概率论第二章习题
概率论第二章习题答案
概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。
求X的分布律。
解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。
由于骰子是公正的,每个面出现的概率都是1/6。
因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。
求Y的概率密度函数。
解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。
解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。
解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。
求X的分布律和期望值。
解答:X服从参数为n和p的二项分布。
其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。
概率论第二章习题解答
a
b X t
ba
0
F
t
t b
a a
1
ta at b bt
2024年8月31日7时2分
P44 2.4.1 X ~ U 0,10,均匀分布 0, x 0
概率密度f
方程x2
x
1
=10
,
0,
Xx 1
0 x 10 分布函数F 其它
0有实根,
x
x 10 1
0 x 10 10 x
=X 2 4 0 X 2
1 P A1 A2 A3 1 P A1 A2 A3 1 P A1A2 A3
1 P A1 P A2 P A3 1 0.9730633 0.078654
设Y “3人维修的90台设备发生故障的台数”
近似
则Y ~ B 90,0.01, 2 =np 90 0.01 0.9,Y ~ 0.9
Probability
2024年8月31日7时2分
第二章 随机变量及其分布 P35练习2.2
1
P
X
k
k
A
k 1
k
1, 2,
,且
k 1
k
A
k 1
1
1
k 1
k
A
k 1
A
k 1
k
1
k 1
A 11
1 2
1 2
1 3
1 3
1 4
A
A1
2024年8月31日7时2分
P35练习2.2
2 解:设X =8次射击击中目标次数,则X ~ N 8,0.3
2024年8月31日7时2分
P49 2.5.1 Y sin X 1,0,1
X
概率论第二章习题及答案
三、一些常用的离散型随机变量
1) Bernoulli分布 如果随机变量 X 的分布律为
PX 0 1 p q , PX 1 p
或
P{ X k } p q
X P
k 1 k
(k 0 , 1)
1 p
0 1-p
则称随机变量 X 服从参数为 p 的 Bernoulli分布. 记作 X ~ B1 , p . 其中0 p 1 为参数
第二章 随机变量及其分布
一、 随机变量的定义
设E是一个随机试验,S是其样本空间.若对每一个
S , 都有唯一确定的一个实 数X 与之对应 , 则称
X 为一个随机变量.
S
X
R
第二章 习题课
二、离散型随机变量的分布律
设离散型随机变量 X 的所有可能取值为 x1 , x2 , , xk , 并设
如果连续型随机变量X 的密度函数为 (I)
1 2 2 x f x e 2 其中 , 0 为参数, 则称随机变量X 服从参数为 , 2 的
正态分布.记作
f (x)
x 2
X ~ N ,
2
0
第二章 随机变量及其分布
4)几 何 分 布
若随机变量 X 的分布律为
PX k q k 1 p
k 1, 2,
其中 p 0,q 0,p q 1
则称随机变量 X 服从参数为 p的几何分布.
返回主目录
第二章 随机变量及其分布
5)超 几 何 分 布
如果随机变量 X 的分布律为
x
f ( t )dt,
概率论课本答案2(龙版)
第二章 (证明题略)练习2-1练习题1. 2. 3. 见教材P259页解答。
4.解:X: 甲投掷一次后的赌本。
Y :乙……… 21214020p x 21213010Y p⎪⎩⎪⎨⎧≥<≤<=40,14020,2120,0)(F ~x x x x x X ⎪⎩⎪⎨⎧≥<≤<=30,13010,2110,0)(F ~Y x x x y Y5.解(1)∑∑∑∑=====⇒=⇒=⇒==10011001100110012112121)(i ii i i i ia a a i x p(2)31211112112121)(1111=⇒=--⇒=⇒=⇒=⇒==∑∑∑∑∞=∞=∞=∞=a a a a ai x p i i i i i i i6.解 21 51 101512 0 25X --p 7.解(1)X:有放回情形下的抽取次数。
P (取到正品)=107C C 11017=P (取到次品)=103 107)103( 107)103( 107103,107i 3 2 1X 1-i 2 ⋅p(2)Y:无放回情形下。
778192103 87 92103 97 103 1074 3 2 1 Y ⋅⋅⋅⋅⋅⋅p8.解54511)5(1)3(1)3P(=-=-=-=-≤-=->X p X p X 542)P(X 0)P(X )2()33()3X P(==+=+-==<<-=<X p X p 107)5()2()3()1()21P(2)1()21X P(=-=+==-<+>=-<++>+=>+X p X p X p X p X X p9.解(1)根据分布函数的性质11)1()(2lim 1lim 1=⇒=⇒=++→→A Ax F x F x x(2))5.0()8.0()8.05.0(F F X P -=≤<225.08.0-==0.3910.解:依据分布满足的性质进行判断: (1)+∞<<∞-x单调性:+∞<<<⇒<x x F x F x x 0).()(2121在时不满足。
概率论与数理统计2.第二章练习题(答案)
第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
概率论第二章
第二章随机变量及其分布习题全解习题2–11.一批产品中含有正品和次品,从中每次任取一件,有放回地连取3次,以X 表示取到的次品数.(1)写出X 的可能取值及对应事件的样本点;(2)设该批产品的次品率为p ,求X 的取值概率.解有放回地连取3次,每次都可能取到次品,且取到次品的概率均为p .(1)X 的可能取值为0,1,2,3;对应事件的样本点为{0}{(,,)}X ==正正正{1}{(,,),(,,),(,,)}X ==次正正正次正正正次{2}{(,,),(,,),(,,)}X ==次次正次正次正次次{3}{(,,)}X ==次次次(2)每次取到次品的概率为p ,连取3次相当于3重伯努利试验,故33{}(1),0,1,2,3k k k P X k C p p k -==-=2.从自然数1,2,3,4中无放回地连取两个数,以X 表示两数之差的绝对值.(1)写出X 的可能取值及对应事件的样本点;(2)求X 的取值概率.解从1,2,3,4中无放回地连取两个数,样本空间{(,)|,1,2,3,4}Ωi j i j i j ==≠;含有2412P =个样本点,各样本点等可能出现.