水流阻力和水头损失祥解

合集下载

水头损失的类型及其与阻力的关系

水头损失的类型及其与阻力的关系

水头损失的类型及其与阻力的关系一、产生水头损失的原因及水头损失的分类实际液体在流动过程中,与边界面接触的液体质点黏附于固体表面,流速为零。

在边界面的法线方向上流速从零迅速加大,过水断面上的流速分布于不均匀状态。

如果选取相邻两流层来研究(如图4-1),由于两流层间存在相对运动,实际液体又具有黏滞性,所以在有相对运动的相邻流层间就会产生内摩擦力。

液体流动过程中要克服这种摩擦阻力,损耗一部分液流的机械能,转化为热能而散失。

单位重量液体从一断面流至另一断面所损失的机械能,就叫做两断面之间的单位能量损失。

图4-1在固体边界顺直的河道中,水流的边界形状的尺寸沿水流方向不变或基本不变,水流的流线便是平行的直线,或者近似为平行的直线,其水流属于均匀流或渐变流。

这种情况下产h表示。

生的水头损失,是沿程都有并随流程的长度而增加,所以叫做沿程水头损失,常用f 在边界形状和大小沿流程发生改变的流段,水流的流线发生弯曲。

由于水流的惯性作用,水流在边界突变处会产生与边界的分离并且水流与边界之间形成旋涡。

因此,在水流边界突变处的水流属于急变流(如图4-2所示)。

在急变流段内,由于水流的扩散的旋涡的形成,使水流在此段形成了比内摩擦阻力大得多的水流阻力,产生了较大的水头损失,这种能量损h表示。

失是发生在局部范围之内的,所以叫做局部水头损失,常用j图4-2综上所述,我们可以将水流阻力和水头损失分成两类:(1)由各流层之间的相对运动而产生的阻力,称为内摩擦阻力。

它由于均匀地分布在水流的整个流程上,故又称为沿程阻力。

为克服沿程阻力而引起单位重量水体在运动过程中的能量损失,称为沿程水头损失,如输水管道、隧洞和河渠中的均匀流及渐变流流段内的水头损失,就是沿程水头损失。

(2)当流动边界沿程发生急剧变化时(如突然扩大、突然缩小、转弯、阀门等处),局部流段内的水流产生了附加的阻力,额外消耗了大量的机械能,通常称这种附加的阻力为局部阻力,克服局部阻力而造成单位重量水体的机械能损失为局部水头损失。

流体流动阻力及水头损失

流体流动阻力及水头损失
2.5—2.0
高级住宅和别墅
每人每日
300---400
2.3—1.8
设计秒流量计算
1、住宅、集体宿舍、旅馆、医院、幼儿园、办公楼、学校等建筑物的生活给水管道设计秒流量的计算公式。
=0.2a +k
式中: ----计算管段的给水设计秒流量,L/S
---计算管段的卫生器具给水当量总数
a\k根据建筑物用途而定的系数,
表2-8住宅生活用水量及小时变化系数
住宅类别和卫生有大器具设置标准
单位
生活用水量定额(最高日)/L
小时变化系数
有大便器,洗涤盆,无沐浴设备
每人每日
85--180
3.0---2.5
有大便器,洗涤盆和沐浴设备
每人每日
130--220
2.8---2.3
有大便器,洗涤盆\沐浴设备和热水供应
每人每日
170--300
沿程阻力和沿程水头损失
流体在流动时,流体的黏滞力及流体与管壁的摩擦力统称为沿程摩擦阻力。流体流动时,刻服沿程阻力而造成的水头损失称为沿程水头损失。
用符号hy=入
Hy-----沿程水头损失m
ᄉ-----沿程阻力系数
L----管段长度
D-----管段直径
。。。
二、局部阻力和局部水头损失
当流体经过三通、大小头、弯头、阀门等配件或配件时,由于这些局部障碍的影响使流体流动状况发生急剧变化,流体质点互相碰撞,产生漩涡,而产生另一种阻力。
Hj=§ §:局部阻力系数
用水定额
;建筑物的生活日用水量是随季节而每日变化的,即使一年中用水最高的那一天也是不均匀的。因此根据统计资料,我国规范提供了安按人按日的最高日用水定额,并提供了小时变化系数,按以上定额就可以计算出最高日最大时的用水量。但是,建筑物内的用水量是随时变化的,要计算管道的管径与水压,就要建立设计秒流量计算中心式,而室内用水量是通过各用水设备的配水龙头出水的,因此测定各种用水设备的额定流量对建立设计秒流量计算公式是尤其重要的。

