转炉脱磷影响因素分析及其工艺应用

合集下载

铁水转炉吹氧脱磷工艺-概述说明以及解释

铁水转炉吹氧脱磷工艺-概述说明以及解释

铁水转炉吹氧脱磷工艺-概述说明以及解释1.引言1.1 概述铁水转炉吹氧脱磷工艺是钢铁生产中常用的一种去除磷元素的工艺方法。

在铁水中磷元素的含量对钢铁的性能有着重要影响,因此需要采取相应措施进行去除。

吹氧脱磷工艺通过向铁水中吹入氧气,利用氧气与磷元素的化学反应,在高温条件下将磷元素氧化移除,从而减少磷元素含量,提高钢铁的质量和性能。

本文将详细介绍铁水转炉吹氧脱磷工艺的原理、步骤以及其在钢铁生产中的应用。

通过对该工艺的深入探讨,可以更好地了解吹氧脱磷的作用机制和优势,为钢铁生产提供技术支持和参考。

1.2 文章结构1.3 目的本文旨在深入探讨铁水转炉吹氧脱磷工艺,通过对该工艺的原理、步骤、优势以及应用前景进行分析,旨在说明吹氧脱磷工艺在钢铁生产中的重要性和价值。

同时,通过总结工艺的特点和优势,为相关行业提供参考,促进该工艺的广泛应用,提高生产效率,降低成本,推动钢铁行业的可持续发展。

2.正文2.1 铁水转炉工艺概述:铁水转炉是一种用于炼钢的高炉,它是一种旋转的容器,通常由耐火材料和金属外壳构成。

在钢铁冶炼过程中,铁水转炉扮演着至关重要的角色。

铁水转炉工艺通常用于生产高品质的钢铁,其主要特点是操作简单,生产效率高,并能够满足不同规格和质量要求的钢铁生产。

在铁水转炉中,主要通过向铁水中吹入氧气使其氧化,从而提高炉内温度,促使不同元素的相互作用,达到脱除杂质的目的。

铁水转炉通常配有各种喷嘴和氧气喷嘴,以确保充分的氧化反应和高效的燃烧过程。

铁水转炉工艺的优点包括:1. 生产效率高:铁水转炉可以持续生产,操作简单,生产效率高。

2. 能够生产高品质钢铁:通过吹氧脱磷等工艺,可以去除杂质,生产高品质的钢铁。

3. 适用范围广:铁水转炉可以生产各种规格和质量要求的钢铁,适用性广泛。

总的来说,铁水转炉工艺在钢铁冶炼领域具有重要的地位,其优点包括高效、高质以及适用范围广泛,为钢铁行业的发展做出了重要贡献。

2.2 吹氧脱磷的原理2.3 吹氧脱磷的步骤:吹氧脱磷是铁水转炉炼钢过程中的关键环节之一,其步骤主要包括以下几个方面:1. 吹氧开始: 在铁水转炉底部喷入高纯度氧气,形成氧吹。

转炉脱磷造渣工艺

转炉脱磷造渣工艺

转炉脱磷造渣工艺1. 简介转炉脱磷造渣工艺是一种钢铁生产过程中常用的炼铁工艺,用于将炼钢过程中产生的高磷铁水进行脱磷处理,并同时生成具有一定含铁量的渣。

脱磷是炼钢过程中的一个重要环节,因为高磷含量的钢铁会使钢的力学性能下降,同时还会影响钢的冷加工性能。

因此,通过转炉脱磷造渣工艺,可以有效降低钢铁中的磷含量,提高钢的质量。

2. 工艺原理转炉脱磷造渣工艺的主要原理是利用氧气气体在高温条件下与铁水中的磷发生氧化反应,生成氧化磷(P2O5)。

氧化磷被熔融的渣中吸附,从而实现了脱磷的目的。

具体来说,转炉脱磷造渣工艺分为两个步骤:2.1 碱性补矿在转炉炼钢过程中,通常需要进行钙质或镁质的碱性物料的补矿。

这是因为转炉炼钢过程中消耗了大量的碱质物料,导致炉渣中的碱度下降。

通过补充碱性物料,可以提高炉渣的碱度,为脱磷创造良好的条件。

2.2 硅酸盐造渣在转炉炼钢的末期,废钢或铁水被注入转炉。

同时,掺入含有大量氧化剂的硅酸盐物料,如硅石、硅灰石等。

在高温条件下,硅酸盐物料会与铁水中的磷发生反应,生成氧化磷。

氧化磷被熔融的渣中吸附,从而脱离钢水,实现脱磷的目的。

3. 工艺流程转炉脱磷造渣工艺的流程如下:1.准备碱性物料:根据炉渣的碱度要求,准备钙质或镁质的碱性物料,并进行补充。

常用的碱性物料包括石灰石、白云石等。

2.准备硅酸盐物料:选择合适的硅酸盐物料,如硅石、硅灰石等,并加入适量的氧化剂。

3.开始转炉炼钢:将废钢或铁水注入转炉,并进行炼钢操作。

4.碱性补矿:在适当的时机,通过给炉内注入碱性物料,提高炉渣的碱度。

5.硅酸盐造渣:当转炉炼钢接近末期时,通过给炉内注入硅酸盐物料,利用氧化剂促进磷的氧化反应。

6.淋渣:根据炉内的渣情况,选择合适的时间进行淋渣操作。

淋渣可以通过人工或机械设备进行。

7.渣铁分离:在脱磷过程中,渣中生成的氧化磷会被吸附在渣中,从而脱离钢水。

通过合适的方法,将渣与钢水分离。

8.尾渣处理:处理分离出来的尾渣,并对其进行资源化利用或安全处理。

顶吹转炉脱磷热力学分析和工艺优化

顶吹转炉脱磷热力学分析和工艺优化

顶吹转炉脱磷热力学分析和工艺优化磷在大多数钢中都是有害元素,脱磷是转炉炼钢的主要任务,本文从热力学角度入手,分析了顶吹转炉炼钢脱磷的影响因素,提出了优化转炉脱磷的措施,对强化顶吹转炉炼钢脱磷、提高钢材质量有重要意义。

标签:顶吹转炉;脱磷;措施1 前言磷在钢中(除炮弹钢、耐蚀钢以外)是有害元素,易使钢发生“冷脆”现象,尤其在高碳钢中更是明显,其原因是由于磷元素富集在铁素体晶界上形成“固溶强化”的作用,造成晶粒间的强度提高,从而产生脆性。

除此之外,磷含量越高越容易在结晶边界析出磷化物,降低钢的冲击值[2]。

因此,控制顶吹转炉炼钢过程中的脱磷反应是控制回磷和提高钢材质量重要而复杂的工作。

2 脱磷的热力学分析2.1 温度由上可知,温度越高。

K值越小,因此,低温对脱磷有利。

但需要指出的是,提高熔池温度,会使磷的分配比降低,对磷从金属向炉渣的转移不利。

但温度升高降低了炉渣的粘度,加速了石灰的熔解,从而有利于磷从金属向炉渣的转移。

理论研究表明,最有效的脱磷有一个最佳的温度范围(1450~1500℃)。

这就要求冶炼初期,要根据铁水温度采用不同的操作制度。

铁水温度低(1250℃以下),要采用低枪位操作以提高熔池温度,加速石灰的熔解,迅速形成初期渣,充分利用前期炉渣FeO高、炉温低的优势,快速脱磷。

若铁水温度特别高(大于1350℃),冶炼初期要适当采用高枪位操作,并加入部分矿石,抑制炉温的快速升高,同时也有利于石狄的溶解,延长冶炼在低温区(1500℃以下)的运行时间。

