温度升高的变化相关。
其中一个组分是细丝(连续的或短切的)、薄片或颗粒 状,具有较高的强度、模量、硬度和脆性,在复合材料承受 外加载荷时是主要承载相,称为增强相或增强体。增强相或 增强体在复合材料中呈分散形式,被基体相隔离包围,因此 也称作分散相;复合材料中的另一个组分是包围增强相并相 对较软和韧的贯连材料,称为基体相。
1、室温力学性能
对陶瓷基复合材料来说,陶瓷基体的失效应变低于纤维的 失效应变,因此最初的失效往往是基体中晶体缺陷引起 的开裂。 材料的拉伸失效有两种:
第一:突然失效。如纤维强度较低,界面结合强度高,基 体较裂纹穿过纤维扩展,导致突然失效。
第二:如果纤维较强,界面结合较弱,基体裂纹沿着纤维 扩展。纤维失效前纤维/基体界面在基体的裂纹尖端和尾 部脱粘。
.
复合材料是由多相材料复合而成,共同特点主要有三个:
(1)综合发挥各种组成材料的优点,使一种材料具有多种性能, 具有天然材料所没有的性能。例如,玻璃纤维增强环氧基复合材料, 既具有类似钢材的强度,又具有塑料的介电性能和耐腐蚀性能。
(2)可按对材料性能的需要进行材料的设计和制造。如,针对方向性 材料强度的设计,针对某种介质耐腐蚀性能的设计等。 (3)可制成所需的任意形状的产品,可避免多次加工工序。例如,可 避免金属产品的铸模、切削、磨光等工序。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨 制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料 已实用化或即将实用化的领域有刀具、滑动构件、发动机制件 、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制 造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意 的使用效果。

《复合材料概论》课件

《复合材料概论》课件

航天器结构材料
在卫星、火箭和空间站等航天器中, 复合材料用于制造结构件,如太阳能 电池板、卫星天线和推进器等。
汽车工业领域
汽车车身
复合材料可以减轻车身重量,提高燃油经济性和 降低排放,广泛应用于汽车车身制造。
汽车零部件
复合材料也可用于制造汽车零部件,如发动机罩 、车门和座椅骨架等。
汽车功能材料
复合材料在汽车功能件中也有广泛应用,如电池 外壳、传感器和油箱等。
THANKS
感谢观看
冷却凝固。
金属基复合材料的制备方法 主要包括
02
01
03
粉末冶金法:将增强材料与 金属粉末混合,然后进行热
压或烧结。
喷射沉积法:将增强材料与 金属熔体一起喷射并沉积在
冷却表面上。
04
05
这些方法的选择取决于所需 的复合材料的性能和用途。
陶瓷基复合材料的制备
陶瓷基复合材料的制备方法 主要包括
04
晶须增强法:将陶瓷晶须与 陶瓷基体混合,然后进行烧 结或热压。
体育器材领域
高性能运动器材
复合材料具有高强度、轻质和抗 冲击等特点,广泛应用于制造高 性能运动器材,如网球拍、滑雪 板和自行车等。
休闲运动器材
在休闲运动器材中,复合材料也 用于制造轻便、舒适和耐用的运 动装备,如泳镜、潜水服和滑水 板等。
建筑领域
建筑材料
复合材料可以用于制造轻质、高强度 的建筑材料,如复合板、玻璃纤维增 强水泥和碳纤维增强混凝土等。
良好的热性能和化学稳定性
复合材料在高温和恶劣环境下仍能保持较好 的性能。
抗腐蚀性
某些复合材料具有较好的耐腐蚀性能,能够 延长使用寿命。
易于加工和制造
复合材料的加工和制造相对简单,能够快速 成型,降低生产成本。

