混合法测量固体比热容

合集下载

混合法测量固体比热容

混合法测量固体比热容

实验报告姓名:叶洪波学号:PB05000622固体比热容的测量*实验原理1.混合法测比热容设一个热力学孤立体系中有n 种物质,其质量分别为m i ,比热容为c i (i=1,2,…,n )。

开始时体系处于平衡态,温度为CT 1,与外界发生热量交换后又达到新的平衡态,温度为T 2。

若体系中无化学反应或相变发生,则该体系获得(或放出)的热量为))(...(122211T T c m c m c m Q n n -+++= (1)假设量热器和搅拌器的质量为m 1,比热容为c 1,开始时量热器与其内质量为m 的水具有共同温度T 1,把质量为m x 的待测物加热到T ’后放入量热器内,最后这一系统达到热平衡,终温为T 2。

如果忽略实验过程中对外界的散热或吸热,则有))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- (2) 式中c 为水的比热容。

310.2--⋅⋅cm K VJ 代表温度计的热容量,其中V 是温度计浸入到水中的体积。

2.系统误差的修正在量热学实验中,由于无法避免系统与外界的热交换,实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。

所以,校正系统误差是量热学实验中很突出的问题。

为此可采取如下措施:(1) 要尽量减少与外界的热量交换,使系统近似孤立体系。

此外,量热器不要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。

(2) 采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在量热器外生成凝结水滴。

先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。

这样混和前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。

(3) 缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。

(4) 严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。

混合法测定铝比热容实验报告

混合法测定铝比热容实验报告

混合法测定铝比热容实验报告实验目的:通过混合法测定铝的比热容。

实验原理:比热容是指物质单位质量在单位温度变化下吸收或释放的热量。

在恒定压力条件下,物质的比热容可由以下公式计算:Q = mcΔT,其中Q表示吸收或释放的热量,m表示物质的质量,ΔT表示温度变化。

混合法是比热容测定的常用方法之一、原理是将待测物质与已知比热容的物质混合,两者达到热平衡时,可以根据能量守恒定律推导出待测物质的比热容。

实验步骤:1.将两个烧杯置于天平上,分别称取一定质量的待测铝和已知比热容的物质(如水等)。

2.将待测铝加热到一定温度(如90℃),记录下来。

3.将待测铝迅速转移入已知质量的热水中,搅拌保持温度均匀。

4.观察水温的变化,当温度稳定后,记录下最终温度。

5.根据能量守恒定律,可得出待测铝的比热容。

实验结果与数据处理:通过上述实验步骤,我们得到了以下实验数据:已知物质的质量:m1已知物质的初始温度:T1已知物质与待测物质的最终温度:T2待测物质的质量:m2根据能量守恒定律,我们可以得到以下公式:m1c1(T2-T1)=m2c2(T2-T1)其中c1表示已知物质的比热容,c2表示待测物质的比热容。

通过测量已知物质和待测物质的质量和温度,以及已知物质的比热容,我们可以计算出待测物质的比热容。

讨论与结论:通过实验计算,我们得到了待测铝的比热容。

与理论值进行对比后发现两者存在一定的误差,可能是由于实验过程中的误差导致的。

可以进一步改进实验方法,提高实验精度。

在实际应用中,准确测定物质的比热容对于工程和科研领域都具有重要意义。

比热容可以用于计算物质在不同温度下的热传导、热膨胀等性质,也可以用于工业生产中的能量平衡计算。

因此,混合法测定比热容的实验方法具有广泛的应用前景。

总结:本次实验通过混合法测定了铝的比热容,并讨论了实验结果的准确性和可行性。

尽管实验中存在一定的误差,但通过改进实验方法和进一步提高实验精度,可以得到更准确的比热容值。

5实验五 混合法测量比热容

5实验五  混合法测量比热容

实验五混合法测量比热容Experiment 5 Determining thermal capacity using mixing method量热学是以热力学第一定律为理论基础的一门科学,量热学所研究的范围就是如何计量物质系统借温度变化、相变、化学反应等所吸收和放出的热量。

量热学的实验方法有混合法、稳流法、冷却法、潜热法、电热法等,本实验采用混合法测金属样品的比热容。

实验目的Experimental purpose1.掌握混合法测定金属比热容的方法;2.巩固物理天平的使用方法。

实验原理Experimental principle将温度不同的物体混合后,如果由这些物体组成的系统没有与外界交换热量,最后系统将达到稳定的平衡温度。

在此过程中,高温物体放出的热量等于低温物体所吸收的热量。

这就是热平衡原理。

根据这一原理可用混合法测量金属的比热容。

为了做好实验,需有一个隔热良好的量热器。

本实验用的量热器如图1所示,它由外筒和内筒组成,内筒放置在绝热架上,与外筒隔开,外筒用绝热盖盖住,盖上开两个小孔,可放入温度计和搅拌器(连有绝缘柄)。

由于内筒与外筒间充有不图1量热器结构图良导体的空气,它们间传导的热量很小;又由于外筒装有绝热盖,对流的热量也很小,内筒的外壁和外筒的内外壁都抛光,以减少热辐射。

这样的量热器可被看做近似符合热平衡原理的实验系统。

实验时,将待测金属样品置于加热器中加热至温度θ1,并迅速将它投入量热器的水(温度为θ2)中,最后达到平衡温度θ。

设待测样品的质量为m ,比热容为c ,则其放出的热量为()θθ-=11mc Q (1)设量热器内筒的质量为m 1,比热容为c 1;水的质量为m 2,比热容为c 2,则量热器和水吸收的热量为()()222112θθ-+=c m c m Q (2)根据热平衡原理,Q 1= Q 2。

