高中数学三角函数练习题及答案解析(附答案)

合集下载

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。

高中数学三角函数专项练习题(含答案)

高中数学三角函数专项练习题(含答案)

高中数学三角函数专项练习题(含答案)一、填空题1.设函数()f x 是定义在实数集R 上的偶函数,且()()2f x f x =-,当[0,1]x ∈时,3()f x x =,则函数()|cos |()g x x f x π=-在15,22⎡⎤-⎢⎥⎣⎦上所有零点之和为___________.2.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.3.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.4.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.5.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.6.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______7.关于函数())cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号). 8.已知当()0,x π∈时,不等式2cos 23sin 20cos 4sin 1x x x x +-≤--的解集为A ,若函数()()()sin 0f x x =+<<在x A ∈上只有一个极值点,则ϕ的取值范围为______.9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.如图,在棱长为1的正方体1111ABCD A B C D -中,若点P 是棱上一点,则满足1222PA PC +=的点P 有__________个.二、单选题11.已知()1,0A -,()3,0B ,P 是圆22:45O x y +=上的一个动点,则sin APB ∠的最大值为( ) A 3B 5C 3D 512.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦13.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( ) A 2 B 3C 3D 214.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3⎡⎫⎪⎢⎪⎣⎭B .3⎛ ⎝⎦C .122⎛ ⎝⎦D .2⎡⎫⎪⎢⎪⎣⎭15.已知ABC 的内角分别为,,A B C ,23cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1216.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .3,32⎛⎤⎥ ⎝⎦B .3,32⎛⎤⎥⎝⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,32⎡⎤⎢⎥⎣⎦17.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>18.已知函数()*()cos 3f x x πωω⎛⎫=+∈ ⎪⎝⎭N ,若函数()f x 图象的相邻两对称轴之间的距离至少为4π,且在区间3(,)2ππ上存在最大值,则ω的取值个数为( ) A .4B .3C .2D .119.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .21B 3C .31D .220.将方程23sin cos 3x x x =的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A .3B .2C .3D .2三、解答题21.已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.22.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.23.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由. 24.已知函数1()1xf x x-=+. (1)证明函数()f x 在(1,)-+∞上为减函数;(2)求函数ln (tan )y f x =的定义域,并求其奇偶性;(3)若存在(,)42ππ,使得不等式(tan )tan 0f x a x +≤能成立,试求实数a 的取值范围.25.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围. 26.已知向量 22(2,22()),(,)22a xb ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数. 27.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且43sin sin 5B C +=,求ABC ∆的面积. 28.已知函数()()2cos 3sin cos 1f x xx x =+-.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值;(2)若()85f x =-,2,3x ππ⎡⎤∈⎢⎥⎣⎦,求cos2x 的值;(3)若函数()()0y f x ωω=>在区间,62ππ⎡⎤⎢⎥⎣⎦上是单调递增函数,求正数ω的取值范围.29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.72.②④3.165384.28π5.⎝⎭6.07.②③8.2(0,)(,)33πππ⋃9 10.18二、单选题 11.D 12.A 13.A 14.A 15.A 16.A 17.A 18.C 19.D 20.C 三、解答题21.(1)2 ;(2)能放,tan θ=;(3)(]0,1 【解析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θa 的值,从而得出结论. (3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】 (1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M , ∴2l AC ⊥, ∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤, ∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ-,2sin θθ∴=,tan 2θ∴=,sin θ∴=,故边长a ==, 综上可得,能放.(3)()1214sin 60sin 4sin sin 2d d θθθθθ⎫⋅=-=-⎪⎪⎝⎭()1cos 2222sin 23012θθθ⎫+=-=+-⎪⎪⎝⎭. 060θ<≤,30230150θ∴<+≤,()1sin 23012θ≤+≤, 所以()02sin 23011θ≤+-≤, 又10d >,20d >,所以(]120,1d d ⋅∈. 【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题.22.(1)最小正周期为π.(2)见解析(3)k =1008.(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题. 23.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题.24.(1)证明见解析;(2),,44k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭,奇函数;(3)(,3-∞-. 【解析】(1)利用单调性定义证明即可.(2)根据条件可得tan 1tan 1x x <⎧⎨>-⎩,其解集即为函数的定义域,可判断定义域关于原点对称,再根据奇偶性定义可判断函数的奇偶性. (3)令tan t x =,考虑101tat t-+<+在()1,+∞上有解即可,参变分离后利用基本不等式可求实数a 的取值范围. 【详解】(1)11x ∀>-,21x ∀>-,12x x <, 又()()()122212121211()()11112x x x x f x f x x x x x ----=-+-=+++, 因为11x >-,21x >-,12x x <,故110x +>,210x +>,120x x -<, 故12())0(f x f x ->即12()()f x f x >,所以函数()f x 在(1,)-+∞上为减函数.(2)((ln t )n )a y f x =的x 满足的不等关系有:1tan 01tan xx->+即()()1tan tan 10x x +-<,故tan 1tan 1x x <⎧⎨>-⎩,解得,44k x k k Z ππππ-+<<+∈,故函数的定义域为,44k k ππππ⎛⎫-++ ⎪⎝⎭,k Z ∈,该定义域关于原点对称.令()((ln ta )n )F x f x = 又()()()tan tan tan()tan tan 11ln lnln 11x xx x xF x f -+--===--+()()()tan ln x f F x =-=-,故ln (tan )y f x =为奇函数.(3)令tan t x =,因为(,)42x ππ∈,故1u >.故在(,)42ππ上不等式(tan )tan 0f x a x +≤能成立即为存在1t >,使得101tat t-+≤+,所以()11t a t t -≤+在()1,+∞上能成立, 令1s t =-,则0s >且()21121323t s t t s s s s-==+++++,由基本不等式有2s s+≥s 时等号成立, 所以()131t t t -≤=-+,当且仅当1t 时等号成立, 故()11t y t t -=+的最大值为3-,所以a的取值范围为(,3-∞-. 【点睛】本题考查与正切函数、对数函数有关的复合函数的性质的讨论,此类问题常用换元法把复合函数性质的讨论归结为常见函数性质的讨论,本题较综合,为难题. 25.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭ 2sin 216x π⎛⎫=+- ⎪⎝⎭, ∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭. 又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.26.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析.【解析】【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =(2,2cos2(ωx +φ)),b =(22,22-), ∴f (x )222222a b =⋅=⨯-⨯cos2(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1. ∵0<φ2π<,∴φ4π=.∴f (x )=1﹣cos2(44x ππ+)=1+sin 2x π, 由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4.而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数, 即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点;②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点;③当0≤m <1时,两函数的图象在[0,3]内有两个共点.综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点;②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点;③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.27.(1)(;(2 【解析】【分析】(1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解.【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+-sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=, 所以()sin(2)3f x x π=-. 因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(. (2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc ,所以13=bc ,所以1sin 2ABC S bc A ∆== 【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.28.(I )1-;(II ;(III )10,3⎛⎤ ⎥⎝⎦ 【解析】【分析】 将()f x 整理为2sin 26x π⎛⎫+ ⎪⎝⎭;(I )利用x 的范围求得26x π+的范围,结合sin x 的图象可求得最值;(II )利用()85f x =-可求得sin 26x ;结合角的范围和同角三角函数关系可求得cos 26x π⎛⎫+ ⎪⎝⎭;根据cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和差余弦公式可求得结果;(III )利用x 的范围求得26x πω+的范围,从而根据sin x 单调递增区间构造出关于ω的不等式组,解不等式组再结合0>ω即可得到结果.【详解】()2cos 2cos 12cos 22sin 26f x x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭ (I )0,2x π⎡⎤∈⎢⎥⎣⎦ 72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦[]2sin 21,26x π⎛⎫∴+∈- ⎪⎝⎭ ()f x ∴在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为:1- (II )由题意得:82sin 265x π⎛⎫+=- ⎪⎝⎭ 4sin 265x π⎛⎫∴+=- ⎪⎝⎭ 2,3x ππ⎡⎤∈⎢⎥⎣⎦ 3132,626x πππ⎡⎤∴+∈⎢⎥⎣⎦ 3cos 265x π⎛⎫∴+= ⎪⎝⎭ cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=⨯(III )()2sin 26f x x πωω⎛⎫=+ ⎪⎝⎭ ,62x ππ⎡⎤∈⎢⎥⎣⎦时,2,6366x πωπππωωπ⎡⎤+∈++⎢⎥⎣⎦ 2622362k k ππωππωππππ⎧+≤+⎪⎪∴⎨⎪+≥-⎪⎩,k Z ∈,解得:12362k k ωω⎧≤+⎪⎨⎪≥-⎩,k Z ∈ 0ω>,可知当0k =时满足题意,即103ω<≤ω∴的取值范围为:10,3⎛⎤ ⎥⎝⎦【点睛】本题考查正弦型函数的值域求解、单调性应用、三角恒等变换公式应用、同角三角函数关系等问题.关键是能够利用二倍角公式和辅助角公式将函数化为()sin A x ωϕ+的形式,从而通过整体对应的方式来研究函数的值域和性质.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π. 【解析】【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值.【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭, 2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=, 故123x x π+=.【点睛】 本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π. 【解析】【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2 ∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。