(1)两数之差的绝对值X 可能取值1,2,3;对应事件的样本点为{1}{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)}X =={2}{(1,3),(3,1),(2,4),(4,2)}X =={3}{(1,4),(4,1)}X ==(2)根据X 取值所对应事件的样本点数,求得6{1}12P X ==,4{2}12P X ==,2{3}12P X ==可统一表示为4{},1,2,36kP X k k -===3.将一颗骰子连掷两次,以X 表示掷出的最大点数,求X 的可能取值及相应的取值概率.解一颗骰子连掷两次,其样本空间{(,)|,1,2,,6}Ωi j i j == 含有2636=个样本点,各样本点等可能出现.掷出的最大点数X 可能取值1,2,,6 ,对应事件{}{(,1),,(,),(1,),,(1,)}X k k k k k k k ==- 含有21k -个样本点,故X 的取值概率为21{},1,2,,636k P X k k -=== 4.某车站每60分钟发一班车,乘客在任意时刻随机到达车站.以X 表示乘客的候车时间,求(1)X 的可能取值范围;(2)乘客候车超过20分钟的概率.解考虑任一时间段内的前后两班车,发车间隔为60分钟.(1)如果乘客到达车站正好赶上前一班车发车,则候车时间0X =;否则要等后一班车,候车时间(0,60)X ∈,故X 的可能取值范围为区间[0,60).(2)记前一班车发车时刻为0,乘客在发车间隔时间区间[0,60)内随机到达车站,候车超过20分钟意味着乘客在时间区间(0,40)内到达.根据几何概率有(0,40)402{20}603[0,60)P X >===区间的长度区间的长度5.向一个半径为1米的圆形靶子射击,设射击都能中靶,并且命中靶上任一同心圆的概率与该圆的面积成正比.以X 表示弹着点与圆心的距离,求(1)X 的可能取值范围;(2)命中靶上半径为x 的同心圆的概率.解考虑由弹着点确定的以X 为半径的同心圆.(1)因为射击都能中靶,故X 的可能取值范围为区间[0,1].(2)对任一[0,1]x ∈,事件{0}X x ≤≤表示命中靶上半径为x 的同心圆,其概率为2{0},0P X x x λπλ≤≤=>由{01}X Ω≤≤=,有{01}1P X λπ≤≤==可得1λπ=,故命中靶上半径为x 的同心圆的概率为2{0},01P X x x x ≤≤=≤≤习题2–21.下列各表是否为离散型随机变量的分布律?(1)1010.10.50.6X P--(2)1230.10.30.5X P(3)2312311112222kX k P解根据分布律的基本性质判别:(1)否,因为{1}0.10P X =-=-<,不满足非负性.(2)否,因为31{}0.10.30.50.91k P X k ===++=≠∑,不满足规范性.(3)是,因为10,1,2,2k k >= ;且1112kk ∞==∑,满足分布律的基本性质.2.求下列随机变量X 的分布律中的常数a .(1){},1,2,,aP X k k N N=== ;(2){},1,2,3,42k kaP X k k ===;(3){}2,1,2,k P X k a k === .解根据分布律的规范性计算:(1)由11Nk a a N N N===∑,可得1a =.(2)由()4112341312248168kk ka a a ==+++==∑,可得813a =.(3)由1122lim 11n kn k a a a a ∞→∞=-==-∑,应有211a a =-,可得13a =.3.某射手用5发子弹射击目标,每次射击的命中率为p .如果命中目标就停止射击,否则一直射击到子弹耗尽,求射击次数X 的分布律.解X 的可能取值为1,2,3,4,5.当5k <时,第k 次射击命中目标,前1k -次射击均未命中,有1{}(1),1,2,3,4k P X k p p k -==-=当5k =时,前4次射击均未命中,第5次射击可能命中也可能不中,有454{5}(1)(1)(1)P X p p p p ==-+-=-综上求得X 的分布律为23412345(1)(1)(1)(1)X Ppp pp p p pp ----4.袋内有1个白球和2个黑球,从中每次任取一球,连取两次,以X 表示取到白球的次数.求下列两种情况下X 的分布律.(1)第一次取球后不放回;(2)第一次取球后放回.解袋内仅有一个白球,无放回取球至多取到一次,有放回取球至多取到两次.(1)无放回取球时,X 的可能取值为0,1.根据超几何分布,有21223{},0,1k kC C P X k k C -===计算得到X 的分布律为011233X P(2)有放回取球时,X 的可能取值为0,1,2.根据二项分布,有()()2211{}1,0,1,233kkk P X k Ck -==-=计算得到X 的分布律为012441999X P5.重复进行伯努利试验,设每次试验成功的概率为p ,以X 表示取得第r 次成功时的试验次数,求X 的分布律.解X 的可能取值为,1,r r + .事件{}X k =意味着第k 次试验为成功,且前1k -次试验中有1r -次成功,故X 的分布律为11(1)(1)111{}(1)(1),,1,r r k r r r k rk k P X k C p p p C p p k r r ---------==-=-=+ 6.数轴上一质点从原点出发,每次以概率p 向右移动或以概率1p -向左移动一个单位,且各次移动相互独立.以n X 表示第n 次移动后质点的坐标,求n X 的分布律.解事件{}n X k =表示经过n 次移动后质点的坐标为k .将n 次移动视作n重伯努利试验,设其中有i 次向右移动,j 次向左移动,则有,i j n i j k +=-=,故k 与n 的奇偶性相同,且,22n kn k i j +-==由此求得n X 的分布律为222(1),,2,4,,{}0,n k n k n kn n C p p k n n n nP X k ++-⎧⎪-=--+-+==⎨⎪⎩其他7.某车间共有9台机床,各台机床在工作中开动的概率均为0.2,且工作状态相互独立.如果供给该车间的电力至多允许6台机床同时开动,求出现电力不足状况的概率.解以X 表示同时开动的机床数,则X 服从二项分布(9,0.2)B ,分布律为99{}0.2(10.2),0,1,,9k k k P X k C k -==-= 当6X >时将出现电力不足状况,出现的概率为999977{6}{}0.20.80.0003k k k k k P X P X k C -==>====∑∑8.设某商店每月销售某种商品的数量服从参数为8的泊松分布,求该种商品月初应准备多少库存,才能有99%以上的把握保证当月不脱销.解以X 表示当月销售量,则X 服从泊松分布(8)P ,分布律为88{},0,1,2,!k P X k e k k -===设月初准备库存为n ,要有99%以上的把握保证当月不脱销,应有88{}0.99!k nk P X n e k -=≤=≥∑查泊松分布表可得15n =.9.