材料导论第十四章复合材料ppt课件

材料导论第十四章复合材料ppt课件
混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维

编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等

《复合材料》PPT课件

《复合材料》PPT课件
优异的抗疲劳性能
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
03
良好的减震性能
复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
良好的电绝缘性能
模压成型
缠绕成型
将预浸料或预混料放入模具中,在加热和加 压的条件下使其固化成型。
将浸渍过树脂的连续纤维或布带按照一定规 律缠绕到芯模上,然后固化脱模。
后处理与加工技术
热处理
通过加热或冷却的方式改善复合 材料的性能,如消除内应力、提
高强度等。
表面处理
对复合材料表面进行打磨、喷涂 等处理,以提高其外观质量和耐 腐蚀性。
原材料的预处理
对增强材料和基体材料进行清洗、干燥、筛分等 预处理,以确保原材料的质量和性能。
成型工艺方法
手糊成型
喷射成型
在模具上涂刷脱模剂,然后铺贴一层基体材 料,再涂刷一层树脂,如此反复直至达到所 需厚度,最后固化脱模。
将树脂和增强材料分别通过喷嘴喷射到模具 上,通过调整喷射参数控制复合材料的厚度 和性能。
大多数复合材料具有优异的电绝缘性能,可用于电气设备和电子器 件的绝缘材料。
多样化的热性能
通过调整复合材料的组分和结构设计,可以实现不同的热性能要求, 如耐热性、隔热性或导热性等。
化学性能
耐腐蚀性
复合材料能够抵抗多种化学物质 的侵蚀,包括酸、碱、盐等,适 用于腐蚀性环境下的应用。
耐候性
复合材料能够抵抗紫外线、氧化、 潮湿等自然环境因素的影响,长 期保持稳定的性能。

《复合材料概论》课件

《复合材料概论》课件
这些制备方法的选择取决 于所需的复合材料的性能 和用途。
化学反应法:通过化学反 应将增强材料与聚合物结 合,形成复合材料。
金属基复合材料的制备
金属基复合材料的制备方法主要包括
这些制备方法的选择取决于所需的金属 基复合材料的性能和用途。
喷射沉积法:将增强材料与金属熔体一 起喷射并沉积在基体上,形成复合材料 。
《复合材料概论》课件
• 复合材料的定义与分类 • 复合材料的组成与结构 • 复合材料的制备方法 • 复合材料的性能与应用 • 复合材料的发展趋势与挑战
01
复合材料的定义与分类
定义
总结词
复合材料的定义是指由两种或两种以上材料组成的新材料,各组分之间具有显著的相界 面。
详细描述
复合材料是通过物理或化学的方法将两种或两种以上的材料结合在一起,形成一个新的 材料。这些原始组分在复合材料中保持相对独立,并能够共同发挥作用,以满足特定的
智能复合材料是指具有感知、响应和 自适应能力的复合材料,是未来复合 材料发展的重要方向之一。
纳米复合材料的研究
纳米技术的应用为复合材料的发展带 来了新的机遇,纳米复合材料在提高 材料性能、增强材料功能等方面具有 显著优势。
环保与可持续发展
绿色复合材料的推广
随着环保意识的提高,绿色复合材料在生产和使用过程中对环境的 影响越来越受到关注,推广绿色复合材料是可持续发展的必然要求。
改善界面性能是提高复合材料 性能的关键手段之一,可以通 过表面处理、偶联剂等方法来
实现。
03
复合材料的制备方法
聚合物基复合材料的制备
聚合物基复合材料的制备 方法主要包括
聚合物溶液法:将增强材 料浸渍在聚合物溶液中, 然后去除溶剂,形成复合 材料。

《复合材料》PPT课件

《复合材料》PPT课件

纳米绘画艺术—— 纳米中国
这是中国科学院化学所的科技人员利用 纳米加工技术在石墨表面通过搬迁碳原子而绘制 出的世界上最小的中国地图。
碳纳米球(富勒稀)
The Nobel Prize i n Chemistry 1996 for discovery of fullerenes(C60).
碳原子组成的小单元看起来和 足球一样。碳原子的活性差, 导电,非常稳定。绝佳的材料 和电性能
材料的创新:新材料的出现为产品设计提供更广阔 的前,由于其独
有的体积和表面效应,它从宏观上显示出许多奇妙 的特征。
制备纳米粒子的物理方法
1.球 磨
实施方法
2.振动 球磨
3.振动磨
4.搅拌磨
5.胶体磨
6.纳米气流粉碎 气流磨
球磨 (Milling)
新型日光温室复合材料 温室骨架和纵拉杆全部采用复合材料制成
绿可木,生态木塑 复合材料,木塑复
合材料吸音板
复合材料(玻璃 钢)制品
采用高分子复合材料制作浮雕和雕塑
碳纤维/树脂复合 材料
碳/碳复合材料
生物医学制品和体育运动
复合材料被用来预防受伤, 矫正生理机能,和帮助病人 复原。
生物医学制品和以体育运动器 材为主的碳纤维复合材料制品
• 台湾碳纤维约有3000吨/年的产能。
体育休闲用品应用
山地车
工业应用
这是一个覆盖甚广,内容甚多,也是一个发展最快, 前景最好的应用领域。
1、基础设施领域(混凝土结构加固补强)
基础设施(Infrastructure)系指建筑领域的房屋 、桥梁、隧道、涵洞、地铁及其相关的混凝土工程,其修 复、更新、加固已构成复合材料目前极重要的应用领域。
② 碳纤维增强复合材料 由碳纤维与酚醛、环氧、聚酯、聚四氧乙烯 等树脂组成的复合材料 特点:密度更低,比强度和比模量更高 具有优良的疲劳性能、耐冲击性能、自润滑 性能和耐磨、耐蚀、耐热性能