高中三角函数练习题含答案

高中三角函数练习题含答案

高中三角函数练习题含答案一、填空题1.已知点A 为直线:3l y x =上一点,且A 位于第一象限,点()10,0B ,以AB 为直径的圆与l 交于点C (异于A ),若60CBA ∠≥,则点A 的横坐标的取值范围为___________.2.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.3.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.4.已知函数()2sin cos f x x x x =+①函数()f x 的最小正周期为π;②函数12y f x π⎛⎫=+ ⎪⎝⎭是偶函数;③函数()f x 关于点()026k k Z ππ⎛⎫-∈ ⎪⎝⎭,成中心对称;④函数()f x 在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数.其中正确的结论是_______.(写出所有正确结论的序号)5.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.6.已知正四棱柱1111ABCD A B C D -中,2AB =,1AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.7.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________. 8.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.9.已知平面四边形ABCD 的面积为4AB =,3AD =,5BC =,6CD =,则cos()A C +=___________.10.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.二、单选题11.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅=C .θ可能值为6πD .当θ取值最大时,12θθ=12.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( ) A .216B .312C .316D .21813.如图,设1F ,2F 是双曲线()22210xy a a-=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=14.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( ) A .4B .8C .12D .1615.已知ABC 的三边是连续的三个自然数,且最大角是最小角的2倍,则ABC 内切圆的半径r =( ) A .1B 7C .32D .216.已知函数()*()cos 3f x x πωω⎛⎫=+∈ ⎪⎝⎭N ,若函数()f x 图象的相邻两对称轴之间的距离至少为4π,且在区间3(,)2ππ上存在最大值,则ω的取值个数为( ) A .4B .3C .2D .117.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .1B C .1D .218.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( )A .1,)+∞B .(1)+∞C .(1,12)D .1,)+∞19.已知函数()2sin cos f x x x x =,给出下列结论:①()f x 的图象关于直线π12x =对称;②()f x 的值域为[]22-,;③()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上是减函数;④0是()f x 的极大值点.其中正确的结论有( ) A .①④B .②③C .①②③D .①②④20.在锐角ABC 中,若cos cos sin sin 3sin A C B Ca c A+=cos 2C C +=,则a b +的取值范围是( )A .(B .(0,C .(D .(6,三、解答题21.已知函数()cos f x x =.(1)若,αβ为锐角,()f αβ+= 4tan 3α=,求cos2α及tan()βα-的值;(2)函数()(2)3g x f x =-,若对任意x 都有2()(2)()2g x a g x a ≤+--恒成立,求实数a 的最大值;(3)已知3()()()=2f f f αβαβ+-+,,(0,)αβπ∈,求α及β的值.22.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.23.已知函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,将()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象. (1)求函数()g x 的解析式;(2)若对任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,求实数t 的最大值;(3)若对任意实数,()(0)a y g x ωω=>在,4a a π⎡⎤+⎢⎥⎣⎦上与直线12y =-的交点个数不少于6个且不多于10个,求实数ω的取值范围.24.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知33sin cos 022b A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且2sin 6sin sin A B C =⋅. (1)求A ;(2)若()b c a R λλ+=∈,求λ的值.25.设函数()f x a b =⋅,其中向量(2cos ,1)a x =,(cos ,3sin 2)=+b x x m ; 求:(1)函数的最小正周期和单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求实数m 的值,使函数()f x 的值域恰为17,22⎡⎤⎢⎥⎣⎦.26.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.27.如图,长方体1111ABCD A B C D -中,2AB AD ==,14AA =,点P 为面11ADD A 的对角线1AD 上的动点(不包括端点).PM ⊥平面ABCD 交AD 于点M ,MN BD ⊥于点N .(1)设AP x =,将PN 长表示为x 的函数;(2)当PN 最小时,求异面直线PN 与11A C 所成角的大小.(结果用反三角函数值表示) 28.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.29.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值30.设向量a =(2sin 2x cos 2x3x ),b =(cos x ,sin x ),x ∈[-6π,3π],函数f (x )=2a •b .(1)若|a b |,求x 的值;(2)若f (x )-m m 的取值范围.【参考答案】一、填空题1.)1⎡++∞⎣ 2.28π3.[ 4.①②③ 5.1π-##1π-+67.π3##60°8 9.710##0.7 10.二、单选题11.C 12.A 13.B 14.B 15.B 16.C 17.D 18.B 19.B 20.D三、解答题21.(1)72cos 2,tan()2511αβα=--=;(2)265-;(3)3παβ== 【解析】 【分析】(1)根据同角三角函数的关系和二倍角的余弦公式可求得cos2α的值,利用二倍角的正切公式、同角三角函数的基本关系以及两角差的正切公式可求解tan()βα-的值;(2)由余弦函数的有界性求得()g x 的值域,再将不等式分离参数,并令()1t g x =-,可得1a t t ≤+对[5,3]t ∈--恒成立.易知函数1y t t=+在[5,3]t ∈--单调递增,求出其最小值,则可得265a ≤-,从而求得a 的最大值; (3)利用和差化积公式(需证明)以及二倍角公式,将该式化简,配凑成22(2coscos)sin 0222αβαβαβ+---+=,再结合,(0,)αβπ∈,即可求出α及β的值.【详解】 解:(1)4tan 3α=,且α为锐角, 4sin 5α∴=,3cos 5α=,22tan 24tan 21tan 7ααα==--则227cos 2cos sin 25ααα=-=-,又()cos()f αβαβ+=+=,αβ为锐角,sin()αβ∴+=,tan()2αβ+=-, tan()tan[()2]βααβα∴-=+-242()tan()tan 227241tan()tan 2111(2)()7αβααβα---+-===+++-⨯-; (2)()(2)3cos 23[4,2]g x f x x =-=-∈--,2()(2)()2g x a g x a ≤+--对任意x 恒成立,即2()2()2(()1)g x g x g x a -+≤-对任意x 恒成立, 令()1[5,3]t g x =-∈--,211t a t t t+∴≤=+对[5,3]t ∈--恒成立,又函数1y t t=+在[5,3]t ∈--单调递增,∴当5t =-时,min 126()5t t +=-,265a ∴≤-,则a 的最大值为265-;(3)3()()()2f f f αβαβ+-+=, 即3cos cos cos()2αβαβ+-+= , cos cos()22αβαβα+-=+coscossinsin2222αβαβαβαβ+-+-=-,cos cos()22αβαββ+-=-coscos+sinsin2222αβαβαβαβ+-+-=,cos cos 2coscos22αβαβαβ+-∴+=,又2cos()2cos12αβαβ++=-,232coscos2cos 12222αβαβαβ+-+∴-+=, 则24cos 4coscos10222αβαβαβ++--+=, 22(2coscos)1cos 0222αβαβαβ+---+-=, 即22(2coscos)sin 0222αβαβαβ+---+=,2cos cos 022sin 02αβαβαβ+-⎧-=⎪⎪∴⎨-⎪=⎪⎩,又0απ<<,0βπ<<, 3παβ∴==.