设某交叉路口在t 分钟内通过的汽车数服从参数与t 成正比的泊松分布,已知在1分钟内没有汽车通过的概率为0.2,求在2分钟内最多有一辆汽车通过的概率.解以t X 表示t 分钟内通过的汽车数,则t X 服从泊松分布()P t λ,分布律为(){},0,1,2,!k tt t P X k e k k λλ-===根据1分钟内没有汽车通过的概率1{0}0.20!P X e λλ-===可得ln 5λ=,故2分钟内最多有一辆汽车通过的概率为112ln5220(2ln 5)1{1}{}(12ln 5)!25k k k P X P X k e k -==≤====+∑∑10.一批种子的发芽率为0.995,从中任取600粒做发芽试验,用泊松分布近似计算600粒种子中没有发芽的比例不超过1%的概率.解每粒种子不发芽的概率为10.9950.005p =-=,以X 表示600粒种子中没有发芽的种子数,则X 服从二项分布(600,0.005)B ,分布律为600600{}0.005(10.005),1,2,,600kk k P X k C k -==-= 用参数6000.0053np λ==⨯=的泊松分布(3)P 近似计算,有33{},1,2,,600!k P X k e k k -=≈= 故600粒种子中没有发芽的比例不超过1%,即6X ≤的概率为6633{6}{}0.9665!k k k P X P X k e k -==≤==≈=∑∑11.设某厂共有100台设备,各台设备的状态相互独立,且发生故障的概率均为0.01.求下列两种情况下,设备发生故障而不能得到及时修理的概率.(1)配备5名维修工,每人负责20台设备;(2)配备3名维修工,共同负责100台设备.解如果同一时刻发生故障的设备数超过相应负责的维修工数,则故障不能得到及时修理.(1)以,1,2,,5i X i = 分别表示5名维修工各自负责的20台设备中同时发生故障的设备数,则i X 相互独立,均服从二项分布(20,0.01)B .当任一1i X >时,将有设备发生故障而不能及时修理,其概率为{}{}()555111512020{1}1{1}1{1}10.010.990.0815iiii i i kkkk PX P X P X C ===-=>=-≤=-≤=-=∏∑ (2)以X 表示100台设备中同时发生故障的设备数,则X 服从二项分布(100,0.01)B .当3X >时,将有设备发生故障而不能及时修理,其概率为331001000{3}1{3}1{}10.010.990.0184k kk kk P X P X P X k C =-=>=-≤=-==-=∑∑12.设一天内进入某商场的顾客数服从参数为λ的泊松分布,每位顾客购物的概率为p ,且各位顾客是否购物相互独立.以X 表示一天内在该商场购物的顾客数,求X 的分布律.解以Y 表示一天内进入商场的顾客数,则Y 服从泊松分布()P λ,有n 位顾客进入商场的概率为{},0,1,2,!nP Y n e n n λλ-===在进入商场的n 位顾客中,购物的顾客数X 服从二项分布(,)B n p ,故在Y n =的条件下,X k =的条件概率为{|}(1),0,1,2,,k k n k n P X k Y n C p p k n-===-= 根据全概率公式,求得X 的分布律为(1){}{}{|}(1)![(1)]!()!!(),0,1,2,!nk kn kn n kn kk kn k k k p n kk pP X k P Y n P X k Y n e C p p n e p p e p ek n k k p e k k λλλλλλλλλλ∞∞--==---∞-=-======⋅--==-==∑∑∑即X 服从参数为p λ的泊松分布.习题2–31.下列函数是否为随机变量的分布函数?(1)0,1(),0121,1x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩;(2)0,01(),0121,1x F x x x <⎧⎪⎪=≤≤⎨⎪>⎪⎩;(3)21(),1F x x x=-∞<<+∞+.解根据分布函数的基本性质判别.(1)是,因为()F x 满足非减性,规范性和右连续性.(2)否,因为1(10)1(1)2F F +=≠=,不满足右连续性.(3)否,因为()F x 在(0,)+∞内递减,且()0F +∞=,不满足非减性和规范性.2.设下列函数为随机变量X 的分布函数,求常数,a b .(1)01(),1111x F x ax b x x ≤-⎧⎪=+-<≤⎨⎪>⎩,,;(2)()arctan ,F x a b x x =+-∞<<+∞;(3)0()sin ,1x a F x x a x b x b ≤⎧⎪=<≤⎨⎪>⎩,,.解根据分布函数的基本性质分析计算.(1)根据()F x 的右连续性,应有(10)0(1)(10)1(1)F a b F F a b F -+=-+==-+==+=由此可得12a b ==.(2)根据()F x 的规范性,应有()02F a bπ-∞=-=,()12F a bπ+∞=+=由此可得11,2a b π==.(3)根据()F x 的右连续性和非减性,应有(0)sin 0()(0)1sin ()F a a F a F b b F b +===+===且()F x 在(,]a b 上单调非减,由此可得2,2,0,1,2,2a kb k k πππ==+=±± .3.设离散型随机变量X 的分布律为210112X Paa -求常数a ,并求分布函数()F x .解根据分布律的非负性和规范性,应有210,12a a a ≥++=由此可得312a -=,故X 的分布律为10113123222X P---并由分布律求得X 的分布函数为0,11,102()3,0121,1x x F x x x <-⎧⎪⎪-≤<⎪=⎨⎪≤<⎪⎪≥⎩4.某设备在试运行过程中,有3个独立的部件可能需要调准,其概率分别为0.1,0.2和0.3.以X 表示需要调准的部件数,求X 的分布律和分布函数.解记第i 个部件需要调准的事件为,11,2,3i A =.则123123123123123123123123{0}{}0.90.80.70.504{1}{}0.0560.1260.2160.398{2}{}0.0140.0240.0540.092{3}{}0.10.20.30.006P X P A A A P X P A A A A A A A A A P X P A A A A A A A A A P X P A A A ===⨯⨯====++====++====⨯⨯= 综上求得X 的分布律为01230.5040.3980.0920.006X P根据分布律求得X 的分布函数为0,00.504,01()0.902,120.994,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪⎪≥⎩5.设离散型随机变量X 的分布函数为0,00.2,01()0.5,120.8,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪⎪≥⎩求:(1)X 的分布律;(2)概率{03}P X <<;(3)条件概率{03}P X X ><解根据分布函数求出分布律,再计算有关概率.