由式(1)和(2)可得待测样品的比热容为()()()θθθθ--+=122211m c m c m c (3) 以上讨论并没有考虑系统热量的散失,但实际上只要有温差存在,总会发生系统与外界热交换现象。

固体比热容

固体比热容

c0
4.取出量热器的内筒,称其总质量并减去 m+ m ,即为 1 水的质量 m ; 0 5.小量筒测出温度计浸入水中的体积V;另换温水,重 复上述实验一次。 6.实验时应注意 (1)本实验的误差主要来自温度的测量,因此在测量温 度时要特别注意,读数迅速且要准确(准确到0.1℃); (2)倒入量热器中的温水不要太少,必须使投入的金属 块悬挂浸没在其中。 水的比热容 c0 为 4.187×103 J ⋅ kg−1⋅oC−1
实验结果分析和处理
1.将实验中测出的各个数值填入下表:
前8分钟 t(℃) 次 1 2 3 4 t 次 (℃) 5 6 7 8 次 1 2 3 4 中间2分钟 t(℃) 次 5 6 7 8 t(℃) 次 1 2 3 4 后8分钟 t(℃) 次 5 6 7 8 t(℃)
t2(℃) m 0(kg) m (kg) m1(kg) C(J·k—1·℃—1)
在上述混合过程中,实际上系统总要与外界交换热量, 这就破坏了(1)式的成立条件。为消除影响,需要采用散 热修正。本实验中热量散失的途径主要有三个方面。第一, 若用先加热金属块投入量热器的混合法,则投入前有热量损 失,且这部分热量不易修正,只能用尽量缩短投放时间来解 决;第二,将室温的金属块投入盛有热水的量热器中,混合 过程中量热器向外界散失热量,由此造成混合前水的温度与 混合后水的温度不易测准。为此,绘制水的温~时曲线,
实验仪器
电子温度计;量热器;天平
实验步骤
测环境温度 测内桶和搅拌器质量 加水,测总质量 备冰 投冰,搅拌,测温 测至系统温度有上升为止 测内桶及水总质量 测环境温度 绘制温度时间曲线,求冰的溶解热
注意事项
投冰前应将其拭干,且不得直接用手触摸;其质量 不能直接放在天平盘上称衡,而应由投冰前、后量 热器连同水的质量差求得。 为使温度计示值确实代表系统的真实温度,整个实 验过程中(包括读取前)要不断轻轻地进行搅拌 (搅拌的方式应因搅拌器的形状而异)。

比热容的测定方法

比热容的测定方法

比热容的测定方法
1. 混合法呀,就像你调鸡尾酒一样。

把不同温度的东西放一块儿,然后通过测量温度变化来算出比热容呢!比如说把热水和冷水混在一起,你想想看这多有意思呀!
2. 量热计法,这就像是给物体做个专门的体检。

把东西放进去,仔细测量各种数据,最后找到它的比热容,哇,是不是感觉很专业呢!
3. 冷却法呀,你可以联想一下给发烧的人降温的过程。

我们让热的物体慢慢冷却,通过观察冷却的情况来确定比热容,这很神奇吧!
4. 绝热法,这不就像是给物体包上一层温暖的毛毯嘛!看看它在绝热的情况下温度怎么变化,然后就能算出比热容啦,是不是很妙?
5. 电加热法,就好像给物体通上电流来取暖一样。