【点睛】本题考查了同角三角函数间的关系,两角和与差的三角函数公式,二倍角余弦和正切公式,不等式恒成立问题,考查了运算能力和转化能力,属于综合性较强的题. 22.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α, 在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BDD Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题. 23.(1)2()sin(3)3g x x π=+;(2)6π;(3)4083ω<≤.【解析】 【分析】(1)根据正弦函数的对称性,可得函数()f x 的解析式,再由函数图象的平移变换法则,可得函数()g x 的解析式;(2)将不等式进行转化,得到函数()()f x g x -在[0,t ]上为增函数,结合函数的单调性进行求解即可;(3)求出()y g x ω=的解析式,结合交点个数转化为周期关系进行求解即可. 【详解】(1)因为函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,所以有()0sin[3()]0()(0)9933f k k Z ππππϕϕπϕπϕ-=⇒-+=⇒-=∈<<∴=,()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象.所以2()sin[3()]sin(3)933g x x x πππ=++=+;(2)由()()()()()()()()12121122f x f x g x g x f x g x f x g x -<-⇒-<-,构造新函数为()()()sin3h x f x g x x =-=,由题意可知:任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,说明函数()sin3h x x =在[0,]x t ∈上是单调递增函数,而()sin3h x x =的单调递增区间为:22232()()226363k k k x k k Z x k Z ππππππππ-+≤≤+∈⇒-+≤≤+∈,而[0,]x t ∈, 所以单调递增区间为:06x π≤≤,因此实数t 的最大值为:6π;(3)2()sin(3)3y g x x πωω==+,其最小正周期23T πω=, 而区间,4a a π⎡⎤+⎢⎥⎣⎦的长度为4π,直线12y =-的交点个数不少于6个且不多于10个,则34T π≤,且54T π>,解得:4083ω<≤. 【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.24.(1)3A π=;(2)λ=. 【解析】 【分析】(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简tan A =(0,)A π∈,可得A 的值;(2)由已知根据余弦定理可得2223a a bc λ+=,利用正弦定理可得26a bc =,联立即可解得λ的值. 【详解】(13sin cos 022A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭cos sin 0A a B ⇒+=,cos sin sin 0B A A B ⇒+=(0,)sin 0B B π∈∴≠,tan (0,)3A A A ππ∴=∈∴=;(2)22sin 6sin sin 6A B C a ac =⋅⇒=,2222222cos )(3a b c bc B b c b bc bc c +⋅=++=--=-,而()b c a R λλ+=∈,22()3a a bc λ=-,而26a ac =,所以有2302λλλλ=⇒=>∴=【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.25.(1)T π=,,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈;(2)12.【解析】 【分析】(1)由数量积的坐标运算可得2()2cos 2f x x x m =+,然后将其化为基本型,即可求出周期和单调递增区间 (2)由02x π≤≤,可得()3m f x m ≤≤+,和题目条件对应即可求出m【详解】(1)∵2()2cos 2f x a b x x m =⋅=+1cos22x x m =++2sin 216x m π⎛⎫=+++ ⎪⎝⎭,∴函数()f x 的最小正周期T π=, 可知,当222262k x k πππππ-≤+≤+,k Z ∈时,函数单调递增,解得:36k x k ππππ-≤≤+,故函数的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈.(2)∵02x π≤≤,∴72666x πππ≤+≤, ∴1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()3m f x m ≤≤+, 又17()22f x ≤≤, 故12m =. 【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.26.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】 ∵(3cos ,sin ),(sin ,0)a x x b x ωωω==∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭ (1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω,∴01ω<≤(2)∵T πω=, ∴1ω= ∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭ ∵,66x ππ⎡⎤∈-⎢⎥⎣⎦, ∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =- ∴()sin 26f x x π⎛⎫=- ⎪⎝⎭ 将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】 本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.27.(1) PN =(0,x ∈;(2) arctan . 【解析】【分析】(1)求出PM ,AM ,运用余弦定理,求得PN ;(2)求出PN 的最小值,由于//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,通过解直角三角形PMN ,即可得到.【详解】(1)在APM ∆中,PM =AM =;其中0x <<在MND ∆中,2MN x ⎫=⎪⎪⎝⎭,在PMN ∆中,PN =(0,x ∈;(2)当(0,x 时,PN 最小,此时43PN =. 因为在底面ABCD 中,MN BD ⊥,AC BD ⊥,所以//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,在PMN ∆中,PMN ∠为直角,tan PNM ∠=所以PNM ∠=异面直线PN 与11A C 所成角的大小arctan4. 【点睛】本题主要考查了异面直线及其所成的角;函数解析式的求解及常用方法等.属于难题. 28.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】【分析】 (1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】(1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭, 解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1- 【点睛】 本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.29.(1)见解析;(2)178-. 【解析】【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x x a b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝=∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x +=(2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭ ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==- 【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.30.(1)π4x =;(2)2⎤⎦. 【解析】【分析】(1)根据|a |=b |,利用化简函数化简解得x 的值;(2根据f (x )=2a •b .结合向量的坐标运算,根据x ∈[6π-,3π],求解范围,)﹣f (x )﹣m ≤m 的取值范围.【详解】解:(1)由|a b |, 可得222a b =;即4sin 2x =2(cos 2x +sin 2x )即sin 2x =12;∴sin x = ∵x ∈[-6π,3π], ∴x =4π(2)由函数f (x )=2a •b =2sin2x 2x=sin2x +1122-cos2x )=sin2x x (2x -3π)∵x ∈[-6π,3π], ∴2x -3π∈[-23π,3π],2≤2sin (2x -3π)要使f (x )-m则2m m ⎧-≤⎪⎨≥⎪⎩2m ≤故得m的取值范围是2].【点睛】本题考查三角函数的化简能力和向量的运算,考查转化思想以及计算能力.。