(1)由()F x 的间断点及{}()(0)P X x F x F x ==--,求得X 的分布律为01230.20.30.30.2X P(2)根据X 的分布律求得{03}{1}{2}0.30.30.6P X P X P X <<==+==+=(3)按条件概率的定义及X 的分布律,可得{03}0.6{03}0.75{3}0.8P X P X X P X <<><===<习题2–41.设随机变量X 的密度函数为sin 0()20x x f x π⎧<<⎪=⎨⎪⎩,,其他求概率{}63P X ππ≤≤,并求分布函数()F x .解根据密度函数()f x ,所求概率为{}336631()sin 632PX f x dx xdx ππππππ-≤≤===⎰⎰注意到密度函数()0f x =的区间上积分为零,求得分布函数为0200,0()()sin ,02sin ,20,01cos ,021,2xxx F x f t dt tdt x tdt x x x x x πππππ-∞⎧<⎪⎪==≤<⎨⎪⎪≥⎩⎧<⎪⎪=-≤<⎨⎪⎪≥⎩⎰⎰⎰2.设随机变量X 的密度函数为,01()0,a x x f x <<⎧=⎨⎩其他求:(1)常数a ;(2)常数c ,使{}{}P X c P X c <=>;(3)分布函数()F x .解(1)根据密度函数的规范性,有12()13f x dx a xdx a +∞-∞===⎰⎰由此可得32a =.(2)由{}{}1{}P X c P X c P X c <=>=-<,有2{}1P X c <=,故32031{}()22ccP X c f x dx xdx c -∞<====⎰⎰由此可得314c =.(3)由密度函数3,012()0,x x f x ⎧<<⎪=⎨⎪⎩其他求得分布函数为01030,03()(),0123,120,0,011,1xx x F x f t dt t dt x t dt x x x x x -∞⎧<⎪⎪⎪==≤<⎨⎪⎪≥⎪⎩<⎧⎪=≤<⎨⎪≥⎩⎰⎰⎰3.设随机变量X 的密度函数为||(),x f x ae x -=-∞<<+∞求常数a ,并求分布函数()F x .解根据密度函数的规范性,有0||0()21x x x f x dx ae dx ae dx ae dx a +∞+∞+∞---∞-∞-∞==+==⎰⎰⎰⎰由此可得12a =.由密度函数||1()2x f x e -=,求得分布函数为001,02()()1,021,0211,02x t xxt t x x e dt x F x f t dt e dt e dt x e x e x -∞-∞--∞-⎧<⎪==⎨⎪+≥⎩⎧<⎪=⎨⎪-≥⎩⎰⎰⎰⎰4.设随机变量X 的分布函数为2,0()0,0x a be x F x x -⎧+>⎪=⎨≤⎪⎩求常数,a b ;并求密度函数()f x .解根据分布函数的右连续性和规范性,有(00)(0)0a b F F +=+==,()1F a +∞==由此可得1,1a b ==-.由分布函数21,0()0,0x e x F x x -⎧->⎪=⎨≤⎪⎩求导得到密度函数为22,0()()0,0x xe x f x F x x -⎧>⎪'==⎨≤⎪⎩5.设随机变量X 的密度函数()f x 为偶函数,已知()0.8F a =,求()F a -的值,并求概率{0}P X a ≤≤和{}P X a >.解对任意的x ,由()()f x f x -=可得()()()()1()1()xxxxF x f t dt f u du f u du f u du F x -+∞-∞+∞-∞-==--==-=-⎰⎰⎰⎰特别地,当0x =时,有(0)1(0)F F =-,即(0)0.5F =.根据以上结果,分别求得()1()10.80.2{0}()(0)0.80.50.3{||}()[1()]0.2(10.8)0.4F a F a P X a F a F P X a F a F a -=-=-=≤≤=-=-=>=-+-=+-=6.设随机变量X 服从区间(0,5)上的均匀分布,对X 进行3次独立观测,求至多有一次观测值小于2的概率.解根据均匀分布的定义,X 的密度函数为1,055()0x f x ⎧<<⎪=⎨⎪⎩,其他在每次观测中,观测值小于2的概率为221{2}()0.45P X f x dx dx -∞<===⎰⎰以Y 表示3次观测中观测值小于2的次数,则(3,0.4)Y B ,故所求概率为11330{1}{}(0.4)(0.6)0.648k k k k k P Y P Y k C -==≤====∑∑7.设随机变量X 服从区间(2,6)-上的均匀分布,求一元二次方程20t X t X ++=有实根的概率.解根据均匀分布的定义,X 的密度函数为1,268()0x f x ⎧-<<⎪=⎨⎪⎩,其他方程20t X t X ++=有实根的充分必要条件为24X X ≥,即0X ≤或4X ≥,故所求概率为622411{4}{0}{4}0.588P X X P X P X dx dx -≥=≤+≥=+=⎰⎰8.设某元件的使用寿命X (单位:小时)服从参数0.002λ=的指数分布,求:(1)该元件在使用500小时内损坏的概率;(2)该元件在使用1000小时后未损坏的概率;(3)该元件在使用500小时未损坏的情况下,可以再使用500小时的概率.解根据指数分布的定义,X 的密度函数为0.0020.002,0()0,0xe xf x x -⎧>⎪=⎨≤⎪⎩由此分别求得(1)该元件在使用500小时内损坏的概率为5000.0021{500}0.0021x P X e dx e --<==-⎰(2)该元件在使用1000小时后未损坏的概率为0.00221000{1000}0.002x P X e dx e +∞-->==⎰(3)根据指数分布的无记忆性,该元件在使用500小时未损坏的情况下,可以再使用500小时的概率为0.0021500{1000|500}{500}0.002x P X X P X e dx e +∞-->>=>==⎰9.设顾客在银行排队等候的时间X (单位:分)服从参数0.1λ=的指数分布.某顾客每周去一次银行办理业务,如果等候时间超过20分钟就离开,求该顾客一个月内至少有一次未办成业务的概率.解根据指数分布的定义,X 的密度函数为0.10.1,0()0,0xe xf x x -⎧>⎪=⎨≤⎪⎩故等候时间超过20分钟的概率为0.1220{20}0.1x P X e dx e +∞-->==⎰该顾客一个月内去银行4次,以Y 表示未办成业务的次数,则2(4,)Y B e - ,至少有一次未办成业务的概率为24{1}1{0}1(1)P Y P Y e -≥=-==--10.设随机变量X 服从正态分布2(,)N μσ,已知{}0.9P X c μ-≤=,求{}P X c μ->.解由2(,)X N μσ 可知,其密度函数曲线关于x μ=对称,有{}{}P X c P X c μμ-<-=->根据已知条件{}0.9P X c μ-≤=,可以求得(){}{}{}2{}21{}2(10.9)0.2P X c P X c P X c P X c P X c μμμμμ->=->+-<-=->=--≤=⨯-=11.