PPT-第5章流动阻力与水头损失

PPT-第5章流动阻力与水头损失
§5.4 圆管中的层流运动
最大流速:
流量:
夫凹呀檬馈蜜狰丧鲁闽求靳扼砚盖淑垮颤岛壕眷驶傍蛤堆挠筋烤浓迭码羹【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.4 圆管中的层流运动
二、断面平均流速
芥傅亦圆圆烹攻斩庶陪袁雷捐隶到炎寝蘸听拔瓤犬回澄吊晃貉车驾要跪臂【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
二、判别标准
1.试验发现
邯鹅兽拖盒惩猖摸竟异逼撇赘悍国哩伦札夫定桌街樊履轮微雍柴劈信佬咕【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.2 黏性流体的流动型态
2.判别标准
圆管:取
非圆管:
定义水力半径 为特征长度.相对于圆管有
并巴诚形酬朽猖嘴畜梧飞凡摩链碴宋础谋迭稽魏摘履显做且椭篡杨症操澜【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
(3)
法融拙紧纠咬耪弗圭瞪佩多消京航寸俘或碎菏乡迪缸时誉气惟蔡赠绚止权【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.3 恒定均匀流基本方程
二、过流断面上切应力τ的分布
仿上述推导,可得任意r处的切应力:
考虑到 ,有
故 (线性分布)
适合紊流区的公式:
烧茫烧答舵喧洗佃跪送捡沁竿奎沽究豪兰尤默言线惶闻虱涪淀麻诸携番褥【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.5 圆管中的紊流运动
★为便于应用,莫迪将其制成莫迪图。
Lewis Moody
疚怂橡禹局设厨捐听极盗肥逸溅攘浙拯豁暇阮号收躲摔楼脸邢剩环钱捻贰【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失

流动阻力和水头损失

流动阻力和水头损失
添加标题
加强设备维护:定期对管道和设备进行清洗和维护,保 持其良好的运行状态,以减少流动阻力和水头损失。
流动阻力和水头损失的 应用领域
水利工程领域的应用
添加 标题
水力发电:流动阻力和水头损失是水力发电的重要因素,通过优化水力发电站的设计和运行,可以降低流动 阻力和水头损失,提高发电效率。
添加 标题
动阻力
水头损失的测量方法
压差计法:通过测量管道进出口压差来计算水头损失 流速仪法:通过测量管道内流速来计算水头损失 能量方程法:通过建立能量方程来计算水头损失 示踪剂法:通过在水中加入示踪剂来测量水头损失
流动阻力和水头损失的联合测量方法
测量原理:基于伯努利方程和流动阻力公式 测量步骤:准备测量仪器、进行测量、记录数据 测量仪器:压力计、流量计、温度计等 注意事项:确保测量仪器的准确性和可靠性,选择合适的测量位置
灌溉工程:在灌溉工程中,流动阻力和水头损失会影响灌溉水的流量和灌溉效率。通过改进灌溉系统设计和 运行方式,可以降低流动阻力和水头损失,提高灌溉效率。
添加 标题
水利枢纽工程:水利枢纽工程是调节水资源的重要设施,流动阻力和水头损失会影响水利枢纽工程的调节效 果。通过优化水利枢纽工程的设计和运行,可以降低流动阻力和水头损失,提高调节效果。
减小水头损失的措施
减小流速:降 低水流速度可 以减小水头损