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

一、选择题1.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π2.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .123.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定4.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 6.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.sin15cos15+=( ) A .12B .22C .3 D .6 8.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .49.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-10.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知2cos 432θπ⎛⎫=⎪⎝⎭-,则sin θ=( )A .79B .19C .-19D .-79二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 15.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________. 16.方程2sin 2cos 20x x ++=的解集为________.17.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 18.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________. 19.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________. 三、解答题21.已知函数()sin 31f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.22.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式; (2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 23.已知()()sin23cos2f x x x x R =∈(1)求56f π⎛⎫⎪⎝⎭的值; (2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 24.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间; (2)若323f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值. 26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B2.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.8.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.9.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.10.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒2321622-=⨯-⨯=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒2321622+=⨯+⨯=, 31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 603h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos1550623h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3515.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=, 则1cos sin 3ϕθ=±=±, 故答案为:13±16.【分析】原方程化为关于的一元二次方程求得即可求解【详解】由得即解得或(舍去)所以故答案为: 解析:{}2,x x k k Z ππ=+∈【分析】原方程化为关于cos x 的一元二次方程,求得cos 1x =-,即可求解. 【详解】由2sin 2cos 20x x ++= 得21cos 2cos 20x x -++=, 即2cos 2cos 30x x --=,解得cos 1x =-或cos 3x =(舍去), 所以2,x k k Z ππ=+∈故答案为:{}2,x x k k Z ππ=+∈17.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解. 【详解】tan tan1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭,故答案为:13-18.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-+=-=- ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 44444422ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭,得)22cos +sin cos sin 2αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =αα-或cos +sin 0αα=,当cos sin αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12; 当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤, ∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭ 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 23.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果; (2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 063322f πππ⎛⎫==-+=⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭,当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.24.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫-⎪⎝⎭的值;【详解】(1)1()cos2cos 2cos2cos22322f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)由已知得23f απα⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 3πα⎤⎛⎫=-+= ⎪⎥⎝⎭⎦.【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角. 26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-,又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答案)一、选择题1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是()图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2.-330是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A3.把-1 485转化为+k360,kZ)的形式是()A.45-4360 B.-45-4360C.-45-5360 D.315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角.【答案】 C5.在直角坐标系中,若与的终边互相垂直,则与的关系为()A.=+90B.=90C.=+90-k360D.=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ.【答案】 D二、填空题6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】k360+60,kZ7.是第三象限角,则2是第________象限角.【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角.【答案】二或四8.与610角终边相同的角表示为________.【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).【答案】k360+250(kZ)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.【解】(1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的角的集合为{|-45+k36045+k360,kZ}.11.在与530终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720到-360的角.【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。

高中三角函数专题练习题(及答案)

高中三角函数专题练习题(及答案)

高中三角函数专题练习题(及答案)一、填空题1.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________2.已知函数()()4sin 03πf x x ωω⎛⎫=+> ⎪⎝⎭,圆C 的方程为()22525x y -+=,若在圆C 内部恰好包含了函数()f x 的三个极值点,则ω的取值范围是______.3.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.4.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.5.在ABC 中,AB BC ≠,O 为ABC 的外心,且有23AB BC AC +=,sin (cos 3)cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.6.已知函数()()sin 3cos 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.7.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________8.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______. 9.若向量x y ,满足2212x y +=,则21||2x x y ++的最大值是___________.10.已知1OB →=,,A C 是以O 为圆心,0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( )A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭13.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B ) D .f (sin A )≥f (cos B )14.已知点P 是曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤ ⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦15.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=,则实数m 的最大值为( )A .3B .35C .75D .3216.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π17.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .18518.已知函数2()sin f x x x =⋅各项均不相等的数列{}n x 满足||(1,2,3,,)2i x i n π≤=.令*1212()([()()()())]n n F n x x x f x f x f x n N =+++⋅+++∈.给出下列三个命题:(1)存在不少于3项的数列{},n x 使得()0F n =;(2)若数列{}n x 的通项公式为*1()()2n n x n N =-∈,则(2)0F k >对k *∈N 恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对n *∈N 恒成立,其中真命题的序号是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)19.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞20.设函数()xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.22.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.23.如图,在ABC ∆中,90,3,1ABC AB BC ︒∠===,P 为ABC ∆内一点,90BPC ︒∠=.(1)若3PC =,求PA ; (2)若120APB ︒∠=,求ABP ∆的面积S .24.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值; ()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.25.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.26.已知函数()2cos (sin cos )f x x x x =+,x ∈R . (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求出取得最值时的x 的值.27.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式; (2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域. 28.已知函数()()22sin cos 2sin f x x x x =+-(1)求()f x 的最小正周期; (2)求()f x 的单调增区间; (3)若0,2x π⎡⎤∈⎢⎥⎣⎦求函数的值域.29.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.472.1925731,,48481248ππππ⎛⎤⎡⎤⋃⎥⎢⎥⎝⎦⎣⎦3.20π 4.()135,216 5.4333-6.②③ 7.②③④ 8.13910.⎡⎢⎣⎦二、单选题 11.A 12.C 13.D 14.A 15.D 16.A 17.A 18.D 19.C 20.C 三、解答题21.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.22.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.23.(12 【解析】 【分析】(1)求出12BP ==,,36CBP ABP ππ∠=∠=,ABP ∆中由余弦定理即可求得PA ;(2)设PBA α∠=,利用正弦定理表示出()sin120sin 60AB PB =︒︒-α,求得tan α=,利用面积公式即可得解. 【详解】(1)在ABC ∆中,90,1ABC AB BC ︒∠===,2AC =P 为ABC ∆内一点,90BPC ︒∠=,PC =,所以12BP =,CBP ∆中,由余弦定理得:2221cos 22BP BC PC CBP BP BC +-∠==⋅所以,36CBP ABP ππ∠=∠=ABP ∆中,由余弦定理得:AP==; (2)120APB ︒∠=,设0,,90,602PBA PBC PAB π⎛⎫∠=α∈∠=︒-α∠=︒-α ⎪⎝⎭,在Rt PBC ∆中,sin sin PB BC =⋅α=α,在PBA ∆中,由正弦定理()sin120sin 60AB PB=︒︒-α,即()sin 2sin 60α=︒-α,sin sin α=α-α,所以tan α=sin PB α==ABP ∆的面积11sin 22S AB PB α=⋅==. 【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强. 24.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=- ∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞.【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题. 25.(1)2a =,2b =-或2a =-,4b =函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减. 【解析】 【分析】(1)先求得sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,再讨论0a >和0a <的情况,进而求解即可; (2)由(1)()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭则()2sin 224g x x π⎛⎫=++ ⎪⎝⎭进而判断单调性即可 【详解】解:(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦, ①当0a >时,由题意可得12a ab a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩即222a b a b ⎧++=⎪⎨⎪+=⎩解得2a =,2b =-; ②当0a <时,由题意可得21a a b a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩,即22a b a b ⎧++=⎪⎨⎪+=⎩,解得2a =-,4b =(2)由(1)当0a <时,2a =-,4b =所以()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力26.(1)π;(2)()()min max ππ,0,,148x f x x f x =-===.【解析】(1) 函数()f x 解析式去括号后利用二倍角的正弦、余弦公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出w 的值,代入周期公式即可求出最小正周期;(2)根据x 的范围求出这个角的范围,利用正弦函数的值域即可确定出()f x 的值域,进而求出()f x 的最小值与最大值.. 【详解】(1)()()π2cos sin cos sin2cos21214f x x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,因此,函数()f x 的最小正周期πT =. (2) 因为ππ44x -≤≤ 所以ππ3π2444x -≤+≤,sin 24x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,即()1f x ⎡⎤∈⎣⎦, 所以当244x ππ+=-,即4x π=-时,()min 0f x =,当242x ππ+=,即8x π=时,()max 1f x =.所以4x π=-时,()min 0f x =,8x π=时,()max 1f x .【点睛】此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握公式是解本题的关键,是中档题.27.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1-【解析】 【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域【详解】(1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+.(2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈-⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=-时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力. 28.(1)π;(2)3[],88k k k Z ππππ-+∈,;(3)[2]-.【解析】 【分析】(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式222,242k x k k Z πππππ-≤+≤+∈,即得函数的增区间;(3)根据三角函数的性质求函数的值域. 【详解】(1)由题得1cos2()1sin 22sin 2cos22)24x f x x x x x π-=+-⋅=++, 所以函数的最小正周期为2=2ππ. (2)令222,242k x k k Z πππππ-≤+≤+∈,所以3,88k x k k Z ππππ-≤≤+∈,所以函数的单调增区间为3[],88k k k Z ππππ-+∈,.(3)50,02,2,2444x x x πππππ≤≤∴≤≤∴≤+≤sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以函数的值域为[-. 【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.29.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==,所以集合{S =0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π.【解析】 【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得