通过电的作用和温度的变化来搞清楚比热容,是不是很独特呀!
6. 我们还可以用热线法,想象一下有根热线在探测物体呢。

靠它来获取信息从而得到比热容,多好玩呀!
7. 辐射法,这如同太阳光照在物体上一样。

研究这种辐射带来的影响来测定比热容,很新奇吧!
8. 声波法呢,就像是用声音去和物体交流。

通过声波的传播和反应来找出比热容,哇塞,这也太独特了吧!
9. 还有相变法,就好比水变成冰的过程。

关注这个过程里的各种变化来确定比热容,太有意思啦!
我觉得这些测定比热容的方法都各有各的奇妙之处,都值得我们去深入了解和探索呀!。

固体比热测定

固体比热测定

固体比热容的测定指导老师:王亚辉小组成员:李彦辉张燚杨朋波胡宏明电热法测固体比热容实验的改进1引言在传统的混合法测固体比热容实验中, 量热器等的吸热和散热一直是制约实验结果准确度的一个关键因素. 为了消除此类热量传递对测量结果的影响, 在一定的实验条件下, 可以近似地用作图法消除热交换的影响, 其次还要考虑量热器、搅拌器等的等效比热容和质量, 处理过程相当麻烦. 本实验采用电热法, 通过控制放试件和不放试件两种情况下的初末温度和液面高度, 将上述种种热散失抵消掉, 使测量较准确, 操作较简单. 另外, 本实验采用传感器加模拟电路来测量温度, 使温度的测量更准确; 用不锈钢杜瓦瓶代替传统的量热器筒和保温套筒,减少了向外界的热量散失, 且使用方便2实验改进方法实验装置如图1所示. 待测样品及水放在杜瓦瓶中, 并设置了AD590温度传感器和电加热器、搅拌器. 水面高度为杜瓦瓶的3/ 5左右;样品不宜太大或太小; AD590和样品大致位于水深的中部; 电加热器置于偏下部.设加热电压为U, 电流为I, 则电加热器在时间T内放出的热量为UIS. 此热量使量热器的整体温度由t1 升至t2. 根据能量守恒定律, 可得如下方程UIT= (mc+ m0c0+ C1 + C2 + C3) (t2 - t1) + ΔQ ( 1)式中, m, c为待测物的质量和比热容; m0, c0 为水的质量和比热容; C1, C2, C3 分别为在此实验状况下量热器( 包括搅拌器) 、电加热器、温度传感器的等效热容量; ΔQ为其它因素散失的热量.本实验测量的困难在于C1, C2, C3 及ΔQ均为未知的参量. 为解决这一问题, 采用同等实验条件下的系统误差差值消去法.实验分两步进行: 第一步不加待测试件, 加热T1时间后, 系统从t1 升温至t2; 第二步放入t1温度的水和试件, 且要求水位和第一步等高, 加热T2 时间后, 同样使温度升高到t2. 据( 1) 式有UIT1 = (m01c0+ C1+ C2 + C3)(t2 - t1) + Δ Q1 ( 2)UIT2= (m02c0 + C1+ C2+ C3+ mc)(t2- t1) + ΔQ2( 3)( 2) 式减去( 3) 式得UI ( T1 - T2) =- mc( t2- t1) + ( m01 - m02) c0( t2 - t1) +ΔQ1 -ΔQ2故\( m01- m02) c0( t 2- t 1) - UI( T1- T2) +Q1 -Q2∆∆( 4) c=m( t2- t1)考虑到在前后两步测量中, 初末温度相同,水的高度相同, 环境条件也相同, 因此量热器热量交换情况基本相同, 其差别仅在于电加热的时间T1 与T2 略有差别, 造成ΔQ1 与ΔQ2 略有不同. 由于用了高真空杜瓦瓶作为量热器, ΔQ1与ΔQ2 均很小, 而其差值将更小. 测试结果也表明平衡后系统的温度随时间的变化极缓慢, 如图2所示. 因此, 可以忽略该项差别, 认为ΔQ1- ΔQ2= 0, 则( 4) 式化得为( m01- m02) c0( t 2- t 1) - UI( T1- T2)c=m( t2- t1)本实验应该注意的几个问题:1) 本实验的关键之一在于两步实验初末温度的控制, 最好相同, 稍有差别也是可以的, 但一定要保证t2-t1 相同.2) 加热过程中要充分地、不断地搅拌, 否则传感器即数字毫伏表反映的温度与实际平衡温度会有差别.3) 计时器的开关要迅速及时, 必要时可两人配合. 关闭加热器和计时器后应继续搅拌片刻, t2 应取最大读数值.4) 要选择恰当的电加热功率. 功率太大, 会使计时器的控制难度加大, 且增加量热器内温度的不均匀性; 太小会使实验时间延长, 增大散热引起的误差.数据记录:烧杯:m1=66.3 筒:m2=66.6 筒+水:m3=212.1g筒+水+珠:m4=298.7g 烧杯+铜珠:m5=166.4g只加水: U=11.99v I=1.026A稍加热停止时末温T0 T1 T221.2℃21.8℃22.2℃继续加热停止时末温时间T3 T4 T132℃32.4℃599.1s水+珠:稍加热停止时 末温 '0T '1T '2T21.0℃ 21.7℃ 22.2℃继续加热停止时 末温 时间'3T '4T '5T31.8℃ 32.4℃ 590.1s数据处理:m=m5-m1=100.1g m10=m3-m2=145.5gm20=m4-m-m2=132gC 测珠=m m m 2010-*Co 水-)24()21(T T m t t VI -- =1.1001325.145-×4.2×103J/g ℃-)2.224.32(**1.100)1.5901.599(_*026.1*99.11103---J/(g ℃) =566.4 J/g ℃-108.4 J/g ℃=458 J/g ℃误差分析:因为数字毫伏表容许误差为0.1℃,电压表,电流表准确度分别为0.1V,0.01A,启停数字计数器的误差之和为0.4s,天枰的感量为0.02g.u( t1) = u( t2) = 0. 1/ 3 = 0. 06℃u( U) = 0. 1/ 3 = 0. 06Vu( I) = 0. 01/ 3 = 0. 006Au( Ʈ1) = u(Ʈ 2) = 0. 4/ 3 = 0. 23su( m01) = u( m02) = u( m) =0. 02/ 3= 0. 016g则故u( c) = u2( c1) + u2( c2) = 5J/ ( g *℃)取公认值480J/(g*℃)测量值与真实值之差与标准值取百分比 η=480458480 *100%=4.6% 在允许百分误差(5%)以内,故该实验测量比热容是可行的。

4 固体比热容的测量

4 固体比热容的测量

实验18 固体比热容的测量(一)混合法测量固体比热容[实验目的]1.学习量热的基本方法——混合法2.学习一种修正散热的方法——温度的修正3.测定金属的比热容[实验仪器]量热器、双壁加热器、蒸汽锅、电炉、水银温度计(0-50.0℃, 0-100℃)各一支、物理天平、停表、量筒。

[仪器介绍]1.量热器为了使实验系统(包括待测系统与已知其热容的系统)成为一个孤立系统, 我们采用量热器。

传递热量的方式有三种: 传导、对流和辐射。

因此必须使实验系统与环境之间的传导、对流和辐射都尽量减少, 量热2.外筒是双层结构, 空气封闭其中, 因为空气是热的不良导体, 故可避免空气传导而引起热量的损失;外筒上端的木盖可严密地盖着, 避免空气对对流所引起的热量损失;外筒的内壁和内筒的外壁均电镀得十分光亮, 可减少热辐射, 外筒的底部放上一个隔外筒的外表再包一层绒布, 这样就能使整个系统尽可能根据上述测量的T-t数据, 以T为纵坐标, 以t为横坐标, 即得如图(2—3—18—4)的T-t曲线。