改变流道:通 过改变水流通 道的形状和尺 寸,可以减小
水头损失
增加阻力:通 过增加水流阻 力,可以减小
水头损失
采用新型材料: 采用新型材料 可以减小水流 阻力,从而减
小水头损失
流动阻力和水头损失的联合减小措施
添加标题
优化管道设计:选择适当的管径和长度,减少弯曲和急 转弯,以降低流动阻力和水头损失。

流体力学课件第四章流动阻力和水头损失

流体力学课件第四章流动阻力和水头损失

l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*

8
§4-4 圆管中的层流

层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系

均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态

两种流态
v小
' c
v小
v > vc
v大 v大

临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类

沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。

土力学第四章 流动阻力和水头损失

土力学第四章  流动阻力和水头损失

漩涡区中产生了较大的能量损失
漩涡区
C A C
D B
漩涡体形成、运转和分裂
漩涡区中产生了较大的能量损失
C A C
D B
流速分布急剧变化
漩涡区中产生了较大的能量损失
C A
D B
C 漩涡的形成,运转和分裂;流速分布急剧变化, 都使液体产生较大的能量损失。 这种能量损失产生在局部范围之内,叫做局部 水头损失hj 。
颜色水
l
hf
Q
V t
下游阀门再打开一点,管道中流速增大
红色水开始颤动并弯曲,出现波形轮廓
颜色水
l
hf
下游阀门再打开一点,管中流速继续增大
红颜色水射出后,完全破裂,形成漩涡,扩散至全管, 使管中水流变成红色水。 这一现象表明:液体质点运动中会形成涡体,各涡体相 互混掺。
Q
V t
颜色水
l
hf
Q
水流半径R
R A

粘性流体的两种流态
4.2.1 雷诺实验
雷诺:O.Osborne Reynolds (1842~1912) 英国力学家、物理学家和工程师,杰出实验科学家
1867年-剑桥大学王后学院毕业 1868年-曼彻斯特欧文学院工程学教授
1877年-皇家学会会员
1888年-获皇家勋章
1905年-因健康原因退休
两个过水断面的湿周相同,形状不同,过水断面 面积一般不相同,水头损失也就不同。 因此,仅靠湿周也不能表征断面几何形状的影响。
由于两个因素都不能完全反映横向边界对水头损失
的影响,因此,将过水断面的面积和湿周结合起来,全
面反映横向边界对水头损失影响。
水流半径R:
R
A

工程流体力学课件4流动阻力和水头损失

工程流体力学课件4流动阻力和水头损失
产生原因
流体流经局部障碍时,流动状态发生急剧变化,产生漩涡 和二次流,使得流体的速度分布和方向发生变化,导致水 头损失。
影响因素
局部障碍的形式、流体流速、流体性质等。
总水头损失
总水头损失
01
指流体在管道或渠道中流动过程中所损失的总水头,
等于沿程水头损失和局部水头损失之和。
计算方法
02 总水头损失等于沿程水头损失和局部水头损失的代数
水利工程中的流动阻力与水头损失分析
水利工程中的流动阻力来 源
在水利工程中,流动阻力主要来自水体与边 界的摩擦力、水流内部的各种阻力等。这些 阻力会导致水头损失,影响水利工程的正常 运行。
水头损失对水利工程效益 的影响
水头损失的大小直接影响到水利工程的效益 。在设计水利工程时,应充分考虑水头损失 的影响,合理选择水泵和水轮机的型号,确
保工程效益最大化。
THANKS
工程流体力学课件4流 动阻力和水头损失
目录
Contents
• 流动阻力的概念 • 水头损失的种类 • 流动阻力和水头损失的计算 • 工程实例分析
01 流动阻力的概念
定义与分类
定义
流动阻力是指流体在流动过程中受到的阻碍作用,导致流体机械能的损失。
分类
分为内阻力和外阻力。内阻力是由于流体内部摩擦力引起的,如层流内摩擦力 和湍流内摩擦力;外阻力是指流体在流动过程中受到的外部阻碍,如流体与管 道壁面的摩擦力。
计算公式
阻力系数通常通过实验测定,也可以通过经验公式进行估算。常用的经验公式有达西韦斯巴赫公式和莫迪图等。
影响因素
阻力系数的大小受到流体的物理性质、管道的几何形状和尺寸、流动状态等多种因素的 影响。在工程实际中,需要根据具体情况进行实验测定或经验估算。