设随机变量X 的密度函数为24481(),8x x X f x e x π++-=-∞<<+∞求:(1)X 服从何种分布;(2)概率{2}P X <-,{2}P X >,{44}P X -≤≤;(3)满足{}0.95P X c ≤>的常数c 的允许值.解X 的密度函数可表为222(2)4482211()822x x x X f x e eππ+++--⋅==⋅(1)对照正态分布2(,)N μσ的密度函数22()21()2x f x eμσπσ--=可知2(2,2)X N - .(2)将X 标准化,查标准正态分表求得{}{}{}2{2}0(0)0.522{2}1{2}121(2)0.022822{44}13(3)(1)(3)(1)10.842X P X PX P X P X P X P X P ΦΦΦΦΦΦ+<-=<==+>=-≤=-<=-=+-≤≤=-<<=--=+-=(3)根据题意,要满足{}()222{}0.95222X c c P X c P=Φ+++≤=≤>反查标准正态分表可得2 1.652c +≥,故 1.3c ≥.12.设某车床加工的产品的直径服从正态分布2(100,0.2)N ,如果产品直径在1000.3±之间为合格,求该车床加工的产品的合格率.解以X 表示该车床加工的产品的直径,则2(100,0.2)X N .根据产品标准,当99.7100.3X ≤≤时为合格,故产品的合格率为{}99.7100100100.3100{99.7100.3}0.20.20.2(1.5)( 1.5)2(1.5)10.8664X P X PΦΦΦ---≤≤=≤≤=--=-=13.设某车间每名工人每月完成的产品数服从正态分布2(3000,50)N ,按规定全车间有3%的工人可获超产奖,求获奖者每月至少要完成的产品数.解以X 表示每名工人每月完成的产品数,则2(3000,50)X N .记获奖者每月至少要完成的产品数为c ,根据获超产奖的比例,有{}()30003000{}1{}15050300010.0350X c P X c P X c Pc Φ--≥=-<=-<-=-=由此可得()30000.9750c Φ-=,反查标准正态分布表得30001.8850c -=故获奖者每月至少要完成的产品数3094c =.14.设某课程的考试成绩服从正态分布2(75,)N σ,并且95分以上所占比例为2.5%.以达到60分为及格,求该课程的考试及格率.解以X 表示该课程考试成绩,则2(75,)X N σ .根据95分以上比例,有{}()75957520{95}1{95}110.025X P X P X PΦσσσ-->=-≤=-≤=-=由此可得()200.975Φσ=,反查标准正态分布表得201.96σ=即201.96σ=,故该课程的考试及格率为{}()()()756075{60}1{60}115151 1.470.929X P X P X PσσΦΦΦσσ--≥=-<=-<=--===习题2–51.设随机变量X 的分布律为210120.10.150.20.250.3X P--求Y X =和(1)Z X X =-的分布律.解根据X 的分布律,有2101221012(1)620020.10.150.20.250.3X X X X P---将相同的取值合并,分别求得Y X =和(1)Z X X =-的分布律为0120.20.40.4Y P,0260.450.450.1Z P2.设随机变量X 的分布律为1{},1,2,2kP X k k ===求()sin2Y X π=的分布律.解相应于X 的取值,有()1,41sin 0,2,1,2,3,21,43X n Y X X n n X n π-=-⎧⎪====⎨⎪=-⎩根据X 的分布律,分别计算Y 的取值概率,有4111211431112{1}{41}21511{0}{2}2318{1}{43}215n n n n n n n n n P Y P X n P Y P X n P Y P X n ∞∞-==∞∞==∞∞-===-==-==========-==∑∑∑∑∑∑综上求得()sin2Y X π=的分布律为101258151515Y P-3.设随机变量X 的密度函数为21(),(1)f x x x π=-∞<<+∞+定义X 的函数110,1111X Y X X -≤-⎧⎪=-<<⎨⎪≥⎩,,求Y 的分布律.解根据X 的密度函数,分别计算Y 的取值概率,有121212111{1}{1}(1)411{0}{11}(1)211{1}{1}(1)4P Y P X dx x P Y P X dx x P Y P X dx x πππ--∞-+∞=-=≤-==+==-<<==+==≥==+⎰⎰⎰综上求得Y 的分布律为101211444Y P-4.设随机变量X 的密度函数为||,11()0,X x x f x -<<⎧=⎨⎩其他求2Y X =服从的分布.解由X 的取值区间(1,1)-可知2Y X =的取值区间为[0,1).当0y <时,有(){}0Y F y P Y y =≤=;当1y ≥时,有(){}1Y F y P Y y =≤=;当01y ≤<时,在X 的取值区间(1,1)-上,有2(){}{}{}||yY yF y P Y y P X y P y X y x dx y-=≤=≤=-≤≤==⎰综上求得2Y X =的分布函数为0,0(),011,1Y y F y y y y <⎧⎪=≤<⎨⎪≥⎩由此可知2(0,1)Y X U = .5.设随机变量X 服从区间(1,1)-上的均匀分布,求||X Y e -=的密度函数.解根据均匀分布的定义,X 的密度函数为1,112()0,X x f x ⎧-<<⎪=⎨⎪⎩其他由X 的取值区间(1,1)-可知||X Y e -=的取值区间为1(,1]e -.当1y e -≤或1y >时,有()0Y f y =.当11e y -<≤时,在X 的取值区间(1,1)-上,有||ln 11ln (){}{}{||ln }{1ln }{ln 1}11221ln 1()()X Y y y Y Y F y P Y y P e y P X y P X y P y X dx dxy f y F y y---=≤=≤=≥-=-<≤+-≤<=+=+'==⎰⎰综上求得||X Y e =的密度函数为11,1()0,Y e y yf y -⎧<<⎪=⎨⎪⎩其他其中()Y F y 在1y =处不可导,取(1)0Y f =.6.设随机变量X 服从区间(),22ππ-上的均匀分布,求sin Y X =的密度函数.解根据均匀分布的定义,X 的密度函数为1,22()0,X x f x πππ⎧-<<⎪=⎨⎪⎩其他由X 的取值区间(),22ππ-可知sin Y X =的取值区间为(1,1)-.在X 的取值区间(),22ππ-上,函数sin y x =严格单调且可导,其反函数为arcsin x y =,按公式求得sin Y X =的密度函数为2(arcsin )|(arcsin )|,11()0,11110X Y f y y y f y y y π'-<<⎧=⎨⎩⎧-<<⎪-=⎨⎪⎩其他其他7.