高中数学三角函数公式练习(答案)

高中数学三角函数公式练习(答案)

高中数学三角函数公式练习(答案)1.sin(29π/6)的值为()A。

-1133B。

-C。

D。

2222答案】C解析】考点:任意角的三角函数2.已知sin(α-π/4)=7/√5301,cos2α=71/2525,sinα=5/13,求cosα的值。

A。

-/6662B。

-1025/4433C。

-727/5555D。

5555/2553答案】D解析】考点:两角和与差的三角函数,二倍角公式3.cos690°的值为()A。

-1133B。

C。

-2222D。

-答案】C解析】考点:三角函数的诱导公式4.tan(π/3)的值为()A。

-33B。

C。

3D。

-333答案】C解析】考点:三角函数的求值,诱导公式5.若-π<β<α<π,且cos(β+π/4)=5/√5301,则cos(α+β)的值为()A。

-B。

-3399C。

D。

-答案】C解析】考点:诱导公式,三角函数的化简求值。

6.若角 $\alpha$ 的终边在第二象限且经过点 $P(-1,3)$,则$\sin\alpha$ 等于 $\dfrac{3}{2}$。

7.$\sin7^\circ\cos37^\circ-\sin83^\circ\cos53^\circ$ 的值为$-\dfrac{1}{3}$。

8.已知 $\cos(-x)=\dfrac{\sqrt{3}}{2}$,那么 $\sin2x=-\dfrac{1}{2}$。

9.已知 $\sin\dfrac{5\pi}{2}+\alpha=\dfrac{1}{23}$,则$\cos2\alpha=-\dfrac{5}{9}$。

10.已知 $\sin(\dfrac{\pi}{2}+a)=\dfrac{1}{27}$,则$\cos2a=-\dfrac{1}{9}$。

11.已知点 $P(\tan\alpha,\cos\alpha)$ 在第三象限,则角$\alpha$ 在第二象限。

12.已知 $\alpha$ 是第四象限角,$\tan\alpha=-\dfrac{5}{22}$,则 $\sin\alpha=-\dfrac{12}{13}$。

高中数学三角函数测试卷(答案解析版)

高中数学三角函数测试卷(答案解析版)

高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。

答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。

答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。

答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。

由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。

因此,AB =10×sin0°/sin30° = 0/0 = 0。

(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)

(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 7.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-9.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3411.已知函数2()[sin()])cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知()tan 1f x a x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.15.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.16.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 17.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.18.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值. 25.已知函数()231cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C 【分析】由图可知,17248g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.7.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD.本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,2cos 23:C y x π⎛⎫=- ⎪⎝⎭,∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.10.C【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)2262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.A【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】令可知为奇函数根据与为相反数即可求解【详解】令定义域关于原点对称且所以为奇函数则所以由奇函数性质可得所以故答案为:【点睛】关键点点睛:首先要观察出中的部分为奇函数其次要能利用换底公式对数的运 解析:3-【分析】令tan ()a x g x =+,可知()g x 为奇函数,根据3lg log 10与lg lg3为相反数即可求解. 【详解】令tan ()a x g x =+,,2x k k Z ππ≠+∈,定义域关于原点对称,且()tan ()g x a x g x -=--=-, 所以()g x 为奇函数,则31(lg log 10)(lg)(lg lg 3)(lg lg 3)15lg 3f f fg ==-=-+=, 所以(lg lg3)514g -=-=, 由奇函数性质可得(lg lg3)4g =-, 所以(lglg3)(lglg3)1413f g =+=-+=-, 故答案为:3- 【点睛】关键点点睛:首先要观察出()f x中的部分tan ()a x g x =+为奇函数,其次要能利用换底公式,对数的运算性质找到3lg log 10与lg lg3为相反数,借助奇函数的性质求解.15.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.16.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.17.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.18.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣.【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】()sin cos cos sincoscos sinsin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭. (1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-31m<-<即1m=或31m-<<时,方程有2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当3322m-<-≤即3322m-≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.23.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩, 150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296,所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,.(2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。

高中数学必修一第五章三角函数专项训练题(带答案)

高中数学必修一第五章三角函数专项训练题(带答案)