第5章 流体阻力和水头损失

第5章  流体阻力和水头损失

沿程水头损失与流速的关系
当流速由小变大时,实验点落 在曲线ABC 上。其中AB 段是 直线,其斜率为1,流态为层 流。这说明层流的沿程水头损 失h f与平均速度υ的1次方成正 比。曲线BC 的斜率大于1,流 态为湍流,其中B点附近的曲 线斜率约为1.75,hf与v的1.75 次方成正比。C 点附近的曲线 斜率约为2,hf与υ的2次方成 正比。B点是流态从层流变为 湍流的分界点。 当流速由大变小时,流态由湍 流逐渐变为层流,实验点落在 曲线CDA 上。其中DA段的斜 率为1,流态为层流。D点是流 态从湍流变为层流的分界点。
2.局部阻力和局部水头损失 流体因固体边界急剧改变而引起速度重新分布, 质点间进行剧烈动量交换而产生的阻力称为局 部阻力。 其相应的水头损失称为局部水头损失,用hj表 示。 3.总水头损失 在实际流体总流伯努利方程中,hw项应包括所 取两过流断面间所有的水头损失,即
hw h f h j


64 Re
(5-14)

l 2 hf d 2g
(5-15)
式(5-15)为达西公式,适用于有压管流、明渠流、层流或
紊流。 λ:沿程阻力系数,在圆管层流中只与雷诺数成反比,与管 壁粗糙程度无关。
【例】粘性流体在圆管中作层流运动,已知管道直径d = 0.12 m,流量Q = 0.01m3/s,求管轴线上的流体速度umax, 以及点速度等于断面平均速度的点位置。 解
第5章 流动阻力和水头损失
水头损失:实际流体具有粘性,流体在运 动过程中因克服粘性阻力而耗损的机械能 称为水头损失,总流单位重量流体的平均 机械能损失。 水头损失主要来源于边界层的粘性摩擦力 以及因为边界层分离而出现的压差阻力。 流体的流动有层流和湍流(紊流)两种流 态。

第四章 流动阻力和水头损失

第四章 流动阻力和水头损失
0.3164 Re 0.25
2.粗糙区:希弗林松公式
k 0.11 d
0.25
3.舍维列夫公式: 适用于旧钢管和旧铸铁 管 紊流过渡区,v≤1.2m/s
m3 2.0
雷诺实验揭示了沿程水头损失与流速的关系。当
v<vc时,hf~v1.0;当v>vc时, hf~v1.75~2.0 。
发现了流体流动中存在两种性质不同的形态,即
层流和紊流: 层流——流体呈层状流动,各层质点互不掺混; 紊流——流体质点的运动轨迹极不规则,各层 质点相互掺混,且产生随机脉动。
切应力分布:
r 0 r0
1.切应力分布 2.层流、紊流均适用
§4-4 圆管中的层流运动
1.流动特性
流体呈层状流动,各层质点互不掺混
层流中的切应力为粘性切应力
du dy
其中 y=r0-r

Hale Waihona Puke du dr2.断面流速分布
du 牛顿内摩擦定律 dr r 又 g J 2
总水头损失=沿程水头损失+局部水头损失
二、流动阻力
hw——流体粘性引起
1.沿程阻力——沿程损失(长度损失、摩擦损失)
l v hf d 2g
λ——沿程阻力系数
2.局部阻力——局部损失
2
达西-魏斯巴赫公式
v hj 2g
ζ——局部阻力系数
2
3.总能量损失
**说明几点
hw h f h j
d ux u x y l1 u x y l1 dy d ux u x u x y l1 u x y l1 dy
(2) 横向脉动速度 u x