复合材料ppt

复合材料ppt
电子元器件
复合材料也用于制造电子元器件,如电路板、连接器等,具有高精度、高可 靠性、耐高温等特性,可以提高元器件性能并降低生产成本。
03
复合材料的力学性能
复合材料的强度与硬度
强度
复合材料的强度主要取决于其组成材料的强度以及它们的层间结合强度。通常, 复合材料的强度比其组成材料的强度要高。
硬度
复合材料的硬度通常取决于其组成材料的硬度以及它们的层间结合强度。高硬度 可以提供更好的耐磨性。
的力学行为和结构的响应。
02
CAD软件
使用CAD软件进行复合材料的建模和几何形状设计,结合有限元分析
软件进行结构分析和优化。
03
材料数据库
利用材料数据库查询复合材料的性能参数,为结构设计提供数据支持

结构优化与轻量化设计
结构优化设计
通过结构优化设计,调整结构形状、尺寸和材料分布等参数, 以实现复合材料的最优性能。
案例二:汽车制造领域的复合材料应用
详细描述
2. 车架制造:采用铝合金、高强 度钢等材料的复合车架,具有更 高的承载能力和耐腐蚀性能。
总结词:汽车制造领域中,复合 材料被广泛应用于车身、车架、 车内装饰等方面,具有轻质、高 强度、耐腐蚀等优点。
1. 车身制造:采用碳纤维复合材 料的汽车车身具有更高的强度和 刚度,能够提高汽车的被动安全 性能。
循环经济
社会责任
推行循环经济模式,实现复合材料的循环利 用和再利用。
强化企业的社会责任意识,关注员工健康和 安全,推动可持续发展。
06
复合材料案例分析
案例一:航空航天领域的复合材料应用
01
02
总结词:航空航天领域 是复合材料应用的重要 领域之一,具有轻质、 高强度、耐腐蚀等优点 。

第五章复合材料PPT课件

第五章复合材料PPT课件

增强的磨损比玻纤增强的约小10倍。碳纤维增强塑料
具有良好的自润性能,因此可用于制造无油润滑活塞
环、轴承和齿轮。如用石棉之类的材料与塑料复合,
则与上述情况相反,可得到摩擦系数大、制动效果好






[1] p为滑动轴承投影面的压强(MPa),v为滑动
线速度(m/s),各种塑料及其复合材料均有一个允
许最高承载能力的p值;与允许最高滑动线速度的v值。
金属基复合材料非金属基复合材料铝基复合材料钛基复合材料铜基复合材料塑料基复合材料橡胶基复合材料陶瓷基复合材料纤维增强塑料玻璃钢纤维增强橡胶轮胎纤维增强陶瓷纤维增强金属金属陶瓷弥散强化金属纤维增强复合材料颗粒增强复合材料叠层复合材料双层金属复合材料三层复合材料复合材料二复合材料的性能特点二复合材料的性能特点纤维增加材料的比强度及比模量远高于金属材料特别是碳纤维环氧树脂复合材纤维增强复合材料对缺口及应力集中的敏感性小纤维与基体界面能阻止疲劳裂纹的扩展改变裂纹扩展的方向
复合材料种类繁多,目前尚无统一的分类方法。

金属基复合材料

铝基复合材料

钛基复合材料

铜基复合材料


非金属基复合材料

塑料基复合材料

橡胶基复合材料
陶瓷基复合材料
第11页/共60页
纤维增强复合材料

纤维增强塑料(玻璃钢)

纤维增强橡胶(轮胎)