A点对应的时刻就是测水温开始的时间 , B点对应的时刻就是, 而不是5分钟末的时间。

然后作图即得混合前后冷水的初温和末温T。

把各个物理量的测量值代入式(2-3-18-1)即可算出金属样品的比热容。

图(2—3—18—4)中的G点所对应的温度应为室温所在的位置, 这样才不影响温度的修正。

[实验内容和要求]1. 混合法测定铜块的比热容2.混合过程中散热的温度修正法3.混合前量热器(含水)系统温度低于室温(加冰块), 测量系统随时间吸热变化的温度。

4. 混合过程快速测量变化的温度5. 数据处理:Cx与标准值求百分误差[注意事项]1. 作温度值修正法曲线图, FE垂直于t轴, 满足S1=S2, 图中G点对应的温度接近室温为佳。

2. 从曲线图中定出初温T2和末温T。

[实验思考]请分析本实验主要的误差来源。

(二)冷却法测量金属的比热容[实验目的]学习冷却法测量金属比热容的方法[实验仪器]FB312型冷却法金属比热容测量仪[实验原理]根据牛顿冷却定律, 用冷却法测定金属的比热容是量热学常用方法之一。

两种物质混合比热容

两种物质混合比热容

两种物质混合比热容物质的热容是描述物体吸热性质的物理量,用来衡量物质在温度变化下吸收或释放热量的能力。

在混合物的热容中,存在着两种物质混合比热容的研究。

本文将探讨这两种物质混合比热容的原理、实验方法和相关应用。

1.方法一:等体积法等体积法是通过将两种物质按照相同体积进行混合,然后测量混合物的温度变化来计算混合物的比热容。

该方法适用于两种物质相互溶解或反应导致混合物温度变化的情况。

2.方法二:等质量法等质量法是通过将两种物质按照相同质量进行混合,然后测量混合物的温度变化来计算混合物的比热容。

该方法适用于两种物质相互不溶或反应不明显的情况。

三、实验步骤1.选择适合的实验装置,并确保其正确使用和校准。

2.按照选定的方法,准备相应的样品和试剂。

3.将两种物质按照相应的比例或相等体积/质量混合在一起。

4.在混合物中插入温度计,并记录初始温度。

5.进行反应或溶解过程,同时记录混合物的温度变化。

6.根据所选方法,计算混合物的比热容。

四、结果分析根据实验所得数据和计算结果,可以得出两种物质混合比热容的相关结论。

比热容越高的物质在混合物中所起的作用越显著,其温度变化也会更大。

同时,不同物质的混合比热容也可能会导致混合物整体的比热容发生变化。

五、应用领域1.工业生产中的温度控制:通过混合物的比热容,可以调节工业生产中的温度,实现对反应过程的控制。

2.热能储存和传输:混合物的比热容可以影响其储存和传输能力,从而应用于热能储存和传输领域。

3.材料研究:混合物的比热容对于材料的性质研究有重要影响,对于热学性能的分析和材料改进具有一定的指导作用。

两种物质混合比热容是研究物质吸热性质的重要内容。

通过实验方法的选择和实验结果的分析,可以得出混合物比热容的相关结论。

同时,混合物比热容的应用广泛,涉及到工业生产、热能储存和传输以及材料研究等领域。

这些研究对于深入理解和应用相关物质具有重要意义。

固体比热容测定实验的研究

固体比热容测定实验的研究
Ne tn l w o o l g w o a fc oi .T e ta i o a x ei na rg a i i r v d b s d o h e rt a n y i ,whc d o ̄t ed f - n h r dt n le p rme t p o r m mp o e a e n te t oi c a a ss i l s h il l ihr u P h ii e .
关键词 : 牛顿冷却定律; 固体 比热容 ; 改进 ; 实践 创新
中图分类号 : 43 0 -3 文献标 识码 : A 文章编号 :0416 (0 0 0 -0 00 10 —0 9 2 1 )30 1-4
Ex e i e t lr s a c n m e s r n o i pe i c h a a i p r m n a e e r h o a u i g s l s c f e tr t d i o HA i・n S N Me ja , I G Z i o g N X u1 ,U iu n D N h- n i - y
(colfP yw n l t nc i c ,ua gTahr C lg ,u agA h i 30 1C i ) Sho o hs s dEe r i S e e F y n ece oeeF yn n u 2 64 ,hn a co n s c s l a
Ab ta t T et r l o e t np n il o p r e t ntes ei ch a o l ert a y a a zd s r n o sr c : h ema c r ci r c e f x e m n o c i e t s i i t oe cl n l e t t gf m h r o i p e i h p f o d s h i l f y ai r

固体比热容的测量

固体比热容的测量

实验简介19世纪,随着工业文明的建立与发展,特别是蒸汽机的诞生,量热学有了巨大的进展。

经过多年的实验研究,人们精确地测定了热功当量,逐步认识到不同性质的能量(如热能、机械能、电能、化学能等)之间的转化和守恒这一自然界物质运动的最根本的定律,成为19世纪人类最伟大的科学进展之一。