流体阻力和水头损失

流体阻力和水头损失

1
2
逐渐开大阀门B,玻璃管内流速增大到某一临界值υc'时,颜色水纤流出现抖
动。再开大阀门B,颜色水纤流破散并与周围清水混合,使玻璃管的整个断面都
带有颜色。表明此时质点的运动轨迹极不规则,各层质点相互掺混,这种流动状
态称为湍流。
将以上实验按相反顺序进行,先开大阀门B,使玻璃管内为湍流,然后逐渐
关小阀门B,则按相反顺序重演前面实验中发生的现象。只是由湍流转变为层流
的流速υc小于由层流转变为湍流的流速υc'。
流体阻力和水头损失
1.3 黏性流体的两种流态——层流和湍流
C D
(a)
υ小 υ小
hf
(b)
E
A
B (c)
1
2
υc'>υc υ大υ大
流态转变的流速分别称为上临界流速υc'和下临界流速υc。实验发现,上临界 流速υc'是不稳定的,受起始扰动的影响很大。在水箱水位恒定、管路入口平顺、 管壁光滑、阀门开启轻缓的条件下,υc'可比υc大许多。下临界流速υc是稳定的, 不受起始扰动的影响,对任何起始湍流,当流速υ小于υc'值,只要管路足够长, 流动终将发展为层流。实际流动中,扰动难以避免,因此,把下临界流速υc作为 流态转变的临界流速。当υ<υc时,流动是层流;当υ>υc时,流动是湍流。
1 2
1 2
112
2
22
2g 2g
流体阻力和水头损失
1.3 黏性流体的两种流态——层流和湍流
C D
(a)
hf
(b)
E
A
B (c)
1
2
υ小 υ小 υc'>υc υ大υ大
又因断面1和2之间只有沿程水头损失,而无局部水头损失,故hw=hf,因此,

水流阻力和水头损失精品

水流阻力和水头损失精品
(4) 由于边界层很薄,可以近似认为边界层中各截面上的 压强等于同一截面上边界层外边界上的压强值。
第4页/共66页
三、总阻力与总能量损失
在工程实际中,绝大多数管道系统是由许多等直管段和一些管道附件连接在一起所组成的,所以在一个管道系统中,既有沿程损失又有局部损失。我们把沿程阻力和局部阻力二者之和称为总阻力,沿程损失和局部损失二者之和称为总能量损失。总能量损失应等于各段沿程损失和局部损失的总和,即
湿周
水力半径
对于圆管水力半径
第12页/共66页
【例题】 管道直径 100mm,输送水的流量 m3/s,水的运动粘度 m2/s,求水在管中的流动状态?若输送 m2/s的石油,保持前一种情况下的流速不变,流动又是什么状态?
【解】
(1)雷诺数
第47页/共66页
边界层的流态:根据实验结果可知,同管流一样,边界层内也存在着层流和紊流两种流动状态,若全部边界层内部都是层流,称为层流边界层,若在边界层起始部分内是层流,而在其余部分内是紊流,称为混合边界层,如图所示,在层流变为紊流之间有一过渡区。判别边界层的层流和紊流的准则数仍为雷诺数,但雷诺数中的特征尺寸用离前缘点的距离x表示之,特征速度取边界层外边界上的速度 ,即临界雷诺数为
局部水头损失的通用计算公式:
应用举例
第34页/共66页
第35页/共66页
雷诺试验
雷诺实验的动态演示
第36页/共66页
抛物型流速分布
中心线的最大流速
第37页/共66页
紊流的脉动现象

(时均)恒定流
(时均)非恒定流
第38页/共66页
紊流的粘性底层
层流底层厚度
可见,δ0随雷诺数的增加而减小。
当Re较小时,

第4章水流阻力和水头损失

第4章水流阻力和水头损失

1 2
p1 p2 h f z1 z2 g g
1
2
1

2 τ0
P 1 p1 A 1 P2 p2 A2
面积
1 Z1 L
F L 0
2
Z2 O
τ0 G=ρgAL
湿 周
O
列流动方向的平衡方程式: 水力半径——过水断面面积与 湿周之比,即A/χ
vk d


vk d

2300
若Re<Rek
1.0 h V ,水流为层流, f
1.75~2.0 若Re>Rek,水流为紊流, hf V
公式只适用于圆管,对于非圆管用当量直径来实现, 如下:
湿周: 过水断面中液体与固体接触的边界长度 水力半径:R
非圆管
A