高中数学必修一第五章三角函数专项训练题单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C2、已知sin (α−π3)+√3cosα=13,则sin (2α+π6)的值为( ) A .13B .−13C .79D .−79答案:D解析:利用两角和与差的正弦公式,诱导公式化简已知等式可得cos(α−π6)=13,进而利用诱导公式,二倍角公式化简所求即可求解.因为sin (α−π3)+√3cosα=12sinα−√32cosα+√3cosα=12sinα+√32cosα =sin (α+π3)=sin (π2+α−π6)=cos (α−π6)=13,所以sin (2α+π6)=sin (π2+2α−π3)=cos (2α−π3)=2cos 2(α−π6)−1=2×(13)2−1=−79, 故选:D3、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( ) A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112] 答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112, 则ω的取值范围是(0,512]∪[56,1112].故选:C .4、在0∘~360∘范围内,与−70∘终边相同的角是( ) A .70∘B .110∘C .150∘D .290∘ 答案:D解析:根据终边相同的角的定义即可求解. 与−70∘终边相同的角的为−70∘+360∘⋅k (k ∈Z ), 因为在0∘~360∘范围内,所以k =1可得−70∘+360∘=290∘, 故选:D.5、中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇而的面积为( )A.704cm2B.352cm2C.1408cm2D.320cm2答案:A解析:设∠AOB=θ,OA=OB=r,由题意可得:{24=rθ64=(r+16)θ,解得r,进而根据扇形的面积公式即可求解.如图,设∠AOB=θ,OA=OB=r,由弧长公式可得:{24=rθ64=(r+16)θ,解得:r=485,所以,S扇面=S扇形OCD−S扇形OAB=12×64×(485+16)−12×24×485=704cm2.故选:A.6、阻尼器是一种以提供运动的阻力,从而达到减振效果的专业工程装置.深圳第一高楼平安金融中心的阻尼器减震装置,是亚洲最大的阻尼器,被称为“镇楼神器”.由物理学知识可知,某阻尼器模型的运动过程可近似为单摆运动,其离开平衡位置的位移s(cm)和时间t(s)的函数关系式为s=2sin(ωt+φ),其中ω>0,若该阻尼器模型在摆动过程中连续三次位移为s0(−2<s0<2)的时间分别为t1,t2,t3,且t3−t1=2,则ω=()A.π2B.πC.3π2D.2π答案:B分析:利用正弦型函数的性质画出函数图象,并确定连续三次位移为s0的时间t1,t2,t3,即可得T=t3−t1,可求参数ω.由正弦型函数的性质,函数示意图如下:所以T =t 3−t 1=2,则2πω=2,可得ω=π.故选:B 7、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57.又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时, sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β) =2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去; 当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误.8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、(多选)已知θ∈(0,π),sinθ+cosθ=15,则( ) A .θ∈(π2,π)B .cosθ=−35C .tanθ=−34D .sinθ−cosθ=75答案:ABD分析:已知式平方求得sinθcosθ,从而可确定θ的范围,然后求得sinθ−cosθ,再与已知结合求得sinθ,cosθ,由商数关系得tanθ,从而可判断各选项.因为sinθ+cosθ=15①,所以(sinθ+cosθ)2=sin 2θ+2sinθcosθ+cos 2θ=125,所以2sinθcosθ=−2425.又θ∈(0,π),所以sinθ>0,所以cosθ<0,即θ∈(π2,π),故A 正确.(sinθ−cosθ)2=1−2sinθcosθ=4925,所以sinθ−cosθ=75②,故D 正确.由①②,得sinθ=45,cosθ=−35,故B 正确.tanθ=sinθcosθ=−43,故C 错误. 故选:ABD .11、下列四个关系式中错误的是( ). A .sin5θ+sin3θ=2sin4θcosθ B .cos3θ−cos5θ=−2sin4θsinθ C .sin3θ−sin5θ=−12cos4θcosθ D .sin5θ+cos3θ=2sin4θcosθ 答案:BCD分析:由5θ=4θ+θ,3θ=4θ−θ,利用两角和与差的正弦、余弦公式展开后可得相加减,实质就是和差化积公式.对D 要注意目的要求.由sin5θ=sin(4θ+θ)=sin4θcosθ+cos4θsinθ,sin3θ=sin(4θ−θ)=sin4θcosθ−cos4θsinθ,cos5θ=cos(4θ+θ)=cos4θcosθ−sin4θsinθ,cos3θ=cos(4θ−θ)=cos4θcosθ+sin4θsinθ,代入各选项, 得sin5θ+sin3θ=2sin4θcosθ,A 正确,B 错误,右边应是2sin4θsinθ;C 错误,右边应是−2cos4θsinθ;D 错误,由sin5θ与cos3θ两式相加不能得出右边结论,如果从和差化积角度考虑.左边为异名三角函数,要化积应先用诱导公式化为同名三角函数后再化积,即sin5θ+cos3θ=sin5θ+sin (π2−3θ) =2sin (θ+π4)cos (4θ−π4). 故选:BCD .小提示:本题考查各差化积公式,利用两角和与差的正弦余弦公式相加减后可得和差化积公式,注意和差化积公式是同名函数的和差才能化积.填空题12、已知sinα=2cosα,则sin2α+2sinαcosα=______.答案:85##1.6分析:根据题意,由同角三角函数关系可得tanα的值,而sin2α+2sinαcosα1=sin2α+2sinαcosαsin2α+cos2α,最后利用齐次式化成关于tanα的分式即可解.解:由sinα=2cosα,得tanα=sinαcosα=2,则sin2α+2sinαcosα1=sin2α+2sinαcosαsin2α+cos2α=tan2α+2tanαtan2α+1=22+2×222+1=85.所以答案是:85.13、已知f(x)=sin(ωx+π3)(ω>0),f(π6)=f(π3),且f(x)在区间(π6,π3)上有最小值,无最大值,则ω=______.答案:143分析:由题意可得函数的图象关于直线x=π4对称,再根据f(x)在区间(π6,π3)上有最小值,无最大值,可得π4ω+π3=2kπ+3π2(k∈Z),由此求得ω的值.依题意,当x=π6+π32=π4时,y有最小值,即sin(π4ω+π3)=−1,则π4ω+π3=2kπ+3π2(k∈Z),所以ω=8k+143(k∈Z).因为f(x)在区间(π6,π3)上有最小值,无最大值,所以π3−π4≤T2=πω,即ω≤12,令k=0,得ω=143.所以答案是:14314、若角θ是第四象限角,则y=sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|=______.答案:-1分析:根据在第四象限三角函数的符号,化简计算y 值. 因为角θ是第四象限角,所以sinθ<0,cosθ>0,tanθ<0, 所以y =sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|=−1+1−1=−1.所以答案是:-1. 解答题15、已知a <0,函数f(x)=acosx +√1+sinx +√1−sinx ,其中x ∈[−π2,π2].(1)设t =√1+sinx +√1−sinx ,求t 的取值范围,并把f(x)表示为t 的函数g(t); (2)求函数f(x)的最大值(可以用a 表示);(3)若对区间[−π2,π2]内的任意x 1,x 2,若有|f(x 1)−f(x 2)|≤1,求实数a 的取值范围.答案:(1)g(t)=a2t 2+t −a ,t ∈[√2,2];(2)f(x)max ={√2,a ≤−√22a +2,−12≤a <0−a −12a ,−√22<a <−12;(3)[√2−3,0).分析:(1)由题设得t 2=2+2cosx ∈[2,4],则cosx =t 2−22,代入f(x)可得g(t).(2)由(1)知,f(x)的最大值即为g(t)的最大值,讨论a ≤−√22、−12≤a <0、−√22<a <−12时g(t)在[√2,2]上的单调性,即可得对应的最大值.(3)将问题转化为g(t)max −g(t)min ≤1,结合(2)所得单调性,求a 的范围. (1)由题意,t 2=2+2√1−sin 2x =2+2√cos 2x ,而x ∈[−π2,π2],则cosx ∈[0,1],∴t 2=2+2cosx ∈[2,4],显然t >0,则t ∈[√2,2],且cosx =t 2−22,∴g(t)=a(t 2−2)2+t =a2t 2+t −a ,t ∈[√2,2];(2)f(x)的最大值,即g(t)的最大值. ①a ≤−√22时,g(t)在[√2,2]递减,g(t)max =g(√2)=√2;②−12≤a <0时,g(t)在[√2,2]递增,g(t)max =g(2)=a +2; ③−√22<a <−12时,g(t)在[√2,−1a ]递增,[−1a ,2]递减,g(t)max =g(−1a )=−a −12a ;综上,f(x)max={√2,a≤−√22a+2,−12≤a<0−a−12a ,−√22<a<−12(3)由题意,f(t)max−f(t)min≤1,即g(t)max−g(t)min≤1,g(t)=a2t2+t−a;①a≤−√22时,g(t)在[√2,2]递减,则:{a≤−√22g(√2)−g(2)=−a+√2−2≤1⇒√2−3≤a≤−√22;②−12≤a<0时,g(t)在[√2,2]递增,则:{−12≤a<0g(2)−g(√2)=a+2−√2≤1⇒−12≤a<0;③−√22<a<−12时,g(t)在[√2,−1a]递增,[−1a,2]递减,g(t)max=g(−1a)=−a−12a,则:{−√22<a<−12g(t)−g(2)=−2a−12a−2≤1g(t)−g(√2)=−a−12a −√2≤1⇒−√22<a<−12:综上,a∈[√2−3,0).小提示:关键点点睛:第二问,要求f(x)的最大值,即求g(t)的最大值,讨论参数a结合g(t)的区间单调性写出最大值;第三问,将问题转化为g(t)max−g(t)min≤1,结合所得单调性求参数范围即可.。