实践证明,尽管冶炼终点温度高,会降低磷在钢一渣中的分配比,但脱磷的关键仍然是冶炼过程渣特别是终渣的控制。

也就是说温度的影响不如(FeO)和(Cao)显著。

2.2 炉渣碱度因为CaO是使aP205降低的主要因素,增加(CaO)达到饱和含量可以增大aCa0,亦即增加自由CaO(不与酸性氧化物结合)的浓度,会使(P205)提高或鋼中[P]降低。

但渣中(CaO)过高,将使炉渣变稠,同样不利于脱磷。

影响转炉脱磷的因素分析

影响转炉脱磷的因素分析

表 1 表明,随着副枪一的温度升高,过程温度 也随之升高,因为提高熔池温度,会使磷的分配比 降低,对磷从金属向炉渣的转移不利,所以汽车板 副枪一脱磷率比 SPHC、P3A2 系列低。而是温度 升高降低了炉渣的黏度,加速了石灰的熔解,从而 有利于磷从 金 属 向 炉 渣 的 转 移,所 以 转 炉 终 点 时 脱磷率基 本 相 同。 实 践 证 明,尽 管 冶 炼 终 点 温 度 高,会降低磷在钢—渣中的分配比,但脱磷的关键 仍然是冶炼 过 程 渣 特 别 是 终 渣 的 控 制,温 度 的 影 响不如炉渣碱度和 FeO 显著。
在冶炼初期,加入炉内的大量石灰因温度低, 在表面形成冷凝外壳,并未熔化。在此期间,液态 炉渣主要与铁水中的 Si、Mn、Fe 氧化产物反应,随 着氧化和 温 度 的 升 高,使 石 灰 熔 化,碱 度 开 始 提 高,此时碱度约为 1. 3 ~ 1. 5; 在冶炼中期,由于炉 温升高石灰进一步熔化,但因脱碳速度加快,导致 渣中的 FeO 逐渐降低,使石灰熔化速度减缓。在 此期间,碱度的增加较缓慢,此时碱度约为 1. 8 左 右; 在冶炼后期,脱碳速度下降,渣中 FeO 再次升
Vol. 31 No. 1 March 2 0 1 0
影响转炉脱磷的因素分析
王凌川,李伯超,孙 光,侯海龙
( 黑龙江省冶金研究所,哈尔滨 150040)
摘 要: 本文主要从转炉脱磷的理论分析入手,探讨了炉渣碱度、FeO 的质量分数和冶炼过程温度对磷质量分 数的影响及回磷的原因、影响因素及防止措施等。同时本文指出应控制炉渣碱度、FeO、终点温度在合理范围 内,并应重视钢水回磷问题。 关键词: 脱磷; 碱度; 温度
我们 选 取 操 作 平 稳,副 枪 一 碳 在 0. 30% ~ 0. 40% 之间的数据作为研究对象,从其副枪温度 推断其过程 温 度,如 副 枪 一 温 度 高 则 其 过 程 温 度 肯定会高。副枪一温度和副枪二温度与脱磷率的 关系,选取的数据均是平均值,如表 1。

转炉炼钢脱磷工艺理论与实践

转炉炼钢脱磷工艺理论与实践

转炉炼钢脱磷工艺理论与实践摘要:适当的磷可以提升钢的强度,但是对于大多数的钢种都是有害元素,磷含量过高会降低钢材的塑性、焊接性以及冲击韧性。

研究表明磷在钢液凝固过程中发生偏析现象比较集中地聚集在晶界处,导致较低温度下钢材性能变脆,通常成为“冷脆”现象。

磷含量对钢铁的影响极大,即使很少量的磷(0.01%)也会导致钢材的低温脆性。

因此对于普通的钢种磷含量要求在0.04%以内,在低温环境下应用的钢种要求含磷低到0.003%以下,如严寒地区的钻井平台、船舶、轨道、钢结构承重件、液化气管道等。

脱磷反应是转炉炼钢过程重要的物理化学反应,也是转炉炼钢的基本任务之一。

结合实践进行说明脱磷过程注意事项。

关键词:转炉炼;钢脱磷;工艺1转炉炼钢脱磷原理与条件1.1转炉炼钢脱磷原理转炉吹炼过程铁水中的磷被氧化生成P2O5进入炉渣中,P2O5是酸性氧化物,能与炉渣中的碱性氧化物FeO、CaO、MnO、MgO等生成磷酸盐化合物,更稳定的存在渣中,随炉渣一起除掉。

炉渣碱度较低时磷多以磷酸铁(3FeO•P2O5)的形式存在,炉渣碱度较高时磷多以磷酸钙(3CaO•P2O5或4CaO•P2O5)的形式存在。

1.1.1磷的氧化反应磷的氧化反应在钢—渣界面上进行,反应方程式一般有2种:4/5[P]+2[O]=2/5(P2O5)标准吉布斯能△Gθ=-384953+170.24T(J/mol)。

或者:4/5[P]+2(FeO)=2/5(P2O5)+2Fe(l)标准吉布斯能△Gθ=-142944+65.48T(J/mol)。

1.1.2P2O5在炉渣中的固定氧化生成的P2O5如要在渣中稳定存于炉渣中,必须与炉渣中的CaO等碱性氧化物反应生成稳定的磷酸盐化合物3CaO•P2O5或4CaO•P2O5,反应方程式为:2[P]+5[O]+3(CaO)=(3CaO•P2O5)标准吉布斯能△Gθ=-1486160+6360T。

由反应方程式可以看出,转炉炼钢脱磷原理在于磷的氧化进入渣中和转化为稳定的磷酸盐,脱磷速度主要取决于钢—渣界面磷的氧化反应。

转炉深脱磷反应机理

转炉深脱磷反应机理

转炉深脱磷机理:1.转炉脱磷热力学分析1.1气体与金属间的反应磷的气体与钢水的反应可用下式表示:1/2 P2(g)=[P]Lg(ap/p pc)=8240/T -0.2ΔG= -157700+ 5.4Te p=0.054式中,钢水中磷的浓度用质量分数表示,磷的活度基准取亨利定律,由此可知钢水中的磷对于亨利定律呈正偏差。

1.2熔渣与钢水之间的反应高炉冶炼过程是不能脱磷的,矿石中的磷几乎全部进入生铁,致使生铁的含磷量有时高达0.1—2.0%。

生铁中的磷主要是在炼钢时氧化作用下去除。

磷和氧的亲和力虽比铁和氧的亲和力大,但在炼钢温度下,铁液的磷不能仅依靠氧化的作用除去,因为氧化生成的P205气态([P]+5[O]=P205(g))。

可是,当有碱性氧化物出现时,磷氧化形成的P205能与之结合,成为稳定的磷酸盐的标准生成焙(2[P]+5[0]+3(MO)=M3P208(s)),可以大致估计它们的稳定性。