A
d
2
对于圆管水力半径
雷诺数可理解为水流惯性力和粘滞力量纲之比 量纲:称为因次,指物理量的性质和类别,例如 长度和质量,分别用[L]和[M]表达
[V ] [惯性力]=[m][a]=[ ][L ] [ ][ L2 ][V 2 ] [T ] du 2 [V ] [粘性力] [ ][ A][ ] [ ][ L ] [ ][V ][ L] dy [ L]
3
量纲为
[惯性力] [ ][ L ][V ] [ ][ L][V ] [粘带力] [ ][V ][ L] [ ]
2 2
几个基本概念
层流底层、过渡层和紊流核心
§4.3 均匀流基本方程
1、沿程水头损失与切应力的关系
列1-1、2-2断面伯努利方程式:
2 p1 1v12 p2 2 v2 z1 z2 hf g 2g g 2g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沿程水头损失:由摩擦阻力而损失的水头。 水头损失 局部水头损失:由局部阻力而损失的水头。 局部阻力:液体因固体边界急剧改变而引起速度分布的变
化,从而产生的阻力。 一个流段两截面间的总水头损失:
hw hf hm 叠加原理
液体以下管道时的沿程损失包括四段:
hf 1
hf 2
hf 3 hf 4
液体经过时的局部损失包括五段: 进口、突然放大、突然缩小、弯管和闸门。
P1
1
2
α τ0
1
G L
τ0
P2
2
z1 0
z2
0
在水流运动方向上各力投影的平衡方程式:
P1 P2 G cos T 0
P1 p1A P2 p2 A
且 cos z1 z2
l
并且液流与固体边壁接触面上的平均切应力为 0 ,
代入上式得
p1A
p2 A AL
z1
z2 L
0L
0ห้องสมุดไป่ตู้
同除以
水头损失:单位重量液体的机械能损失。
下面先对阻力进行分析: 设想处在流动中的一个物体,这个物体表面形成流动
的内边界。取一个边界面上的微小面积dA,在dA上作用有 切应力τ0和法应力p0,因此流体作用于物体表面dA上的作用 力为dT=τ0dA和dP=p0dA,他们在流动方向(即y方向)上的 投影为:
z
v5C v’1C0
15
m tan
lg v
35 30
流速从小到大 流速从大到小
紊流 E
θ2 = 60.3~63.4° m = 1.75~2.00
25
D θ2= 60.3°~63.4°
20
lg hf
15
B
C
10 A
5
θ1= 45°
层流 过渡 紊流
0
0
vC5 v’C 10
lg v
层流 θ1 = 45° m= 1
QV t
颜色水
l
hf
QV t
实验时,结合观察红颜色水的流动,量测两测
压管中的高差以及相应流量,建立水头损失hf 和管 中流速v的试验关系,并点汇于双对数坐标纸上。
颜色水
l
hf
试验按照两种顺序进行: (1) 流量增大 (2) 流量减小 试验结果如下图所示。
QV t
lg hf lg hf
35
流速从小到大
lg hf lg k m lg v 15 hf kv m
m tan
由层流转化为紊流时的管中平均流速称为上临界流速。 由紊流转化为层流时的管中平均流速称为下临界流速。
V 下临界流速: c
c
d
上临界流速:
Vc '
c'
d
Vc〈 Vc
由上式可得:Vcd
V cd
c
Rec
(下临界雷诺数)
Vcd
C
5
45°
层流 过渡 紊流
0
0
vC 5 v’C 10
15
lg v
35
流速从小到大
30
流速从大到小
E
lg hf
25 20 15 10
5 0
0
D
θ2= 60.3°~63.4°
在双对数坐标上,点汇水
B
C 头损失和流速的关系为:
A
45°
层流 过渡 紊流
lg hf lg k m lg v h f kv m
VR
575
水力半径定义: R A
为层流 为紊流
在理想流体里,因为没有粘性的作用,所以无所谓层流和紊流。
Re反映了惯性力与粘性力的对比关系。若Re较小,反映出粘性力 的作用大,粘性力作用对质点运动起控制作用,质点呈现有秩 序的线状运动,为层流。 当流动的雷诺数逐渐增大时,粘性力对流动的控制也随之减小, 质点运动失去控制时,层流即失去了稳定,由于外界的各种原 因,如边界上的高低不平等因素,惯性作用将使微小的扰动发 展扩大,形成紊流。
p1
p2
z1
z2
0
l A
hf
(z1
p1
)
(
z2
p2
)
hf
0
L 0 A
L R0