纤维增强陶瓷

纤维增强金属

颗粒增强复合材料

态 分
纤维增强复合材料对缺口及应力集中的敏感性小,纤维与基体界面能阻止 疲劳裂纹的扩展,改变裂纹扩展的方向。

复合材料ppt课件文字可编辑

复合材料ppt课件文字可编辑
铺层优化设计
通过调整复合材料的铺层顺序、纤维方向和厚度分布等参数,实现结构的最优化。
制造工艺优化
针对复合材料的制造工艺进行优化,提高生产效率和产品质量。
试验验证与反馈
对优化后的复合材料结构进行试验验证,并将结果反馈至设计阶段,不断完善和优化设计方案。
优化设计策略探讨
06
CHAPTER
复合材料加工与制造技术
自动铺放技术及应用实例
自动铺放技术概述
自动铺放技术是一种高效、精确的复合材料制造方法,主要包括自动铺带技术和自动铺丝技术。
应用实例
自动铺放技术在航空航天、汽车、船舶等领域具有广泛应用。例如,在航空航天领域,自动铺放技术可用于制造飞机机翼、机身等部件,提高生产效率和产品质量。
树脂传递模塑(RTM)是一种闭模成型技术,将低粘度树脂注入到闭合模具中,浸润增强材料并固化成型。
航空航天领域
汽车工业领域
体育器材领域
分享汽车轻量化设计中的复合材料应用案例,如车身、底盘、发动机罩等部件。
介绍高尔夫球杆、网球拍、自行车车架等体育器材中复合材料的设计与应用。
03案例分享
01
02
03
04
有限元分析
利用有限元分析方法对复合材料结构进行力学性能和热学性能分析,以指导优化设计。
07
CHAPTER
复合材料回收利用与环保问题探讨
当前复合材料回收利用率较低,大量废弃物未得到有效利用。
回收利用率低
复合材料种类繁多,回收处理技术复杂,难以实现高效、低成本回收。
技术挑战
缺乏成熟的复合材料回收市场,回收产业链尚不健全。
市场机制不完善
回收利用现状及挑战
生产成本增加
环保法规的实施导致企业生产成本增加,对产业发展带来一定压力。