设随机变量X 服从参数为λ的指数分布,求(0)Y a X b a =+>的分布函数和密度函数.解根据指数分布的定义,X 的密度函数为,0()0,xX e x f x x λλ->⎧=⎨≤⎩由X 的取值区间(0,+)∞及0a >,可知Y a X b =+的取值区间为(,)b +∞.当y b ≤时,有(){}0,()()0Y Y Y F y P Y y f y F y '=≤===;当y b >时,在X 的取值区间(0,+)∞上,有{}0()()(){}{}01()()Y y bx a y b ay b aY Y F y P Y y P a X b y y bP X e dxa ef y F y eaλλλλλ------=≤=+≤-=<≤==-'==⎰综上求得Y a X b =+的分布函数和密度函数为()()1,()0,,()0,y b a Y y b a Y e y bF y y b e y b af y y b λλλ----⎧⎪->=⎨⎪≤⎩⎧>⎪=⎨⎪≤⎩8.设随机变量X 服从标准正态分布(0,1)N ,求X Y e =的密度函数.解根据标准正态分布的定义,X 的密度函数为221(),2x x e x ϕπ-=-∞<<+∞由X 的取值区间(,)-∞+∞可知X Y e =的取值区间为(0,)+∞.在X 的取值区间(,)-∞+∞上,函数x y e =严格单调且可导,其反函数为ln x y =,按公式求得X Y e =的密度函数为2(ln )2(ln )|(ln )|,0()001,020,0X Y y f y y y f y y e y y y π-'>⎧=⎨≤⎩⎧>⎪=⎨⎪≤⎩,9.设随机变量X 服从区间(,)a b 上的均匀分布,证明(0)Y c X d c =+≠仍服从均匀分布.证仅证明0c >的情形.根据均匀分布的定义,X 的密度函数为1,()0X a x b b af x ⎧<<⎪-=⎨⎪⎩其他由X 的取值区间(,)a b 及0c >,可知Y c X d =+的取值区间为(,)ac d bc d ++.在X 的取值区间(,)a b 上,函数y c x d =+严格单调且可导,其反函数为y dx c-=,按公式求得Y c X d =+的密度函数为()(),()01,()0,XY y d y d f ac d y bc d c c f y ac d y bc d b a c '--⎧+<<+⎪=⎨⎪⎩⎧+<<+⎪-=⎨⎪⎩,其他其他由此即知(,)Y c X d U ac d bc d =+++ .同理可证,对于0c <的情形,有(,)Y c X d U bc d ac d =+++ .10.设随机变量X 服从参数1λ=的指数分布,证明X Y e -=和1X Z e -=-均服从区间(0,1)上的均匀分布.证根据指数分布的定义,X 的密度函数为,0()0,0xX e x f x x ->⎧=⎨≤⎩由X 的取值区间(0,)+∞可知,X Y e -=和1X Z e -=-的取值区间均为(0,1).在X 的取值区间(0,)+∞上,函数x y e -=和1x z e -=-均严格单调且可导,其反函数分别为ln x y =-和ln(1)x z =--,按公式分别求得X Y e -=和1X Z e -=-的密度函数为(ln )|(ln )|,01()01,010,[ln(1)]|[ln(1)]|,01()01,010,X Y X Z f y y y f y y f z z z f z z '--<<⎧⎪=⎨⎪⎩<<⎧⎪=⎨⎪⎩'----<<⎧⎪=⎨⎪⎩<<⎧⎪=⎨⎪⎩,其他其他,其他其他由此即知(0,1)X Y e U -= ,1(0,1)X Z e U -=- .总习题二1.从五个数1,2,3,4,5中任取三个数,以X 表示取到的最大数,求X 的分布律.解从1,2,3,4,5中任取三个数,共有3510C =种不同取法.可能取到的最大数3,4,5X =,相应的概率为2135{},3,4,5k C P X k k C -===计算得到X 的分布律为345136101010X P2.电台每小时报时一次,某人睡觉醒来不知时间而等待电台报时,求等待时间不超过15分钟的概率.解以分钟为单位.如果醒来时恰好电台报时,则等待时间0X =;否则等待时间(0,60)X ∈,故X 的可能取值范围为区间[0,60).等待时间不超过15分钟意味着在时间区间[45,60)内醒来.根据几何概率有[45,60)151{15}604[0,60)P X ≤===区间的长度区间的长度3.重复进行伯努利试验,设每次试验成功的概率为p ,将试验进行到成功和失败都出现为止.以X 表示试验次数,求X 的分布律.解设事件k A 为“第k 次试验首次成功”,k B 为“第k 次试验首次失败”,2,3,k = .则事件{}k k X k A B == ,且k k A B =∅,故X 的分布律为11{}()()()(1)(1),2,3,k k k k k k P X k P A B P A P B p p p p k --===+=-+-=4.设随机变量X 的分布律为21010.512X Paa --求常数a ,并求X 的分布函数.解根据分布律的非负性和规范性,有21200.5(12)1a a a -≥⎧⎪⎨+-+=⎪⎩由此可得112a =-.根据X 的分布律1010.51.5221X P---求得X 的分布函数为0,10.5,10()20.5,011,1x x F x x x ⎧<-⎪-≤<⎪=⎨-≤<⎪⎪≥⎩5.设自动生产线经过调整后出现次品的概率为0.01p =,生产过程中出现次品时立即调整生产线,以X 表示两次调整之间所生产的合格品数,求:(1)X 的分布律;(2)两次调整之间能以0.9的概率保证至少生产多少个合格品.解X 的可能取值为0,1,2, .事件{}X k =表示连续生产k 个合格品后,第1k +个产品出现次品而需调整生产线.(1)X 的分布律为{}(0.99)0.01,0,1,2,k P X k k ==⨯=(2)两次调整之间至少生产k 个合格品的概率为{}{}(0.99)0.01(0.99),0,1,2,i k i ki kP X k P X i k ∞∞==≥===⨯==∑∑要以0.9的概率保证至少生产k 个合格品,应有(0.99)0.9k =,由此解得ln 0.910.48ln 0.99k ==故两次调整之间以0.9的概率保证至少生产10个合格品.6.对目标进行500次射击,设每次射击命中的概率为0.01,且每次射击命中与否相互独立,用泊松分布近似计算至少命中2次的概率.解以X 表示命中次数,则(500,0.01)X B ,至少命中2次的概率为15005000{2}1{1}1(0.01)(10.01)kk kk P X P X C -=≥=-≤=--∑根据500n =,0.01p =,由参数5np ==λ的泊松分布近似求得155{2}110.040.96!k k P X e k -=≥≈-=-=∑7.设在任一长为t 年的时间间隔内的地震发生次数()N t 服从参数为λt 的泊松分布,以T 表示距下次地震发生的间隔年数.求:(1)三年内发生地震的概率;(2)三年内不发生地震而下一个三年内发生地震的概率;(3)在三年内不发生地震的情况下,下一个三年内发生地震的概率.