从今天的观点看,量热学是建立在“热量”或“热质”的基础上的,不符合分子动理论的观点,缺乏科学内含。

但这无损量热学的历史贡献。

至今,量热学在物理学、化学、航空航天、机械制造以及各种热能工程、制冷工程中都有广泛的应用。

比热容是单位质量的物质升高(或降低)单位温度所吸收(或放出)的热量。

比热容的测定对研究物质的宏观物理现象和微观结构之间的关系有重要意义。

本实验采用混合法测固体(锌粒)的比热容。

在热学实验中,系统与外界的热交换是难免的。

因此要努力创造一个热力学孤立体系,同时对实验过程中的其他吸热、散热做出校正,尽量使二者相抵消,以提高实验精度。

实验原理混合法测比热容设一个热力学孤立体系中有种物质,其质量分别为,比热容为()。

开始时体系处于平衡态,温度为,与外界发生热量交换后又达到新的平衡态,温度为,若无化学反应或相变发生,则该体系获得(或放出)的热量为假设量热器和搅拌器的质量为,比热容为,开始时量热器与其内质量为的水具有共同温度,把质量为的待测物加热到后放入量热器内,最后这一系统达到热平衡,终温为。

如果忽略实验过程中对外界的散热或吸热,则有式中为水的比热容。

代表温度计的热容量,其中是温度计浸入到水中的体积。

⏹系统误差的修正在量热学实验中,由于无法避免系统与外界的热交换,实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。

所以,校正系统误差是量热学实验中很突出的问题。

为此可采取如下措施:●要尽量减少与外界的热量交换,使系统近似孤立体系。

此外,量热器不要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。

●采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在两热器外生成凝结水滴。

混合法测定金属的比热容

混合法测定金属的比热容
面积等于GFC
面积,这样在BEGFC
和BGC
这两条图线各自相应的过程中所损失的热量是相等的,因而可将原来的BGC
过程等效为
BE、EF和FC
三段过程,其中BE和FC
表示在整个过程中由于向周围散热而导致温度下降的情况,而EF表示系统由于投入金属粒而引起的温度下降。
E、F点所对应的温度
1
和2是投入金属粒后热平衡进行得无限快时系统的初温和末温。它意味着热平衡不1
5.用排水法测量温度计浸没在量热器内筒热水中的体积。即在小量筒中倒入适量的水,记下水面读数V
1,将温度计的待测部分完全浸没在量筒的水中再记录水面读数V
2,则VV
2V
1。
五、数据记录及处理
金属粒投入前、后系统的温度
投入前
观察次数时间(s)温ቤተ መጻሕፍቲ ባይዱ(℃)观察次数投入后
时间(s)温度(℃金属粒质量M= g
量热器的内筒和搅拌器的质量m
称为物体的比热容,单位为J/(kg·K)。
用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量Q
1与低温物体吸收的热量Q
2相等,即Q1=Q2(2)
本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为m
2.学习一种xx系统散热的方法。
二、仪器及用具
量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。
三、实验原理
1.用热平衡原理侧比热容
在一个与环境没有热交换的孤立系统中,质量为m

(完整word版)用混合法测固体的比热容

(完整word版)用混合法测固体的比热容

实验八 混合法测定固体比热容一 实 验 目 的1、掌握基本的量热方法——混合法。

2、测定金属的比热容。

二 实 验 仪 器量热器,温度计,物理天平,停表,加热器,小量筒,待测物(金属块)。

量热器如图1所示,C 为量热器筒(铜制),T 为曲管温度计,P 为搅拌器,J 为套铜,G 为保温用玻璃棉。

加热器如图2所示,待测物由细线吊在其中间的圆筒中,由蒸汽锅发出的蒸汽通过加热器的套筒中给待测物加热。

加热厚后将其下侧的活门K 打开,就可将物体投入置于其下面的量热器中。

为了减少加热器排出的水蒸汽,可将排汽管插入冰和水的盆中,使蒸汽凝结成水。

三 实 验 原 理温度不同的物体混合之后,热量将由高温物体传给低温物体。

如果在混合过程中和外界没有热交换,最后将达到均匀稳定的平衡温度,在这过程中,高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理。

本实验即根据热平衡原理用混合法测定固体的比热。

将质量为m 、温度为t 2的金属块投入量热器的水中。

设量热器(包括搅拌器和温度计插入水中部分)的热容为q ,其中水的质量为m 0,比热容为c 0,待测物投入水中之前的水温为t 1。

在待测物投入水中以后,其混合温度为θ,则在不计量热器与外界的热交换的情况下,将存在下列关系))(()(1002t q c m t mc -+=-θθ (1) 即)())((2100θθ--+=t m t q c m c (2) 量热器的q 可以根据其质量和比热容算出。

设量热器筒和搅拌器由相同的物质(铜)制成,其质量为m 1,比热容为c 1,温度计插入水中部分的体积为V ,则 V c m q 9.111+= (3))(9.11-︒⋅C J V 为温度计插入水中部分的热容,但V 的单位为cm 3。

也可以用混合法测量量热器的热容q 。

即先将量热器中加入)(0g m '水,它和量热器的温度为1t ' ,其次将)(g m o ''温度为2t '的温水迅速倒入量热器中,搅拌后的混合温度为θ',则根据式(1),的))(()(100200t q c m t c m '-'+'='-'''θθ 即 001200)(c m t t c m q '-'-''-'''=θθ (4) 但是用混合法测量热器热容q 时,要注意使水的总质量00m m ''+'和实际测比热容时水的质量m 0大体相等,混合后的温度θ'也应和实测时的混合温度θ尽量接近才好。

混合法测固体比热容实验中的散热修正方法

混合法测固体比热容实验中的散热修正方法

混合法测固体比热容实验中的散热修正方法肖 啸(乐山师范学院物理与电子信息科学系,四川乐山 614004)3摘 要:在混合法测固体比热容实验中,由于测量系统与外界环境存在热量交换,需要对实验中测得的温度值进行修正,文章就该实验中的几种散热修正方法进行了讨论。