高中数学三角函数专题练习题及答案

高中数学三角函数专题练习题及答案

高中数学三角函数专题练习题及答案1. 试计算下列各函数值:(1)tan(π/4)(2)csc(3π/2)(3)sec(0)(4)cot(5π/3)解答:(1)tan(π/4) = sin(π/4) / cos(π/4) = 1 / 1 = 1(2)csc(3π/2) = 1 / sin(3π/2) = 1 / -1 = -1(3)sec(0) = 1 / cos(0) = 1 / 1 = 1(4)cot(5π/3) = cos(5π/3) / sin(5π/3) = -1/2 / (-√3/2) = 1 / √32. 已知直角三角形中,一锐角的正弦值为1/2,则该锐角的值是多少?解答:设该锐角为θ,则sinθ = 1/2。

根据反正弦函数的定义,θ = arcsin(1/2) = π/6。

3. 在锐角三角函数中,sinx和cosx经过哪个变换可以得到cosx和sinx的值?sinx和cosx经过变换x → x + π/2可以得到cosx和sinx的值。

4. 给定cosx = -1/3,且x在第四象限,求sinx的值。

解答:根据余弦函数的定义可知,sinx = √(1 - cos²x) = √(1 - (-1/3)²) = √(1 - 1/9) = √(9/9 - 1/9) = √8/3 = (2√2)/3。

5. 已知tanx = -√3,且x在第三象限,求secx和cotx的值。

解答:根据正切函数的定义可知,secx = 1/cosx,cotx = 1/tanx。

又由于sin²x + cos²x = 1,可以得到cosx = 1/√(1 + tan²x) = 1/√(1 + (-√3)²) = 1/√(1 + 3) = 1/2。

因此,secx = 1/(1/2) = 2,cotx = 1/(-√3) = -√3/3。

6. 已知sinx + 3cosx = 0,求tanx的值。

高中数学三角函数题目及答案

高中数学三角函数题目及答案

高中数学三角函数题目及答案一、填空题1.$\\sin 30° = \\underline{\\hspace{1cm}}$2.$\\cos 60° = \\underline{\\hspace{1cm}}$3.$\\tan 45° = \\underline{\\hspace{1cm}}$二、选择题1.已知直角三角形的斜边长为10,其中一个锐角的正弦值等于$\\frac{1}{2}$,则此角的度数是: A. 30° B. 45°C. 60°D. 90°2.若$\\sin \\theta = \\frac{3}{5}$,$\\theta$为锐角,则$\\cos \\theta =$ A. $\\frac{4}{5}$ B. $\\frac{3}{4}$ C. $\\frac{3}{5}$ D. $\\frac{5}{4}$3.若$\\tan \\alpha = \\sqrt{3}$,$\\alpha$为锐角,则$\\cot \\alpha =$ A. −1 B. $\\frac{\\sqrt{3}}{2}$ C. $-\\sqrt{3}$ D. $\\frac{1}{\\sqrt{3}}$三、计算题1.求解$\\sin 45° \\cdot \\cos 45° - \\sin 30° \\cdot\\cos 60°$2.求解$\\frac{\\sin^2 30° + \\cos^2 30°}{\\sin 60°\\cos 30°}$四、简答题1.说明余切的定义及其在三角函数中的关系。

2.如何利用正弦定理和余弦定理解决三角形的不全等问题?五、综合题已知直角三角形ABC中,$\\angle B = 90°$,AA=6,AA=8,求角A的大小。

六、答案1.$\\sin 30° = \\frac{1}{2}$ $\\cos 60° =\\frac{1}{2}$ $\\tan 45° = 1$1. C. 60°2. A. $\\frac{4}{5}$3. C. $-\\sqrt{3}$1.$\\sin 45° \\cdot \\cos 45° - \\sin 30° \\cdot\\cos 60° = \\frac{1}{2}$2.$\\frac{\\sin^2 30° + \\cos^2 30°}{\\sin 60° \\cos30°} = 1$1.余切的定义为正切的倒数,即$\\cot \\theta =\\frac{1}{\\tan \\theta}$。

高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析1.已知第二象限的角的终边与单位圆的交点,则__________.【答案】【解析】依题意有,故.2.若是方程的两根,则的值为()A. B.A.【答案】B【解析】由题设,所以可得,解之得,由于二次方程的判别式,所以(舍去),应选答案B。