在炼钢的熔渣制度下,FeO和CaO是生成稳定磷酸鼎的最主要的氧化物。

氧化铁的脱磷反应为:2[P]+8(FeO)=3FeO·P205(s)+5[Fe]或2[P]+8[O]+3[Fe]=3 FeO·P205 (s)LgK=Lg(1/[%P]^2[%O]^8)=84200/T-31.1但是,磷酸铁只能在较低的温度(1400-1500。

C)下才能稳定存在。

在温度升高时,熔渣碱度提高,3FeO·P205可转变为较稳定的3CaO·P205(或4CaO·P205)。

所以脱磷主要是依靠磷酸钙的形成。

(1)分子理论的脱磷反应脱磷反应是界面反应,由下列反应组成5(FeO)=5[O]+5[Fe]2[P]+5[0]=(P205)(P205)+4(CaO)=(4CaO·P205)综合得:2[P]+5(FeO)+4(CaO)=4CaO·P205+5[Fe]LgK=Lg (a (4Ca0·P205)/[%P]^2 a FeO^5·a CaO^4)=40067/T-15.06式中:K------------------脱磷反应的化学平衡常数:T------------------钢水温度。

转炉炼钢脱磷工艺分析

转炉炼钢脱磷工艺分析
当铁水中磷含量比较高005或者铁水中的硅06含量比较高时为提高转炉的脱磷率在冶炼时往往采用双渣法即在转炉的冶炼初期高枪位快速造好渣在低温高碱度的情况下快速脱磷然后倒炉放渣再加入一部分白灰保持熔渣的高碱度一直吹炼到拉碳此时钢水中的p含量一般在0010以下取样测温根据判断结果及熔渣情况再加入一部分白灰保持熔渣的高碱度很好的流动性然后确定补吹的时间取样测温出钢
II
第三章 试验方案的设计.............................................................................................................. 27 3.1 沙钢双渣脱磷的现状........................................................................................................ 27 3.1.1 双渣操作的好处......................................................................................................... 27 3.1.2 沙钢双渣脱磷情况.....................................................................................................27 3.1.3 脱磷的效果及回磷问题............................................................................................ 28 3.2 目前存在的问题................................................................................................................. 29 3.2.1 前期脱磷结果............................................................................................................. 29 3.3 影响前期脱磷的主要因素............................................................................................... 30 3.3.1 钢水中硅的氧化......................................................................................................... 30 3.3.2 前期渣碱度的控制.....................................................................................................30 3.3.3 倒前期渣时间的控制................................................................................................ 31 3.4 180t 转炉冶炼终点脱磷情况.......................................................................................... 32 3.4.1 增碳剂加入量的控制................................................................................................ 32 3.4.2 冶炼终点脱磷情况.....................................................................................................32 3.5 180t 转炉冶炼工艺改进方案.......................................................................................... 32 3.5.1 冶炼前期控制............................................................................................................. 33 3.5.2 冶炼终点控制............................................................................................................. 33 结论..............................................................................................................................................35 参考文献..................................................................................................................................... 36 致 谢....................................................................................................................................... 37

转炉脱磷及深脱磷

转炉脱磷及深脱磷

转炉脱磷工艺摘要磷是有害元素,对于高级别钢,除需要硫含量很低外,还需要磷含量控制在很低的水平。

由于炼铁过程为还原性气氛,脱磷能力较差,脱磷是炼钢过程中的重要环节之一。

本文主要从转炉冶炼的双渣法双联法进行分析,探讨了冶炼过程中温度、炉渣碱度、铁水中Si含量、(FeO)对P含量的影响,回磷的原因、以及两种冶炼方法脱磷效率的对比,针对鞍钢三炼钢的转炉炼钢冶炼数据分析了两种方法在温度、炉渣碱度、铁水中Si含量、(FeO)对P含量的影响,并对转炉脱磷现状进行了分析。

结果表明,双联法在脱磷方面优越与双渣法,效果显著,工艺简单,渣量减少,为生产超低P钢创造了优越的条件。

关键词:转炉,脱磷,双渣法,双联法AbstractPhosphor is one of the elements destroying the properties of steel product.Besides the low content of sulphur,it needs low phosphor for high quality steel.Since the ironmaking process is reduction atmosphere,the ability for dephosphorization is poor,thus dephosphorization during the steelmaking becomes the main step.This research mainly analyzed the Double Slag Process and the Deplexing process of converter, discussed the impact of smelting temperature, slag basicity, hot metal Si content and (FeO) on phosphorus content and the reason of rephosphorization as well as the comparison of the two methods on the efficiency of dephosphorization. In this research, we have looked into the figure of No. 3 Steelmaking Plant of An Steel Corporation to analyze the effect of smelting temperature, slag basicity, hot metal Si content and (FeO) and current situation of converter dephosphorization. The result indicates the advantage of Deplexing Process over Double Slag Process, which is effective, easy and produces less slag. Thus it provided superb conditions to produce lowest phosphorus steel.Key words :converter dephosphorization the Double Slag Process the Deplexing process of converter目录一国内外转炉深脱磷发展现状 (1)1.1国际上对超低磷钢的研究 (1)1.2我国国内对超低磷钢的研究以及这方面的探索 (7)二转炉深脱磷机理: (9)2.1转炉脱磷热力学分析 (9)2.1.1气体与金属间的反应 (9)2.1.2熔渣与钢水之间的反应 (10)2.2脱磷反应的动力学分析 (14)2.2.1脱磷动力学的研究基础 (14)2.2.2温度对反应速度的影响 (14)2.2.3 化能对反应速度的影响 (15)三实验现状 (15)3.1鞍钢第一炼钢生产工艺 (15)3.2 实验方案 (17)3.2.1双炼法 (17)3.2.2 双渣法脱磷过程分析及工艺要点 (21)3.3 实验结果分析 (26)3.3.1 双渣法数据处理 (32)3.3.2双联法转炉脱磷数据处理 (39)四结论 (45)近年来,随着我我国钢材的发展,对低磷钢的生产要求越来越高,对高级别钢特别是低磷钢的需求大大增加,这些产品对钢中磷的质量分数提出了很高的要求,大多要求磷含量低于0.015%;低温用钢管、特殊深冲钢、镀锡板要求钢中磷低于0.010%;一些航空、原子能、耐腐蚀管线用钢要求磷低于0.005%,所以超低磷钢将成为以后发展的主要方向。

转炉脱磷的影响因素及方法

转炉脱磷的影响因素及方法

转炉脱磷的影响因素及方法作者:唐天合来源:《科学与技术》2018年第21期摘要:近些年,钢铁市场对于低磷钢以及超低磷钢等品种钢的要求越来越苛刻,尤其是对钢中磷含量要求也进一步提高,所以严格控制好钢水中磷的含量是转炉炼钢的关键,脱磷是碱性炼钢过程中的重要任务之一,对于大多数的钢种而言,磷是一种有害的元素,随着磷含量的增加会引起钢的“冷脆”现象,提高钢的韧脆转变温度,并使焊接性能降低,冷弯性能变差,此外,磷在钢锭中会产生严重的偏析行为影响钢的性能与质量,所以要在冶炼阶段严格控制好终点磷的含量,保证炼钢的正常进行,本文分别讲述了脱磷的影响因素以及脱磷的方法。