复合材料 课件

复合材料 课件

02
手糊成型是一种手工操作工艺,将增 强材料浸渍在树脂中,然后将其铺放 在模具上,通过刮刀或刷子去除多余 的树脂,最后进行固化。该工艺简单 易行,适用于小批量生产,但生产效 率较低。
03
喷射成型是一种半机械化或全自动化 工艺,将树脂和增强材料通过混合器 混合后,通过喷嘴喷涂在模具或制品 表面,形成一定厚度的层,然后进行 固化。该工艺生产效率高,适用于大 型制品的生产。
化学性能
耐腐蚀性
复合材料通常具有较好的耐腐蚀性,能够抵抗酸、碱、盐等化学 物质的侵蚀。
环境适应性
某些复合材料能够适应极端环境,如高湿度、紫外线暴露等。
阻燃性
一些复合材料具有阻燃性,能够有效地阻止火焰的蔓延。
03
复合材料的制备工艺
聚合物基复合材料的制备工艺
01
聚合物基复合材料是由聚合物基体和 增强材料组成的复合材料。其制备工 艺主要包括手糊成型、喷射成型、模 压成型和树脂传递模塑等。这些工艺 通常需要使用树脂、填料、增强材料 和其他添加剂,通过混合、涂布、浸 渍和固化等步骤来制备聚合物基复合 材料。
聚合物基复合材料的制备工艺
模压成型是一种半自动或全自动的工艺,将预浸料或干纤维 增强材料放在模具中,加热加压固化后得到制品。该工艺生 产效率高,制品尺寸精度高,适用于中小型制品的生产。
树脂传递模塑是一种全自动化或半自动化的工艺,将预浸料 或干纤维增强材料放在模具中,通过注射器将树脂注入模具 中,浸渍纤维后进行固化。该工艺生产效率高,适用于大型 制品的生产。
建筑领域
桥梁和高层建筑
复合材料用于制造桥梁和高层建筑的 承重结构,以减轻重量并提高结构的 稳定性。
建筑材料
复合材料用于制造建筑材料,如钢筋 混凝土的替代品,以提高建筑物的耐 久性和性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属基复合材料的发展: (1)产生于60年代,发展于90年代。 (2)最早应用于哥伦比亚号航天飞机的骨架:硼纤维/Al。
由于硼纤维太昂贵,现在基本用碳纤维/Al复合材料来替 代硼纤维/Al。 (3)受制备工艺的限制,基本还处于实验室阶段。
金属基复合材料的应用: 最初,比强度、比模量高,尺寸稳定等优点;而 用于航天、航空等部门; 近年来,随着新制造工艺的出现,廉价增强体 (SiC、陶瓷短纤维等),金属基复合材料开始用于 民用部门。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨 制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料 已实用化或即将实用化的领域有刀具、滑动构件、发动机制件 、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制 造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意 的使用效果。
陶瓷基复合材料的性 能
一、金属基复合材 料
金属基复合材料(Metal Matrix Composite,MMC)一般是 以金属或合金为连续相而颗粒,晶须或纤维形式的第二相组 成的复合材料。目前其制备和加工比较困难,成本相对较高, 常用在航天航空和军事工业上。
金属基复合材料与树脂基复合材料比,优点在于: 工作温度高; 横向机械性能好; 层间剪切强度高; 耐磨损、导电、导热; 不吸湿、不老化; 尺寸稳定,可采用金属加工方法。
热固型树脂基复合材料
定义: 以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树
脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、 芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成 的复合材料。
其中一个组分是细丝(连续的或短切的)、薄片或颗粒 状,具有较高的强度、模量、硬度和脆性,在复合材料承受 外加载荷时是主要承载相,称为增强相或增强体。增强相或 增强体在复合材料中呈分散形式,被基体相隔离包围,因此 也称作分散相;复合材料中的另一个组分是包围增强相并相 对较软和韧的贯连材料,称为基体相。
因此,基体开裂并不导致突然失效,材料的最终失效应变 大于基体的失效应变。
2、高温力学性能
室温下,复合材料的抗弯强度比基体材料高约10倍,弹性模 量提高约2倍。复合材料的抗弯强度至700℃保持不变,然 后强度随温度升高而急剧增加;但弹性模量却随着温度升 高从室温的137GPa降到850℃的80 GPa。这一变化显然与 材料中残余玻璃相随温度升高的变化相关。
(1)综合发挥各种组成材料的优点,使一种材料具有多种性能, 具有天然材料所没有的性能。例如,玻璃纤维增强环氧基复合材料, 既具有类似钢材的强度,又具有塑料的介电性能和耐腐蚀性能。
(2)可按对材料性能的需要进行材料的设计和制造。如,针对方向性 材料强度的设计,针对某种介质耐腐蚀性能的设计等。 (3)可制成所需的任意形状的产品,可避免多次加工工序。例如,可 避免金属产品的铸模、切削、磨光等工序。
复合材料概述
复合材料的基本概念
复合材料(Composite materials),是由两种或两种以上 不同性质的材料,通过物理或化学的方法,在宏观上组成具 有新性能的材料。
复合材料由连续相的基体和被基体包容的相增强体组成。
增强相和基体相是根据它们组分的物理和化学性质和在 最终复合材料中的形态来区分的。
1、室温力学性能
对陶瓷基复合材料来说,陶瓷基体的失效应变低于纤维的 失效应变,因此最初的失效往往是基体中晶体缺陷引起 的开裂。 材料的拉伸失效有两种:
第一:突然失效。如纤维强度较低,界面结合强度高,基 体较裂纹穿过纤维扩展,导致突然失效。
第二:如果纤维较强,界面结合较弱,基体裂纹沿着纤维 扩展。纤维失效前纤维/基体界面在基体的裂纹尖端和尾 部脱粘。
纤维状
颗粒状
层状
片状
填充状Biblioteka 复合材料及其增强相的各种形态
复合材料的基体材料分为金属和非金属两大类。 金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主 要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有 玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉 纤维、晶须、金属丝和硬质细粒等。
复合材料是由多相材料复合而成,共同特点主要有三个:
主要用途: 建筑/基础设施
广告牌 格栅 栅栏 水沟和排水渠 扶手 板材 屋顶承重梁 水处理 平台 楼梯 隔板 格栅 扶手 交通运输 公路防护栏 高速公路防眩板 地铁三轨防护罩 桥梁封闭系统 桥面板弯曲拉挤型材 电子电工 电缆桥架 绝缘部件 梯子部件 灯杆 透频构件 线路系 统 天线罩 电缆保护管 梯子 体育用品 帐篷杆 工具手柄 其它
热塑性树脂基复合材料
20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、 连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合 材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、 PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程 塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维 等一切可能的纤维品种。随着热塑性树脂基复合材料技术的 不断成熟以及可回收pvd复合材料利用的优势,该品种的复 合材料发展较快,欧美发达国家热塑性树脂基复合材料已经 占到树脂基复合材料总量的30%以上
二、陶瓷基复合材 料
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材 料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进 陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优 异性能,而其致命的弱点是具有脆性,处于应力状态时,会产 生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤 维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法 。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶 瓷基复合材料。
三、树脂基复合材 料
定义: 基体材料为树脂,增强材料主要有玻璃纤维、碳
纤维、芳纶纤维、超高分子量聚乙烯纤维等通过不 同的工艺组成的复合材料。 优点:
★ 轻质高强 ★ 突出的防腐性能(通过采用不同的基体树脂) ★ 电绝缘性优良 ★ 隔热蔽音 ★ 安装维护简便 ★ 外观颜色可自由选择
分类: ★ 热塑型树脂基复合材料 ★ 热固型树脂基复合材料
相关文档
最新文档