0
R0
hf L
R0J
上式即为沿程水头损失与切应力的关系,称为均匀流基本
雷诺实验
5-1 流动的两种型态
颜色水
l
hf
雷诺试验装置
QV t
颜色水
l
hf
打开下游阀门,保持水箱水位稳定
QV t
颜色水
l
hf
QV
再打开颜色水开关,则红色水流入管道 t 层流:红色水液层有条不紊地运动,
红色水和管道中液体水相互不混掺(实验)
颜色水
l
hf
QV t
下游阀门再打开一点,管道中流速增大 红色水开始颤动并弯曲,出现波形轮廓
颜色水
l
hf
下游阀门再打开一点,管中流速继续增大
红颜色水射出后,完全破裂,形成漩涡,扩散 至全管,使管中水流变成红色水。
这一现象表明:液体质点运动中会形成涡体, 各涡体相互混掺。
QV t
颜色水
l
hf
层流:各流层的液体质点有条不紊运动, 相互之间互不混杂。
QV t
颜色水
l
hf
紊流:各流层的液体质点形成涡体, 在流动过程中,互相混杂。
所以雷诺数可以用来判别流动型态。
惯性力↑,动能↑,粘性力↓,则呈紊流; 惯性力↓,动能↓,粘性力↑,则呈层流;
雷诺实验揭示出:
实际液体运动中存在两种不同型态: 层流和紊流 不同型态的液流,水头损失规律不同
5-2 水流阻力和水头损失的种类
水流阻力:是流体与边界相互作用而产生的平行于流动方向 的作用力。
u0
P0
0
dA
τ0y
x
dFy 0dAcos( 0 , u0 ) p0dAcos(p0 , u0 )
其中 u0为流动不受干扰时的流速。
将上式对全部面积积分,得阻力的表达式为:
Fy A0dAcos(0,u0) A p0dAcos(p0,u0)
摩擦阻力:由切应力形成的阻力。 阻力 压强阻力:由法向应力形成的阻力。
Vc '
d
c'
Rec ' (上临界雷诺数)
(不稳定)
水:
0.01775 10.0337t 0.000221t 2
(t为水温℃ , 为 cm2 s)
Vd
在圆管中(有压), Re
若 Re Rec 2300 为层流
Re Rec 2300 为紊流
对于明渠无压流动:
Re
Rec
VR
575
Re Rec
进口 突然放大 突然缩小
弯管
闸 门
5-3 均匀流动的沿程损失 和沿程阻力(切应力)的基本关系式
1.液体均匀流动的沿程水头损失
伯努利方程式:
z1
p1
1V12
2g
z2
p2
2V22
2g
hf
在均匀流时: V1 V2 则:
1V12 2V22
2g 2g
hf
(z1
p1
)
(
z2
p2
)
2. 液体均匀流的基本方程式
30
E
25
D
20
15
10 A
5
0 0
BC
层流 紊流
5 v’C 10
15
lg v
AC 、 ED:直线

35
30
流速从大到小 E
25
20
D
15
10 A B
5 层流 紊流
0
0 vC5
10
15
lg v
AB 、DE :直线

35
流速从小到大
30
流速从大到小 E
25
D
60.3~63.4°
20
lg hf
15
10 A B
相关文档
最新文档