关键词:转炉脱磷;碱度;温度1.转炉脱磷工艺概述转炉脱磷工艺主要包括:SRP工艺、多功能转炉脱磷工艺、COMI炼钢工艺脱磷工艺以及复吹转炉深脱磷工艺,其中复吹转炉深脱磷工艺又包括两路双联工艺、单渣工艺以及单炉新双渣工艺。

在炼铁过程中,原料中的磷几乎全部浸入铁水中,转炉和炉渣为脱磷提供了良好的脱磷环境。

在转炉冶炼过程中,可以通过控制主要脱磷影响因素达到良好的脱磷效果。

通常在转炉脱磷初期阶段,溶池温度较低,磷含量较高,热力学条件较好,但是由于此阶段炉渣的流动性较弱、炉渣碱度较低,动力学条件较差,因此需要通过改善动力学条件来配合热力学条件来加速脱磷,即提高炉渣流动性、炉渣碱度等;在转炉脱磷处理后期,钢水磷经过前阶段的脱磷之后,磷含量降低,炉渣流动性较高,具备良好的动力学条件,然而溶池温度较高,热力条件较差,不利于脱磷的进行,此时可以通过提高炉渣的碱度来改善热力学条件。

2.转炉脱磷影响因素分析2.1温度的影响通常转炉脱磷中的“温度”专指“溶池温度”,一般情況下,需要从两方面考虑温度对转炉脱磷效果的影响。

一方面,当熔池温度较低时,从热力学原理上分析,低温将有助于脱磷反应正常进行,但是当温度过低时,石灰在表面容易形成一层冷凝外壳,并未熔化,并降低化渣速度和炉渣流动速度,碱度降低,最终降低脱磷反应速度;另一方面,熔池温度升高过程中也会对脱磷效果产生影响。

转炉炼钢脱磷工艺的探讨

转炉炼钢脱磷工艺的探讨

转炉炼钢脱磷工艺的探讨【摘要】本文从脱磷的热力学分析入手,对冶炼过程中温度、炉渣碱度、渣中(FeO),等对磷含量的影响进行了探讨。

同时探讨了回磷的原因、影响的因素和防止的措施。

【关键词】转炉炼钢;脱磷工艺;探讨磷在钢中是以【Fe3P】或【Fe2P】形式存在,一般以【P】表示。

磷含量高时,会使钢的朔性和韧性降低,即使钢的脆性增加,这种现象低温时更严重,通常把它称为“冷脆”。

且这种影响常常随着氧,氮含量的增加而加剧。

磷在连铸坯中的偏析仅次于硫,同时它在铁固溶体中扩散速度又很小。

不容易均匀化,因而磷的偏析和难消除。

由于炼铁过程为还原性气氛,脱磷能力较差。

因此脱磷是炼钢过程的重要任务之一。

在20世纪90年代中后期,为解决超低磷钢的生产难题,世界上各大钢厂都曾经进行过转炉铁水脱磷实验研究。

1、铁水预处理方法1.1喷吹苏打粉处理日本住友公司鹿岛厂开发的“住友碱精炼法”是成功用于工业生产的苏打精炼法。

工艺流程:从高炉流出的铁水先经脱硅处理,即将高炉铁水注入混铁车内,用氮气输送和喷吹烧结矿粉,喷入量为每吨铁水40公斤,最大供粉速度为每分钟400公斤,最大吹氧量为每分钟50立方米,脱硅量约为0.4%。

脱硅处理后的铁水硅含量可降到0.1%以下。

然后用真空吸渣器吸出脱硅渣,进行脱磷处理,以氮气为载气向铁水中喷入苏打粉,苏打粉用量为每吨18公斤,最大供粉量为每分钟250公斤,最大吹氧量为每分钟50立方米,处理后铁水中【P】≤0.001%,【S】≤0.003%,再用真空吸渣器吸出脱磷渣,并将其送到苏打回收车间,经水浸后可回收约80%的Na2O,最后将处理过的铁水倒入转炉冶炼。

1.2喷吹石灰系熔剂处理由于石灰系熔剂具有成本低,对环境污染小的优点,因此受到重视,并不断对其深入研究,以使其满足精炼铁水的需要。

工艺流程:向高炉铁沟中加入铁磷进行脱硅处理,加入量为每吨铁水27公斤,处理后铁水含硅量由0.5%降到0.15%,氧的利用率为80%-90%。

转炉脱磷少渣炼钢工艺技术发展与现状概述

转炉脱磷少渣炼钢工艺技术发展与现状概述

转炉脱磷少渣炼钢工艺技术发展与现状概述引言钢铁是现代社会重要的基础材料之一,而磷是钢铁中的一个有害杂质。

传统的炼钢工艺中,磷的含量往往难以控制,导致钢材性能下降。

为了解决这个问题,转炉脱磷少渣炼钢工艺被广泛应用。

本文将对转炉脱磷少渣炼钢工艺的发展与现状进行概述。

转炉脱磷少渣炼钢工艺的原理转炉脱磷少渣炼钢工艺是通过将含有磷的原料在高温下与氧化剂反应,将磷转化为易脱离熔渣的磷酸盐,从而实现脱磷的目的。

其基本原理如下:1.熔融脱磷:在高温条件下,钢中的磷溶解于熔渣中,通过加入适量的熔剂,形成易分离的磷酸盐熔渣。

2.氧化脱磷:在高温条件下,将空气、氧气或含氧气的气体通入转炉中,氧化钢中的磷,将其转化为磷酸盐。

3.过渡氧化脱磷:在转炉炉脱磷过程中,通过在转炉中加入适量的铁素体,将磷转化为铁磷,再将其转化为磷酸盐。

转炉脱磷少渣炼钢工艺的发展历程转炉脱磷少渣炼钢工艺起源于20世纪50年代,经过多年的研究和改进,逐渐成熟并得到广泛应用。

其发展历程主要包括以下几个阶段:1.早期工艺的发展:早期的转炉脱磷少渣炼钢工艺主要采用人工喷镁的方式进行脱磷,但由于操作不稳定、生产效率低等问题,限制了其在实际生产中的应用。

2.化学脱磷工艺的应用:20世纪60年代,化学脱磷工艺开始应用于转炉脱磷少渣炼钢中。

该工艺是通过加入一定比例的化学试剂,如石灰石、白云石等,与熔渣中的磷反应,形成易分离的磷酸盐。

3.氧化脱磷工艺的引入:20世纪70年代,随着氧气和氧气枪在炼钢工艺中的应用,氧化脱磷工艺得到了推广。

该工艺是通过在转炉中加入氧气,氧化钢中的磷,将其转化为磷酸盐。

4.过渡氧化脱磷工艺的发展:20世纪80年代,随着对转炉脱磷少渣炼钢工艺的进一步研究和优化,过渡氧化脱磷工艺得到了广泛应用。

该工艺是通过在转炉中加入铁素体,将磷转化为铁磷,再将其转化为磷酸盐。

5.现代工艺的创新与应用:近年来,随着科技的进步和钢铁工业的发展,转炉脱磷少渣炼钢工艺逐渐采用自动化控制、机器学习等现代技术,提高了工艺的稳定性和生产效率。

2脱磷8-2(转炉脱磷)

2脱磷8-2(转炉脱磷)