关键词:混合法;比热容;散热修正中图分类号:O414 文献标志码:A 文章编号:100025757(2009)0320112202 混合法测固体比热容实验是根据热平衡原理,在不考虑系统与外界的散热情况下,高温物体放出的热量等于低温物体吸收的热量来测定固体的比热容。

但在实际中,由于系统与外界之间存在温度差,两者之间不可避免会出现热量交换,因此,要想获得较为准确的实验结果则必须考虑系统和外界之间的热量交换,对实测温度值进行修正。

1实验原理设量热器的内筒中装有质量为m 0,比热为c 0,初温为T 1的水,将质量为m x ,温度为T 2,比热容为c x 的金属块,投入到内筒的水中(设量热器内筒与搅拌器的热容量为C 1)。

不考虑量热器、金属块、水和搅拌器组成的系统与外界之间的热量交换,当混合达到热平衡后,整个系统混合温度为T 3。

设T 1<T 2,则根据热平衡原理,列出平衡方程为m x c x (T 3-T 1)=(m 0c 0+C 1+1.9V )(T 2-T 3)(1)即 c x =(m 0c 0+C 1+1.9V )(T 2-T 3)m x (T 3-T 1)(2)其中C 1可根据查表以及测量内筒和搅拌器的质量得出,V 是温度计插入水中部分的体积,单位是c m 3。

因此,实验成功的关键是准确测出T 1、T 2、T 3,再代入(2)式即可求得待测金属块的比热c x 值。

2散热修正方法从(2)式的推导中可以看出,实验原理要求系统与外界环境存在温度差,则两者之间必然有热量交换,有必要对实际测量的温度值进行散热修正。

根据金属块投入水中前,金属块的温度、水的温度以及环境温度之间的关系不同,可有多种散热修正方法,下面就三种典型的散热修正方法进行讨论。

混合法测固体的比热容

混合法测固体的比热容

混合法测固体的比热容一、引言在研究物体的热学性质时,需要掌握物体的比热容。

比热容表示单位质量物体在温度变化过程中的热容量。

比热容是物体在所需热量与温度变化量之间的比值,反映了物体热量传递的能力。

不同物质具有不同的比热容,而复合物体的比热容一般需要根据物体的构成成分和比例计算得出。

因此,混合法测固体的比热容是十分重要的,也是研究热学性质和热传导性质的基础。

本文将介绍混合法测量固体比热容的基本原理、测量方法和实验注意事项。

二、混合法测固体的比热容原理混合法测固体的比热容是一种基于热平衡原理的测量方法。

其基本原理是将待测物体与一定质量的高温物质混合,在混合过程中,两者温度都发生变化,达到热平衡后,由混合前后温度变化量和物质质量可以计算出待测物体的比热容。

具体来说,设待测物体的质量为m,比热容为c,初始温度为T1,混合物的质量为m',比热容为c',温度为T2,混合后温度为T'。

在混合过程中,总吸热量Q总应满足:(1) Q总= m × c × ΔT1 + m' × c' × ΔT2其中,ΔT1和ΔT2分别表示混合前后待测物体和混合物温度的变化量。

由热平衡原理可知,在混合过程中混合物和待测物体的总热量相等,即:将(1)式和(2)式联立可得:由此可以解出待测物体的比热容c。

三、测量方法混合法测量固体比热容的具体步骤如下:1. 将待测物体与一定质量的高温物质混合,使混合前后温度的变化量较大。

2. 在混合前,分别用热电偶或温度计测量待测物体和混合物的初始温度。

3. 将混合物体系搅拌均匀,待温度达到稳定后,测量混合后的温度。

4. 计算出待测物体的比热容。

需要注意的是,在实际操作中,由于混合前后液体和气体的散热和能量损失等因素,混合法测量固体比热容时存在误差。

因此,需要采取一些措施减小误差,例如控制混合前后温度差的大小,保证混合物搅拌均匀等。

固体比热容

固体比热容
AB 段表示混合前量热器及水的冷却过程, BC 段表示混合过程,CD 段表示混合后
冷却过程。通过 O 点作与时间轴垂直的一条直线交 AB、CD 的延长线于������和������,使面积 BEO 与面积 CFO 相等。这样,������和������点对应的温度就是热交换进行无限快的温度,分别为水的初 温������1和系统的终温������。
式中的比热容。
热学理论认为,温度不同的两个或几个物体相互热体传递给低温物体。如果热交换过程中系统没有向外界环境散失热量也没有自外界环
境吸收热量,那么系统最终达到均匀稳定的平衡温度时,高温物体放出的热量等于低温物体
吸收的热量,这就是热平衡原理:
Q放 Q 吸
(2)
1.选取水的初温
实验中,量热器总是会与外界存在热交换,为了减小实验误差,需合理选择水的初温������1。 操作中要使初温������1在投放待测固体之前低于环境温度������0(即室温),温度差为(������0 − ������1);而混
合后的热平衡温度������高于环境温度������0,温度差为 t t0 ,并且尽量使(������0 − ������1) = (������ − ������0)。这
§4.6 用混合法测定固体的比热容
比热容是热学中一个重要的物理量,物质比热容的测量是物理学的基本测量之一,对于 了解物质的结构、确定物质的相变、鉴定物质的纯度以及新能源的开发和新材料的研制等方 面,都起着重要作用。
根据热平衡原理用混合法测定固体或液体的比热容,是量热学中一种常用方法,所使用 的基本仪器为量热器。本实验测定铝块的比热容,在实验过程中,采用冷热补偿法和图线外 推法补偿量热系统与外界的热交换,是量热学中减小系统误差的常用方法。