点睛:解答本题时充分借助题设条件及同角三角函数之间的平方关系建立了关于参数的方程,即,当求得时,要运用二次方程的判别式进行检验,最终获得答案。

3.已知扇形的半径为,圆心角为弧度,则该扇形的面积为__________.【答案】4【解析】由于弧长,所以,应填答案。

4.已知,,则()A.B.C.D.【答案】D【解析】由题意可得,即,则,所以,即,也即,所以,应选答案D。

点睛:解答本题的关键是借助题设中的条件获得,进而得到,求得,从而求出使得问题获解。

5.已知,且向量,,则等于()A.B.C.D.【答案】D【解析】由题设可得,即,故,应选答案D。

6.已知一个扇形的半径为,圆心角为,求这个扇形的面积。

【答案】【解析】由试题解析:,……………4分……………8分7.已知函数.(1)当时,求函数的值域;(2)已知,函数,若函数在区间上是增函数,求的最大值.【答案】(1);(2).【解析】(1)借助题设条件运用正弦函数的有界性求解;(2)借助正弦函数的单调性建立不等式组求解.试题解析:(1).∵,∴,∴,∴函数的值域为(2),当,∵在上是增函数,且,∴,即,化简得,∵,∴,∴,解得,因此,的最大值为1【考点】正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.本题以三角函数的解析式为背景设置了一道综合性问题.第一问的求解过程中,先将函数进行化简为再求其值域;第二问的求解过程中,充分借助函数的单调性,建立不等式组求得的最大值为,进而使得问题获解.8.已知函数,在曲线与直线的交点中,若相邻交点距离的最小值为,则的最小正周期为()A.B.C.D.【答案】C【解析】因为原来函数即为,令,则,令,又因为若相邻交点距离的最小值为,则以正弦函数为研究对象,取符合要求的两角:,对应有,此时,所以.【考点】辅助角公式,正弦函数的图像,三角函数的周期公式.9. (08·江西)函数y=tan x+sin x-|tan x-sin x|在区间(,)内的图象大致是()【答案】D【解析】∵<x≤π时,sin x≥0,tan x≤0,∴y=tan x+sin x-(sin x-tan x)=2tan x,π<x<时,sin x<0,tan x>0,∴y=tan x+sin x-(tan x-sin x)=2sin x,故选D.10.函数y=1-sin x,x∈[0,2π]的大致图象是()【答案】B【解析】因为函数y=1-sin x,x∈[0,2π],那么当x=0时,函数值为1,排除,C,D,然后当x=2π时,则有函数值为1,排除A,选B11.函数y=cos x+|cos x|x∈[0,2π]的大致图象为()【答案】D【解析】y=cos x+|cos x|=,故选D.12.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.13.已知当时,函数取最大值,则函数图象的一条对称轴为A.B.C.D.【答案】A【解析】略14.函数的部分图象如图,则、可以取的一组值是()A.B.C.D.【答案】C【解析】由图象有,,当,所以,则时符合,选C.【考点】由三角函数图象求解析式.【方法点晴】本题主要考查由三角函数的图象求解析式, 属于中档题.确定函数(,)的解析式的步骤和方法:(1)求,确定函数的最大值和最小值,则,;(2)求,确定函数的最小正周期, ;(3)求,将图象上的特殊点(一般是最高点或最低点),此时已知.本题中,先求周期,再求,将最高点坐标代入求出. 15.(2分)圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为()A.B.C.D.2【答案】C【解析】等边三角形ABC是半径为r的圆O的内接三角形,则线AB所对的圆心角∠AOB=,求出AB的长度(用r表示),就是弧长,再由弧长公式求圆心角弧度数.解:如图,等边三角形ABC是半径为r的圆O的内接三角形,则线AB所对的圆心角∠AOB=,作OM⊥AB,垂足为M,在 rt△AOM中,AO=r,∠AOM=,∴AM=r,AB=r,∴l= r,由弧长公式l=|α|r,得,α===.故选 C.点评:本题考查圆心角的弧度数的意义,以及弧长公式的应用,体现了数形结合的数学思想.16.(5分)已知θ∈且sin θ+cos θ=a,其中a∈(0,1),则关于tan θ的值,以下四个答案中,可能正确的是(填序号).①﹣3 ②3或③﹣④﹣3或﹣【答案】③【解析】在单位圆中,由三角函数线可推断出a的范围,进而判断出θ的范围,进而根据sinθ+cosθ>0,进一步推断出θ的范围,则tanθ的范围可知.解:在单位圆中,由三角函数线可知a<1,∴θ不在第一象限,θ∈,又∵a>0,∴sinθ+cosθ>0,∴θ∈,∴tanθ∈(﹣1,0).故答案为:③点评:本题主要考查了三角函数线,三角函数的值域等问题.考查了学生综合分析问题和解决问题的能力.17.有小于360°的正角,这个角的5倍角的终边与该角的终边重合,这个角的大小是()A.90°B.180°C.270°D.90°,180°或270°【答案】D【解析】利用终边相同的角,通过k的取值求出角的大小.解:设这个角为α,则5α=k•360°+α,k∈Z,α=k•90°,又∵0°<α<360°,∴α=90°,180°或270°.故选:D点评:本题考查终边相同角的表示方法以及求解,基本知识的考查.18.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三角函数练习题及答案解析(附答
案)
一、选择题
1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是()
图1-2-3
【解析】观察题图可知0到3为一个周期,
则从2 013到2 014对应着1到2到3.
【答案】 B
2.-330是()
A.第一象限角B.第二象限角
C.第三象限角D.第四象限角
【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A
3.把-1 485转化为+k360,kZ)的形式是()
A.45-4360 B.-45-4360
C.-45-5360 D.315-5360
【解析】-1 485=-5360+315,故选D.
【答案】 D
4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角B.第二象限的角
C.第三象限的角D.第四象限的角
【解析】∵是第四象限的角,k360-90k360,kZ,
-k360+180180--k360+270,kZ,
180-是第三象限的角.
【答案】 C
5.在直角坐标系中,若与的终边互相垂直,则与的关系为() A.=+90
B.=90
C.=+90-k360
D.=90+k360
【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ.
【答案】 D
二、填空题
6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同,
=k360+60,kZ.
【答案】k360+60,kZ
7.是第三象限角,则2是第________象限角.
【解析】∵k360+180k360+270,kZ
k180+90k180+135,kZ
当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ
2是第四象限角.
【答案】二或四
8.与610角终边相同的角表示为________.
【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).
【答案】k360+250(kZ)
三、解答题
9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,
图1-2-4
(1)求该函数的周期;
(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.
【解】(1)由题图可知,该函数的周期为4 s.
(2)设本题中位移与时间的函数关系为x=f(t),由函
数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.
图1-2-5
10.如图所示,试表示终边落在阴影区域的角.
【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,
故满足条件的角的集合为{|-45+k36045+k360,kZ}.
11.在与530终边相同的角中,求满足下列条件的角.
(1)最大的负角;
(2)最小的正角;
(3)-720到-360的角.
【解】与530终边相同的角为k360+530,kZ.
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.
(2)由0<k360+530<360且kZ可得k=-1,
故所求的最小正角为170
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课
前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。

相关文档
最新文档