解根据题意,t 年内地震发生次数()N t 的分布律为(){()},0,1,2,!k tt P N t k e k k -===λλ记间隔年数T 的分布函数为()F t ,则当0t <时,有(){}0F t P T t =≤=;当0t ≥时,注意到{}T t >等价于{()0}N t =,有(){}1{}1{()0}1tF t P T t P T t P N t e -=≤=->=-==-λ综上可得T 的分布函数为1,0()0,0te t F t t λ-⎧-≥⎪=⎨<⎪⎩(1)三年内发生地震的概率为3{3}(3)1P T F e -≤==-λ(2)三年内不发生地震而下一个三年内发生地震的概率为36{36}{6}{3}(6)(3)P T P T P T F F e e --<≤=≤-≤=-=-λλ(3)在三年内不发生地震的情况下,下一个三年内发生地震的概率为3633{6,3}{36}{6|3}1{3}1{3}P T T P T e e P T T e P T P T e----≤><≤-≤>====->-≤λλλλ8.某型号元件的使用寿命X 服从参数为λ的指数分布,用若干该型号元件组成一个系统,设各元件损坏与否相互独立.以Y 表示系统的寿命,求下列两个系统寿命Y 的密度函数.(1)由n 个该型号元件组成的串联系统;(2)由n 个该型号元件组成的并联系统.解以i X 表示第i 个元件的使用寿命.由题意知i X 独立同分布,记其分布函数为()F x ,密度函数为()f x ,则1,0,0(),()0,00,0xxe x e x F xf x x x ---≥>⎧⎧==⎨⎨<≤⎩⎩λλλ(1)对于串联系统,其寿命Y 的分布函数为()11(){}1{}1{}11{}1[1()]Y nni i i i nF y P Y y P Y y P X y P X y F y ===≤=->=->=--≤=--∏∏求导得到密度函数为1,0()()[1()]()00nλyn Y Y nλe y f y F y n F y f y y -->⎧'==-=⎨≤⎩,(2)对于并联系统,其寿命Y 的分布函数为1(){}{}[()]nnY i i F y P Y y P X y F y ==≤=≤=∏求导得到密度函数为11(1),0()()[()]()00λy n λyn Y Y nλe e y f y F y n F y f y y ----->⎧'===⎨≤⎩,9.设电源电压X 服从正态分布2(220,25)N ,某电子元件当电压低于200V 时损坏的概率为0.1;当电压在200240V V 时损坏的概率为0.001;当电压高于240V 时损坏的概率为0.2,求:(1)该电子元件损坏的概率;(2)该电子元件损坏时,电源电压在200240V V 的概率.解设事件A 为“该电子元件损坏”,记电压状态123{220},{220240},{240}B X B X B X =<=≤≤=>由2(220,25)X N ,有{}()220220220{}252525X x x P X x PΦ---≤=≤=查标准正态分布表可得()()()123(){200}0.810.80.212(){200240}120.2120.576(){240}1{240}10.80.212P B P X P B P X P B P X P X ΦΦΦ=<=-=-==≤≤=-⨯==>=-≤=-=(1)根据全概率公式,该电子元件损坏的概率为31(){}(|)0.10.2120.0010.5760.20.2120.064i i i P A P B P A B ===⨯+⨯+⨯=∑(2)根据贝叶斯公式,该电子元件损坏时,电压在200240V V 的概率为2222(,){}(|)0.0010.576(|)0.009()()0.064P A B P B P A B P B A P A P A ⨯====10.设某门课程的考试成绩服从正态分布2(70,10)N ,如果规定优秀的比例为5%,求获得优秀的最低分数.解设获得优秀的最低分数为c .由考试成绩2(70,10)X N ,以及优秀比例为5%,应有{}()707070{}1{}110.05101010X c c P X c P X c P---≥=-<=-<=-=Φ由此可得()700.9510c -=Φ,反查标准正态分布表得70 1.6510c -=故获得优秀的最低分数86.5c =.11.设非负随机变量X 的密度函数为()X f x ,求Y X =的密度函数.解由X 的取值区间[0,)+∞可知Y X =的取值区间为[0,)+∞.当0y =时,可取()0Y f y =.当0y >时,在X 的取值区间(0,)+∞上,函数y x =严格单调且可导,其反函数为2x y =,按公式求得Y X =的密度函数为222()(),0()002(),00,0X Y X f y y y f y y y f y y y '>⎧=⎨≤⎩>⎧=⎨≤⎩,12.设随机变量X 的密度函数为1||,11()0,X x x f x --<<⎧=⎨⎩其他求2Y X =的密度函数.解由X 的取值区间(1,1)-可知2Y X =的取值区间为[0,1).当0y <或1y ≥时,有()0Y f y =.当01y ≤<时,在X 的取值区间(1,1)-上,有20(){}{}{}(1||)2(1)21()()1,01Y yyy Y Y F y P Y y P X y P y X y x dx x dx y yf y F y y y-=≤=≤=-≤≤=-=-=-'==-<<⎰⎰综上求得2Y X =的密度函数为11,01()0,Y y yf y ⎧-<<⎪=⎨⎪⎩其他其中()Y F y 在0y =处不可导,取(0)0Y f =.。
概率论第二章习题
第二章习题选择题001、设函数()f x 在区间[],a b 上等于sin x ,而在此区间外等于0,若()f x 可以作为某连续型随机变量X 的概率密度函数,则区间[],a b 为()()A 、0,2p 轾犏犏臌 ; ()B 、[]0,p ; ()C 、()0,2p ; ()D 、,02p骣÷ç-÷ç÷ç桫。
002、已知连续型随机变量()~3,2X N ,则连续型随机变量()()~0,1Y N =。
()A、()B()C 、32X - ()D 、32X +003设()~0,1,21X N Y X =-,则Y 服从分布()()A 、()0,1N ; ()B 、()1,4N -; ()C 、()1,3N -; ()D 、()1,1N -。
004、设{}{}()()22124,5,~,4,~,5P P X P P Y X N Y mmm m =?=?,则()()A 、12P P <; ()B 、12P P >; ()C 、12P P =; ()D 、不能确定12,P P 的大 005、设X 的密度函数为()f x ,分布函数为()F x ,且()()f x f x =-,则对任意给定的a都有()()A 、()()01af a f x dx -=-ò; ()B 、()()012a F a f x dx -=-ò;()C 、()()F a F a -= ; ()D 、()()21F a F a -=-。