制。
对于含磷较高的铁水,入炉前应进行预处理使之 达到单渣法操作的要求,合理又经济。
§3 转炉脱磷工艺
二、吹炼过程中磷含量的变化规律
转炉炼钢过程中,钢液中的含磷量是逐渐降低的。
但是操作过程中,各种工艺参数的变化对脱磷反应
会有不同的影响。 1.枪位变化对脱磷反应的影响
脱磷反应:
2[P]+5(FeO)+4(CaO)=(4CaO· 2O5)+5[Fe] P 2[P]+5(FeO)+3(CaO)=(3CaO· 2O5)+5[Fe] P
个阶段:吹炼初期、吹炼中期、吹炼后期。 A 吹炼初期 吹炼的最初阶段,硅、锰与氧的亲和力比磷大, 所以要等到铁液中硅、锰含量降到足够低时磷才开
始氧化。因此吹炼的最初阶段脱磷速度不大。
§3 转炉脱磷工艺
二、吹炼过程中磷含量的变化规律
2.吹炼过程中磷含量的变化规律及分析
A 吹炼初期
吹炼初期熔池温度较低,这对于脱磷是一个有利 条件,如果能保证迅速形成高碱度、高氧化铁含量、 流动性良好的炉渣,可以使脱磷过程快速进行。 因此,该阶段应适当提高枪位,使渣中氧化铁含
Na2CO3 + 氧化剂
脱磷反应: 2[P]+3(Na2O)+5(FeO) ==(3Na2OP2O5)+5Fe
§3 转炉脱磷工艺
四、铁水预脱磷
1.脱磷剂 (2)石灰系脱磷剂 脱磷剂组成: CaO + 氧化剂 + 助熔剂
脱磷反应:
2[P]+5(FeO)+3(CaO) == (3CaOP2O5)+5Fe
但其去磷效率较低,一般情况去磷率为90%左右。
§3 转炉脱磷工艺

转炉脱磷造渣工艺课件

转炉脱磷造渣工艺课件

2.3 温度的影响
脱磷反应是放热反应:
3FeO+P2O5=3(FeOO5
△H=-384KJ/mol △H=-678KJ/mol
故低温对去磷有利,实际炼钢过程中,为保
证去磷应抓住前期早化渣,低温去磷,中期温度 不过高,终点应采用下限温度出钢。
2. 影响脱磷的因素分析 2.4 渣量的影响
综氧上气所转述炉,初为期了,含使硅脱量磷高反,应吹进炼初行期完脱全磷,时必间要后移, 需将的铁热水力含学硅条量件降至是0:.10炉%渣~0的.15碱%度时,较P大才(能R=大3量~4氧)化。 铁水,中碳氧的化影铁响含:量较高((FeO)≈15~20%),熔
池温度合适(不过高),适当的渣量。
在氧气转炉冶炼过程中,主要的反应是2[C]+O2=2CO ,在冶炼初期,T<1470℃,磷可以优先氧化,当T> 1470℃,碳开始大量氧化,若想磷与碳同时氧化或优先氧 化应优先形成碱性氧化渣。
去P的基本条件:高(FeO)、高(CaO) 高碱度,大渣量和较低温度及良好搅拌的 动力学条件。
2. 影响脱磷的因素分析
2.1熔渣碱度的影响
从CaO-然Fe而O,-SCiOaO2-的含 P2O5系渣量同过含高磷将铁使液炉的渣变平黏 衡试验及,生这产并研不究利中于均脱可磷。 发现,增熔加渣渣碱中度C的aO影或响石还可 灰 量的或用使量钢以碱会中由度提[P图C]高a降2O.P2低/2S得O,iO到5的如2证越含图明高,, 2.1所示。磷(分图配2比.1越是大。 1600℃条件下的情况。如 果温度高于1600℃,则曲
增加渣量可以降低钢中[P],因渣的增加意味着P2O5 浓度的稀释,从而使Ca3P2O8的含量也相应地减小,所 以对脱磷有利。但是渣量大会使铁损和热损失增大。一 般渣量≈10~15%,在保证去磷条件下,采用最小渣量。

转炉脱磷分析及采取的措施2

转炉脱磷分析及采取的措施2

转炉脱磷率影响因素及采取的措施2012年2月份以来,面对严峻的市场形势,公司为降本增效,在高炉开始配吃块矿,使铁水P 成份持续升高,目前铁水平均磷已升至0.093%,最高达0.100%。

随着铁水P 成份的不断升高,转炉的脱磷压力急剧上升,给转炉操作带来很大困难。

为此车间积极查找各种资料,开展了转炉脱磷过程及方法分析,寻找提高转炉脱磷率的有效方法。

转炉脱磷热力学分析FeO 和CaO 是生成稳定磷酸盐的最主要的氧化物。

在转炉炼钢中,我们以FeO 为氧化剂,以CaO 为磷氧化产物的稳定剂。

通常炼钢脱磷反应如下:1)在渣钢界面上][5][5)(5O Fe FeO += (1)2)在与渣相相邻的金属层中)(][5][252O P O P =+ (2)3)在与金属相相邻的渣层中)4()(4)(5252O P CaO CaO O P ∙=+ (3)总反应描述为[]()()()[]Fe O P CaO CaO FeO P 5445252+∙=++ 放热 (4)根据萨马林的数据(5)在式(5)中,氧化物和磷酸四钙的活度甩摩尔分数表示。

K p 随温度的升高急剧减小,在1673 、1773 和1873K 下。

K p 相应为7.8×108、3.5×107、2.1×106。

根据式(5) ,在金属与炉渣平衡的情况下,(6)由式(6)可见,促进炉渣对金属脱磷的热力学因素有:a.加人固体氧化剂(铁矿石、铁皮)或用高枪位向熔池吹氧以增大a (FeO )b.加入石灰和促进石灰在碱性渣中迅速溶解的物质以增大a (CaO ),亦即增大自由CaO (不与酸性氧化物结合的)的浓度;06.1547008lg lg 4)(5)()4(52-==∙T a a K a K CaO FeO p O P CaO p 4)(5)()4(52][%CaO FeO p O P CaO a a K a P ∙=c.用更新与金属接触的渣相的方法,亦即放渣和加入CaO 与FeO 造新渣的方法来减小)4(52O P CaO a ∙d.保持适当的低温,因为温度从1673 增到1873K ,使反应(4)的平衡常数K p 减小到1/370 。

转炉冶炼高磷高带渣量铁液脱磷工艺研究

转炉冶炼高磷高带渣量铁液脱磷工艺研究

转炉冶炼高磷高带渣量铁液脱磷工艺研究转炉冶炼是当今冶金行业中最常用的冶炼方法,由于高磷高带渣量铁液的特殊性,传统冶炼过程使用的工艺参数受到了较大的限制。

因此,研究如何利用转炉冶炼技术脱除高磷高带渣量铁液中的磷,对提高铁液质量和提高冶金生产效率具有重要意义和指导意义。

首先,要明确脱磷对转炉冶炼影响。

转炉冶炼高磷高带渣量铁液最主要的影响有:(1)由于磷是一种非金属元素,其溶解度非常低,当磷溶解度过高时,其在熔炼、坩埚和下砂过程中形成砂渣,阻碍清除砂渣,从而影响转炉冶炼的效率,导致杂质含量过高;(2)当磷含量过高时,会影响转炉冶炼的熔强度,从而降低冶炼质量;(3)磷本身是易焊性金属,磷在铁液中高度溶解,会影响转炉冶炼过程中生成的熔铸,从而降低铸件的质量。