固体比热容测定实验的研究

固体比热容测定实验的研究
能力 的培养 。 关 键 词: 牛顿冷却定律 ; 固体 比热容 ; 改进 ; 践创 新 实
文 献 标 志码 : A 中图 分 类 号 : -3 O 43
比热容是单位质量的物质升高( 或降低) 单位 温度所 吸 收( 放 出) 或 的热 量 , 单 位是 焦 耳 每 千 其
克开 尔文 ( k - J・ g ・ ) 。物 质 的 比热 容 是热 力 学 中一个 非 常重 要 的 物理 参数 , 比热容 的测 定 对 研究 物质 的宏 观结 构之 间的关 系有重 要作 用 。在 混合 法测 量 固体 比热容 实 验 中 , 热 系统 不 可 避 量 免 的有部 分热 量与外 界 发生 交换 , 减小误 差 , 为 大
第2 3巷
第6 期






Vo 。 3 No l 2 6
De 2 0 c 01
21 0 0年 l 1 2月
PH YS CAL I EXPE M ENT RI 0F COILE GE
文 章 编 号 :0 72 3 (O O O —0 20 10 ~94 2 1 )60 却定律进行散热修正。传统的散热 修正方案不仅使得实验操作难度大 , 而且修正的 效果 并不 理想 。笔 者 在 实 践 教 学 过 程 中 , 牛顿 从
冷却 定律人 手 , 固体 比热容 测 定 实 验 的 散热 修 对 正原 理进行 了理 论 分 析 , 此 对 传 统 的 实验 方 案 据 进行 改 进 , 不仅 降 低 了实 验 操 作 难 度 , 减小 误 差 ,
热量 Q为
d Q d
: ::
K( T—T口 )
() 2
由 ( ) 可得 : 2式
d = K ( 、 Td Q 了 )dt () 3

用混合法测固体的比热容

用混合法测固体的比热容

真验八混同法测定固体比热容之阳早格格创做一真验目的1、掌握基础的量热要领——混同法.2、测定金属的比热容.二真验仪器量热器,温度计,物理天仄,停表,加热器,小量筒,待测物(金属块).量热器如图1所示,C为量热器筒(铜制),T为直管温度计,P 为搅拌器,J为套铜,G为保温用玻璃棉.加热器如图2所示,待测物由细线吊正在其中间的圆筒中,由蒸汽锅收出的蒸汽通过加热器的套筒中给待测物加热.加热薄后将其下侧的活门K挨启,便可将物体加进置于其底下的量热器中.为了缩小加热器排出的火蒸汽,可将排汽管拔出冰战火的盆中,使蒸汽凝结成火.三真验本理温度分歧的物体混同之后,热量将由下温物体传给矮温物体.如果正在混同历程中战中界不热接换,终尾将达到匀称宁静的仄稳温度,正在那历程中,下温物体搁出的热量等于矮温物体所吸支的热量,此称为热仄稳本理.本真验即根据热仄稳本理用混同法测定固体的比热.将品量为m、温度为t2的金属块加进量热器的火中.设量热器(包罗搅拌器战温度计拔出火中部分)的热容为q,其中火的品量为m 0,比热容为c 0,待测物加进火中之前的火温为t 1.正在待测物加进火中以来,其混同温度为θ,则正在不计量热器与中界的热接换的情况下,将存留下列闭系 ))(()(1002t q c m t mc -+=-θθ (1)即)())((2100θθ--+=t m t q c m c (2)量热器的q 不妨根据其品量战比热容算出.设量热器筒战搅拌器由相共的物量(铜)制成,其品量为m 1,比热容为c 1,温度计拔出火中部分的体积为V ,则V c m q 9.111+= (3))(9.11-︒⋅C J V 为温度计拔出火中部分的热容,然而V 的单位为cm 3.也不妨用混同法丈量量热器的热容q.即先将量热器中加进)(0g m '火,它战量热器的温度为1t ' ,其次将)(g m o ''温度为2t '的温火赶快倒进量热器中,搅拌后的混同温度为θ',则根据式(1),的))(()(100200t q c m t c m '-'+'='-'''θθ 即 001200)(c m t t c m q '-'-''-'''=θθ (4)然而是用混同法丈量热器热容q 时,要注意使火的总品量00m m ''+'战本量测比热容时火的品量m 0大概相等,混同后的温度θ'也应战真测时的混同温度θ尽管靠近才佳.上述计划是正在假定量热器与中界不热接换时的论断.本量上只消由温度好别便必定会由热接换存留,果此,必须思量怎么样预防或者图2 图3举止建正热集得的做用.热集得的道路主要有三:第一是加热后的物体正在加进量热器火中之前集得的热量,那部分热量阻挡易建正,应尽管支缩投搁时间.第二是正在投下待测物后,正在混同历程中量热器由中部吸热战下于室温后背中集得的热量.正在本真验中由于丈量的是导热良佳的金属,从投下物体到达混同温度所需时间较短,不妨采与热量出进相互对消的要领,与消集热的做用.即统制量热器的初第三要注意量热器中部不要有火附着(可用搞布揩搞洁),免得由于火的挥收益坏较多的热量.由于混同历程中量热与环境有热接换,先是吸热,后是搁热,至同温度分歧..可用图解法举止,如图3所示.真验时,从投物前5,6分钟启初测火温,每30s测一次,记下投MN一火仄线,二者接于O面.而后描出投物前的吸热线AB,与MN接于B面,混同后的搁热线CD与MN接于C面.混同历程中的温降线EF,分别与AB、CD接于E战F.果火温达室温前,量热器背来正在吸热,故混同历程的初温应是与B下的温度.共理,火温下于室温后,量热器背环境集热,故混同后的最下温度是C.正在图3中,吸热用里积BOE表示,集热用里积COF表示,当二里积相等时,证明真验历程中,对于环境的吸热与搁热相消.可则,真验将受环境做用.真验中,力供二里积相等.别的,要注意温度计自己的系统缺面.下温度计正在冰面时读数为1℃对于应的真正在值为a其真正在温度a值皆标正在仪器卡片上.四真验内容1、将蒸汽锅中加进半锅火,并战加热器对接佳之后便启初加热.2、用物理天仄称衡被测金属块的品量m,而后将其吊正在加热器核心的筒中加热,筒中拔出的温度计要靠拢待测物.3、按式3或者4支决定量热器的热容q.4器(启初测火温并记时间,每30s测一次,接连测下来.5、当加热器中温度计指示值宁静稳定后,再过几分钟测出其温度.投搁时,将量热器置于加热器的底下,挨启量热器上部的加出心战加热器下侧的活门,敏捷天将物体搁(不是投)进量热器中.记下物体搁进量热器的时间战温度.举止搅拌并瞅察温度计示值,每30s测一次,继承5分钟.6、按图37、将上述各测定值代进式(2)供出被测物的比热容及其尺度偏偏好.量热器(包罗搅拌器)是铜制的,五注意事项1、量热器中温度计位子要适中,不要使它靠拢搁进的下温物体,果为已混同佳的局部温度大概很下.2(统制正在2~3℃安排即可),果为温度过矮大概使量热器附近的温度落到露面,以致量热器中侧出现凝结火,而正在温度降下后那凝结火挥收时将集得较多的热量.3、搅拦时不要过快,以预防有火溅出.回问问题:如果用混同法测液体的比热,证明真验应怎么样安插.附记:温度计拔出火中部分的热容可如下供出.已知火银的稀度为而其火中部分的体积不大,其热容正在丈量中占次本职位,果此可认为它们.下温度计拔出火中部分的体积为,则该部分的热容可与为1.9V(J.℃-1).V可用衰火的小量筒来丈量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目:混合法测量固体比热容
实验目的:通过本实验,学会采用混合法测固体的比热容。