其次,要考虑脱磷工艺的技术参数设置。

针对高磷高带渣量铁液的脱磷,应该从技术参数的设置入手。

建议采用相应的冶炼参数,例如增加转炉温度,调整转炉的转矩、转速、温度梯度等。

在实际冶炼过程中,要注意控制转炉内部熔炼温度和溶解度,加速磷的溶解过程,使磷容易脱除,从而提高冶炼效率和质量。

此外,可以使用辅助剂催化脱磷。

有些辅助剂可以促进铁液中磷的溶解,增加转炉冶炼过程中磷的溶解度,因此可以有效催化脱磷,提高转炉冶炼效果。

最后,如何选择脱磷剂也是值得考虑的一个因素,目前已经开发的脱磷剂包括磷酸根和硫酸、氯化物等。

在选择脱磷剂时,还需考虑
其磷溶解度、操作成本、环境危害等因素。

总之,研究转炉冶炼高磷高带渣量铁液的脱磷工艺具有重要的指导意义。

在实际应用中,应该分析影响高磷高带渣量铁液脱磷工艺的各种因素,科学设置冶炼参数,合理选择脱磷剂,以确保冶炼质量和效率,满足生产需求。

转炉脱磷造渣工艺

转炉脱磷造渣工艺

转炉脱磷造渣工艺1. 引言转炉脱磷造渣工艺是钢铁生产过程中的一项重要工艺,用于去除炼钢过程中产生的磷元素,以保证钢铁产品的质量和性能。

本文将介绍转炉脱磷造渣的基本原理、工艺流程和关键技术。

2. 转炉脱磷造渣的原理转炉脱磷造渣是通过向钢水中添加磷灰石或其他磷源,利用氧气吹炼的过程中,在高温下将磷元素与其他元素反应生成易于脱离炉渣的化合物,实现磷的去除。

转炉脱磷造渣的原理可以归纳为以下几个方面:•磷灰石溶解法:磷灰石在高温下可以与钢中的溶解铁反应生成可溶解的化合物。

在转炉中加入磷灰石后,磷元素与炼钢过程中形成的氧化铁和砂状物质反应生成可溶解的磷化合物,随炉渣一起排出。

•气相反应法:在转炉脱磷过程中,通过向炉内注入氧气形成高温气氛,利用氧气与炼钢过程中产生的磷元素发生反应,生成易于脱离炉渣的磷化合物。

•硅酸盐溶解法:在炼钢过程中,添加硅酸盐类物质可以与磷元素反应生成低熔点的磷化合物,帮助磷元素更好地转移到炉渣中。

3. 转炉脱磷造渣工艺流程转炉脱磷造渣的工艺流程一般包括以下几个步骤:3.1 钢水准备在转炉脱磷造渣工艺中,首先需要准备好合适的钢水。

钢水的成分和温度对脱磷效果有很大的影响,通常需要控制好钢水的硫含量、温度和其他杂质含量。

3.2 炉前处理在转炉脱磷造渣工艺中,炉前处理是非常重要的一环。

通过炉前处理可以将钢水中的杂质和不洁物去除,以减少对转炉脱磷造渣工艺的影响。

3.3 加入磷源在转炉中加入适量的磷源是实现脱磷的关键步骤。

常用的磷源有磷灰石、磷矿石等,选择合适的磷源对脱磷效果有很大的影响。

3.4 氧气吹炼在加入磷源后,转炉中开始进行氧气吹炼处理。

氧气的注入可以改变钢水中的气氛,促进磷元素与其他元素的反应,生成易于脱离炉渣的化合物。

3.5 炉渣处理转炉脱磷造渣过程中产生的炉渣需要进行处理。

一般情况下,炉渣会经过冷却、处理、分离等步骤,将渣中的磷元素尽可能去除,以保证炉渣的质量和性能。

4. 转炉脱磷造渣的关键技术转炉脱磷造渣的关键技术包括以下几个方面:4.1 磷源选择选择合适的磷源对于脱磷工艺的效果至关重要。

大型转炉炼钢脱磷的研究

大型转炉炼钢脱磷的研究

大型转炉炼钢脱磷的研究摘要:主要研究近年来脱磷的方法,一些防止回磷的措施,复吹转炉成渣过程对脱磷的影响,高磷铁水脱磷效率影响因素,以及钢渣在微波场中还原脱磷的工艺。

关键词:脱磷;回磷;炉渣碱度;还原;预熔脱磷剂;高磷铁水;炼钢工艺1. 前言一般情况下,磷是钢材中的有害成分,使钢具有冷脆性。

磷能溶于a-Fe中(可达1. 2%),固溶并富集在晶粒边界的磷原子使铁素体在晶粒问的强度大大增高,从而使钢材的室温强度提高而脆性增加,称为冷脆。

但含磷铁水的流动性好,充填性好,对制造畸形复杂铸件有利。

此外,磷可改善钢的切削性能、易切削钢中磷含量可达0.08%一0.15%。

2.转炉的脱磷2.1转炉脱磷的基本原理通常认为,磷在钢中是以[Fe3P]或[Fe_2P]的形式存在,为方便起见,均用[P]表示。

炼钢过程中的脱磷反应是在金属液与熔渣界面进行,首先是[P]被氧化成(P2O5),然后与(CaO)结合成稳定的磷酸钙,其反应式可表示为:2.2影响脱磷的因素磷的氧化在钢渣界面进行,按炉渣分子理论的观点,反应式如下:2.3回磷现象所谓的回磷现象,就是磷从熔渣中又返回到钢液中。

成品钢中磷含量高于终点钢中的磷含量也属于回磷现象。

熔渣的碱度或氧化亚铁含量降低,或石灰划渣不好,或温度过高等,均会引起回磷现象。

出钢过程中,由于脱氧合金加入不当,或出钢下渣,或合金中磷含量较高等因素,也有导致成品钢中磷高于终点钢[P]含量。

通常采用避免钢水回磷措施:挡渣出钢,尽量避免下渣;适当提高脱氧前碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧,而不采取炉内脱氧;加入钢包改质剂。

3 钢渣在微波场中还原脱磷微波技术在加热高电介质耗损原料方面是一种简单而有效的方法,在冶金还原领域有着广阔的应用前景。

相较于传统加热还原工艺需要较高的温度和损耗,具有体积性加热、选择性加热、非接触性加热、即时性等加热特性的微波场在较低温度下能够提供更多的热量。

探析转炉脱磷影响因素及其工艺发展

探析转炉脱磷影响因素及其工艺发展

探析转炉脱磷影响因素及其工艺发展1 概述磷、硫是钢铁冶炼中常见的杂质元素,其中磷元素是炼钢过程中必须考虑并加以控制的元素。

在绝大多数钢种中磷是有害元素,为提高钢的纯净度,必须尽量降低钢液中的磷含量。

通常认为,磷在钢中以[Fe2P]或[Fe3P]的形式存在,为方便起见,本文均用[P]表示。

由于炼铁过程为还原性气氛,炼铁原料中的磷几乎全部进入铁水中,而转炉以其自身的氧化性和炉渣特点为脱磷创造了良好的环境,有着较好的脱磷效果,能达到85%,钢中的磷主要是在转炉冶炼过程中被去除的,因此转炉终点磷控制直接影响产品磷含量。

由于脱磷反应是在钢-渣界面进行的,因此控制和调整好转炉内炉渣的成分和性质是转炉脱磷的重要条件,其中炉渣碱度、炉渣氧化性和炼钢熔池温度是影响脱磷的主要因素。

本文将重点分析转炉脱磷的影响因素和国内外转炉脱磷工艺的发展情况。

2 转炉脱磷的热力学理论分析转炉脱磷反应是在金属液与熔渣界面上进行的,针对脱磷的热力学平衡,国内外学者均做了研究,其主要的化学反应方程式如下:钢液/熔渣界面反应:(1)熔渣中的反应:(2)式(1)+式(2)得:(3)从反应式可以看出,反应在相界面上进行,在高氧化铁的条件下,磷可以得到有效的去除。

在炼钢的熔渣制度下,(P2O5)并不稳定,必须和碱性氧化物结合才能被脱除,而FeO和CaO是生成稳定磷酸盐的最主要的氧化物。

吹炼前期,生成的(P2O5)主要与(FeO)生成较稳定的(3FeO·P2O5)()。

但碳氧反应的进行,吹炼温度不断上升,在1400℃~1620℃时,(3FeO·P2O5)逐渐分解,使磷又回到钢液当中。

为了有效地彻底脱磷,必须用石灰造高碱度钢渣,使磷在高碱度下生成更稳定的磷酸盐渣3CaO·(P2O5)或4CaO·(P2O5),其中4CaO·(P2O5)()更稳定,3CaO·(P2O5)次之,但通常达到平衡时的反应产物是4CaO·(P2O5)。

转炉造渣操作及其对脱磷的影响

转炉造渣操作及其对脱磷的影响

转炉造渣操作及其对脱磷的影响任海军李军辉( 杭州钢铁集团公司转炉炼钢厂 310022 )摘要:从氧气顶吹转炉脱磷的热力学分析人手,探讨了冶炼过程中炉渣碱度、(FeO)含量对脱磷的影响、回磷的原因、影响因素及防止措施等,指出造渣过程应将炉渣碱度和(FeO)含量控制在合理范围内,同时必须应重视钢水的回磷问题。

关键词脱磷;热力学;炉渣碱度;回磷炼钢生产中的脱磷效果主要是指成品钢中能够达到的最低含磷量。

成品钢中含磷量的多少,主要取决于转炉冶炼终点的磷含量和出钢过程的回磷量,而冶炼过程脱磷的效果又取决于炉渣的物理性质和化学性质。

现从以下几个方面分析转炉炉渣对脱磷的影响。

1 造渣操作1.1 成渣原理俗话说炼钢先炼渣,所以造渣是转炉炼钢生产中主要的工艺操作之一。

由于顶吹转炉的吹炼时间很短,快速成渣就成为顶吹转炉炼钢的核心问题之一,炉渣不仅要满足炼钢的要求,而且应该对炉衬的侵蚀最小。

因此,在吹炼过程中炉渣必须遵循“早化、化透、作黏、挂上”八字方针的原则。

从CaO-FeO-SiO2三元相图1600℃等温图中可知,在吹炼初期影响石灰溶解的主要原因是,石灰在渣化过程中,其表面会形成质地致密、高熔点的2CaO·SiO2,阻碍着石灰进一步渣化。

若渣中有足够的FeO,可使2CaO·SiO2解体,其成分点移至液相区,或是当SiO2含量超过25%时,石灰溶解有所下降。

为了加速石灰溶解,可以加入能急剧降低2CaO·SiO2熔点的溶剂如铁矿石、萤石或少量的MgO等。

这几种物质都能够扩大CaO—FeO—SiO2三元相图液相区,对成渣有利。

1.2 造渣料的确定石灰的加入量必须根据铁水的成分和重量、炉渣碱度及吹炼的钢种对磷、硫的要求,由下列计算公式确定:石灰加入量= 2.14*[Si%]x R x G x l000/有效CaO (1) 式中2.14—— SiO /Si=60/28=2.14;G ——铁水量,t;有效CaO%——CaO石灰%一R×SiO%;R ——炉渣碱度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转炉脱磷影响因素分析及其工艺应用
作者:李家通
来源:《中国新技术新产品》2017年第01期
摘要:本文简单阐述了目前我国的转炉脱磷工艺,通过具体分析溶池温度、炉渣碱度、渣量以及FeO含量等影响因素对转炉脱磷的影响与工艺发展概况,为转炉脱磷工艺发展提供了技术参考。

关键词:转炉脱磷;碱度;温度;FeO含量;炉渣
中图分类号:TF714 文献标识码:A
磷是钢铁产品中属于有害杂质(特殊情况除外),钢铁产品中的磷元素会使钢的韧性和可塑性大打折扣,使其在低温情况尤其容易冷脆断裂。

在大部分优质的钢铁产品中,其对钢中磷含量的要求非常严格,只有这样才能保证其高韧性,防止冷脆断裂的现象发生。

随着科学技术水平的提高,现代工业中对低磷钢、超低磷钢的使用需求日渐增长,因此本文就溶池温度、炉渣碱度、渣量以及FeO含量等影响因素分析如何提高转炉脱磷技术,以期为我国转炉脱磷工艺发展提供经验参考。

1.转炉脱磷工艺概述
转炉脱磷工艺主要包括:SRP工艺、多功能转炉脱磷工艺、COMI炼钢工艺脱磷工艺以及复吹转炉深脱磷工艺,其中复吹转炉深脱磷工艺又包括两路双联工艺、单渣工艺以及单炉新双渣工艺。

在炼铁过程中,原料中的磷几乎全部浸会入铁水中,转炉和炉渣为脱磷提供了良好的脱磷环境。

在转炉冶炼过程中,可以通过控制主要脱磷影响因素达到良好的脱磷效果。

通常在转炉脱磷初期阶段,溶池温度较低,磷含量较高,热力学条件较好,但是由于此阶段炉渣的流动性较弱、炉渣碱度较低,动力学条件较差,因此需要通过改善动力学条件来配合热力学条件来加速脱磷,即提高炉渣流动性、炉渣碱度等;在转炉脱磷处理后期,钢水磷经过前阶段的脱磷之后,磷含量降低,炉渣流动性较高,具备良好的动力学条件,然而溶池温度较高,热力条件较差,不利于脱磷的进行,此时可以通过提高炉渣的碱度来改善热力学条件。

2.转炉脱磷影响因素分析
2.1 温度的影响
通常转炉脱磷中的“温度”专指“溶池温度”,一般情况下,需要从两方面考虑温度对转炉脱磷效果的影响。

一方面,当熔池温度较低时,从热力学原理上分析,低温将有助于脱磷反应正常进行,但是当温度过低时,石灰在表面容易形成一层冷凝外壳,并未熔化,并降低化渣速度
和炉渣流动速度,碱度降低,最终降低脱磷反应速度;另一方面,熔池温度升高过程中也会对脱磷效果产生影响。