实验仪器:量热器(见右图所示),冰,水,干毛巾,天
平(带砝码),绝热套筒,锌粒,温度计,秒表,
加热装置等.
实验原理、步骤及测量记录:
本实验采用混合法测固体比热容,根据其原
理,假定:(实际室温:)
用天平测得量热器及搅拌器的质量和为:
查资料知:
又测得大气压强:
查表可知此状态下沸水的温度:
假定温度计没入水中的体积为:
利用公式:
))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- 可初步计算得水的质量:
取量热器及搅拌器并注入水放在天平上,调节水的质量得热器及搅拌器和水的质量:
计算得水的质量为:
在实验台上(套筒之外)利用冰进行水的降温操作,使其降到,并使冰彻底融化掉。

再将其放入绝热套筒中,密封。

然后将已加热15分钟的锌粒迅速放入量热器中,密封。

迅速记录温度随时间的变化。

记录数据如下所示:
表一,量热器中的温度
随时间的变化
时间(min) 0 1 2 3 4 5
温度() 23.20 23.35 23.40 23.42 23.45 23.48
时间(min) 5:25 5:28 5:41 5:50 5:54 6:02
温度() 29.50 29.70 29.80 29.90 30.00 30.10
时间(min) 6:15 6:30 6:46 7:25 7:46 8:30
温度() 30.20 30.25 30.30 30.20 30.10 30.05
时间(min) 9:00 9:30 10:30 11:30 12:30 13:30
温度() 30.02 30.00 29.99 29.98 29.97 29.97
时间(min) 14:30 15:30 - - - -
温度() 29.97 29.97 - - - -
.
2009
05
22
.
测量温度计没入水的体积:
数据处理:
根据以上数据可用Origin8.0画出温度随时间的变化图,见
下图:
根据公式: ))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- 及图中
计算得锌的比热容为:
相对误差为:
误差分析及改进:
本实验有一些系统误差修正的方法,比如采取补偿措施,缩短操作时间,沸点的校正等,有效地减小了系统误差。

但是当把锌粒倒进量热器后,温度会迅速变化,此时对
时间和温度的读数存在误差,应尽可能的多读些数据,尽可能读准确。

我们可以对实验作如下改进:对时间和温度的读数,可以采用高频照相机对温度计进行监控,从而可以得到准确的数据。

如果有条件可以用温度传感器直接用电脑监控温度变化,当然这可以运用到整个实验。

思考题:
1. 为使系统从外界吸热与向外界放热大体相抵,你采取了哪些措施?结果怎样?
答: 使用绝热套筒尽量减少与外界的热量交换,使系统近似孤立体系;采取补偿措施;缩短操作时间,实验中将锌从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失;严防有水附着在量热筒外面,以免水蒸发时带走过多的热量;进行沸点校正,先测量空气压强再查得水的沸点。

以上措施有效地减小了系统误差。

2.设计出一种测量液体比热容的方法,并创造条件做实验。

答: 法一,只要稍加改进,就可以把此实验改成测液体(比
如水)的比热容。

在带入数据运用公式:
))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- 计算锌的比热容时,只要把水的比热容当成未知量,
锌的比热容按查资料所得数据带入即可求得水的比热容。

法二,我们可以利用电阻对液体进行加热,计算出电阻所产生的热量()作为液体所吸收的热量,同时记录液体的起止温度,利用公式:)(12T T mc Q -= 即可算得液体的比热容,可以利用本实验同样的思路减小系统误差。

相关文档
最新文档