当熔池温度升高时,磷的分配比率会降低,脱碳反应的速度加快,炉渣中氧化铁含量随之减少,并且形成硅酸二钙覆盖在石灰表面,其熔点较高会阻碍石灰的进一步熔化,导致出现炉渣的“返干”现象。

同时,时温度过高会使转炉熔池反应剧烈,易发生喷溅,使倒渣困难,不利于脱磷。

相反的是,当熔池温度升高时,熔渣的碱度和流动性相应提高,动力学条件良好,加速脱磷反映。

根据生产实践可知,要使脱磷效果达到最佳状态,温度一般需要控制在1300℃~1350℃范围内。

因此,高效率的转炉脱磷需要根据溶池不同的温度,来决定使用何种操作机制较为科学。

当溶池温度低于1250℃时,需要通过低枪位吹氧方式来使熔池温度快速达到有效温度,加速石灰熔解以及炉渣的形成,充分利用高炉渣氧化铁含量、低炉温的有利条件,加速转炉脱磷。

当钢水温度超过1350℃时,高枪位操作有助于抑制炉温,延长在极限高温下的冶炼运行时间。

但是实践证明,终渣的控制才是转炉脱磷的关键环节,FeO含量和炉渣碱度对转炉脱磷效果影响更显著,溶池温度控制对脱磷效果的影响较弱。

2.2 碱度的影响
五氧化二磷属于酸性氧化物,钢渣中氧化钙、氧化镁、氧化锰、氧化铁等碱性氧化物,一定程度上降低五氧化二磷的活度,其中氧化钙的脱磷能力最强。

在炼钢温度下,氧化钙反应生成的磷酸钙稳定性较高,氧化镁次之,而氧化锰和氧化铁则最弱。

因此,氧化钙是控制五氧化二磷活性的主要因素,氧化钙浓度的增加,且不与酸性氧化物发生反应,有助于降低磷含量。

脱磷效率会随着炉渣碱度的增减而升降,当炉渣碱度升高到3.5数值左右时,脱磷效果处于饱和状态,炉渣碱度的提高对脱磷效率作用不再显著。

如果氧化钙含量过多,导致氧化钙颗粒不能完全熔化,炉渣随之增加,炉渣的黏度也大大提升,此时炉渣的流动性减弱,脱磷反应动力学条件变差,最终使脱磷效率降低。

因此,在实际操作中,炉渣碱度一般被控制在3.0~3.5数值左右。

2.3 FeO含量的影响
炉渣中FeO含量是转炉脱磷技术的主要影响因素之一。

FeO既可以作为氧化剂加速磷的氧化,又可以将五氧化二磷结合成较稳定的磷酸盐化合物从而起到脱磷的作用。

在冶炼过程中,随着炉渣FeO含量的升高,炉渣氧化性也会增强,炉渣与钢水中磷含量的分配比也会随之增大,此时,CaO在渣中的溶解速度会随着FeO的升高而加快,有助于加快脱磷速度。

当FeO 含量较低时,石灰不容易被熔化,无法生成稳定的磷酸盐化合物,不利于脱磷的进行。

脱碳反应在转炉脱磷的中期会更剧烈,控制不当就会经常出现炉渣“返干”现象,回磷也随之加快,破坏转炉脱磷效果。

当FeO含量过高时,炉渣碱度会相对降低,与此同时会大量消耗铁。

所以,脱磷初期FeO含量一般控制在7%~9%左右,终渣FeO含量应不超过20%。

除此之外,实际操作中,氧化铁和碱度是共同对转炉脱磷效果产生的,炉渣碱度在2.8~3.5、FeO含量在18%~20%时,脱磷效率可以达到85%~90%左右。

当然,不同钢种对钢产品的终点碳含量也不尽相同。

在终点碳含量较高的情况下,氧化性也会随之降低,这一定程度上影响了脱磷效果。

随着钢液碳含量的提高,磷的分配系数随其提高而呈减小的趋势。

在一定温度条件下,熔池的碳浓度与氧浓度的乘积为一定值,因此,碳氧含量成反比,即碳含量越高,氧含量就越低,条件下熔渣中的FeO含量也越低。

而根据上述炉渣中FeO含量的影响效果分析,熔渣氧化性的高低会直接影响着脱磷的效果。

2.4 渣量的影响
除了以上溶池温度、炉渣碱度以及FeO含量对转炉脱磷效果有影响之外,渣量控制对转炉脱磷效果影响更大,因此,终渣的控制才是转炉脱磷的关键环节。

虽然,渣量并不影响脱磷的分配比,但在一定的分配比下,渣量的增加导致五氧化二磷的浓度降低,磷酸盐化合物含量也随之降低,有助于提高转炉脱磷效率。

但是,渣量过多钢水温度有影响,进而影响化渣效果,动力学条件不足,最终导致冶炼成本增加。

反之,渣量太少导致磷容量不足,从而进一步影响脱磷率。

除此之外,在实际操作中,分批造渣是控制较大渣量的重要手段之一,其可改善一次性大渣量在脱磷效果中的不足。

综上所述,溶池温度、炉渣碱度、渣量以及FeO含量等是转炉脱磷的重要影响因素。

首先,碱度影响磷的分配系数,碱度的提高导致磷的分配系数增大,脱磷效果增加。

但是,当碱度超过一定值后,碱度的增加对脱磷效率的影响会下降,最终达不到脱磷的高效率要求。

因此脱磷最佳效果是碱度控制在2.5~3.5范围内。

其次,炉渣中FeO含量是转炉脱磷技术的主要影响因素之一,FeO含量的提高会引起磷的分配系数增大,同样达到提高脱磷效率的效果。

再者,在冶炼过程中溶池温度与磷的分配系数成反相关,温度越高,磷的分配系数越低,因此低温有助于提高转炉脱磷效率。

最后,渣量是最重要的影响因素之一,终渣的控制才是转炉脱磷的关键环节。

渣量越大,脱磷效果越好。

总而言之,高碱度、高FeO含量、低温、大渣量是转炉脱磷效率提高的有利影响因素。

3.转炉脱磷工艺在我国的应用
随着经济的高速发展,为了加大低磷钢、超低磷钢市场供应,我国在转炉脱磷工艺上也在不断地研究探索,并取得了重大技术进步。

当前转炉脱磷工艺具有如下特点:转炉容积大、反应速度快、效率高、可节省造渣剂的用量等,有利于生产低磷钢以及超低磷钢。

目前国内常见的转炉脱磷工艺有:双渣法、单渣法以及转炉双联法等,其工艺特点主要是在冶炼前期尽早成渣,提高炉渣碱度为转炉脱磷创造有利条件,但这不适用于较大渣量的转炉脱磷操作;对于脱磷而言,双渣法效果比较单渣法更有优势,在实际生产中,转炉双渣法脱磷效率高达九成,但同时存在着转炉热量损失和冶炼周期延长等缺陷,因此亟待进一步改进。

结语
由于我国转炉脱磷研究起步较晚,因此与众多发达国家相比技术还不够成熟,然而历时数十年探索实践,国内转炉脱磷工艺已经取得较大的进展。

笔者期望通过本文对转炉脱磷技术影响因素的探究,为我国转炉脱磷工艺改进提供绵薄之力。

参考文献
[1]邱鑫.转炉双联脱磷工艺过程成渣路线的理论及实验研究[D].重庆大学,2013.。

相关文档
最新文档