006、下列函数中,可以做随机变量分布函数的是()()A 、()211F x x=+; ()B 、()31arctan 42F x x p=+;()C 、()0;0;01x F x xx xì<ïïï=íï³ïï+î ; ()D 、()21arctan F x x p=+。
概率论与数理统计第二章测习题
第 2 章一维随机变量及其分布一、选择题1.设 F(x)是随机变量X的分布函数,则以下结论不正确的选项是(A)若 F(a)=0 ,则对任意 x≤a 有 F(x)=0(B)若 F(a)=1 ,则对任意 x≥a 有 F(x)=1(C)若 F(a)=1/2 ,则 P( x≤a)=1/2(D)若 F(a)=1/2 ,则 P( x≥a)=1/22.设随机变量 X 的概率密度 f(x) 是偶函数,分布函数为 F(x) ,则(A)F(x)是偶函数(B)F(x) 是奇函数(C)F(x)+F(-x)=1(D)2F(x)-F(-x)=1 3.设随机变量 X1, X 2的分布函数、概率密度分别为 F1 (x) 、F2 (x) ,f 1 (x)、f 2 (x) ,若 a>0, b>0, c>0,则以下结论中不正确的选项是(A)aF (x)+bF2(x)是某一随机变量分布函数的充要条件是a+b=11(B)cF1(x) F 2(x)是某一随机变量分布函数的充要条件是c=1(C)af 1(x)+bf2(x)是某一随机变量概率密度的充要条件是a+b=1(D)cf 1(x) f 2(x)是某一随机变量分布函数的充要条件是c=14.设随机变量 X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为 f 1 (x)和 f 2 (x) ,分布函数分别为 F1 (x) 和 F2 (x) ,则(A)f 1 (x) +f 2 (x)必为某一随机变量的概率密度(B)f 1(x) f 2(x)必为某一随机变量的概率密度(C)F1(x)+F 2(x)必为某一随机变量的分布函数(D)F1(x)F 2 (x)必为某一随机变量的分布函数5.设随机变量 X 遵从正态分布N (1,12),Y遵从正态分布N (2,22) ,且P(|X1| 1) P(|Y 2| 1) ,则必有(A)1 2(B)1 2(C)1 2(D)1 26.设随机变量 X 遵从正态分布N ( ,2 ) ,则随σ的增大,概率P(|X|)(A)单调增大(B)单调减小(C)保持不变(D)增减不定7.设随机变量 X1,X2的分布函数分别为 F1 (x) 、F2(x) ,为使 aF1 (x) -bF2 (x)是某一随机变量分布函数,在以下给定的各组数值中应取(A)a3 , b2(B)a2 , b2(C)a1 , b3(D)a1 , b3 553322228.设 f(x)是连续型随机变量 X 的概率密度,则 f(x)必然是(A)可积函数(B)单调函数(C)连续函数(D)可导函数9.以下陈述正确的命题是(A)若P(X1) P(X 1), 则 P(X 1)12(B)若 X~b(n, p),则 P(X=k)=P(X=n-k), k=0,1,2,,n(C)若 X 遵从正态分布 , 则 F(x)=1-F(-x)(D)lim [ F (x) F ( x)]1x10.假设随机变量X遵从指数分布,则随机变量Y=min{X,2} 的分布函数(A)是连续函数(B)最少有两其中止点(C)是阶梯函数(D)恰好有一其中止点二、填空题1.一实习生用同一台机器连接独立的制造了 3 个同种零件,第i个零件不合格的概率为 p i1个零件中合格品的个数,则 P X2i 1,2,3 ,以 X 表示3i12.设随机变量X的概率密度函数为 f x2x0 x 1以 Y 表示对 X 的三次重复观察中0其他事件 X 1出现的次数,则 P Y2 23.设连续型随机变量X的分布密度为 f x axe 3x x 0,则 a,X的分布0x0函数为4.设随机变量的分布函数b , x0, 则 a =, b =,cF ( x)ax) 2(1c,x 0,=。
《概率论》第二章基本定理练习题
《概率论》第二章基本定理练习题一、判断题(每小题2分,共10分)1. 两个分布函数的和仍为分布函数.( )2. 存在有既非离散型随机变量,又非连续型随机变量的随机变量.( )3. 连续型随机变量X 的概率密度函数)(x f 一定是连续函数.( )4. 离散型随机变量的函数一定是离散型随机变量,连续型随机变量的函数也一定是连续型随机变量.( )5. 若)(x Φ为标准正态分布的分布函数,则)()(1a a Φ=-Φ-.( )二、选择题(每小题2分,共10分)1. 如果)(x F 是( ),则)(x F 一定不可以是连续型随机变量的分布函数. A. 非负函数 B. 连续函数 C. 有界函数 D. 单调减少函数2. 设随机变量X 的密度函数为)(x ϕ,且)()(x x ϕϕ=-,)(x F 是X 的分布函数,则对任意实数a ,有( ). A. ⎰-=-adx x a F 0)(1)(ϕ B. ⎰-=-adx x a F 0)(21)(ϕC. )()(a F a F =-D. 1)(2)(-=-a F a F 3. 下列函数中,( )可以作为连续型随机变量的分布函数.A. )(x F = ⎩⎨⎧≥<010x x e x B. 0()1xe x G x x -⎧<=⎨≥⎩C. =Φ)(x ⎩⎨⎧≥-<0100x e x xD. 00()10xx H x ex -<⎧=⎨+≥⎩4. 随机变量),(~2σμN X ,则随σ的增大,概率}{σμ<-X P ( ). A. 单调增大 B. 单调减小 C. 保持不变 D. 增减不定 5. 设随机变量X 的概率密度函数为4)3(221)(+-=x ex f π(+∞<<∞-x ),则Y =( ))1,0(~NA.32X + B. C. 32X - D. 三、填空题(每空2分,共30分)1. 设离散型随机变量X 的分布律为!}{k a k X P kλ==( ,2,1=k ),且λ为大于0的常数,则=a _________.2. 设),2(~p B X ,),3(~p B Y ,若95}1{=≥X P ,则=≥}1{Y P . 3. 某人家中,在时间间隔t (以小时计)内接到电话的次数X 服从参数为2t 的泊松分布,若他外出10分钟,则期间电话铃响一次的概率 .4. 有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,以X 表示第一次检验时抽得的10件产品中所含次品数,则X 服从 .这批产品被接受的概率 .5. 以X 表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X 的分布函数是⎩⎨⎧≤>-=-01)(4.0x x e x F x X ,则至少等待4分钟的概率 .恰好等待3分钟的概率 . 6. 若),0(~a U X ,对X 进行3次独立试验,至少有一次观察值大于1概率为2726,则=a . 7. 从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y,则P {Y =2}= . 8. 若),(~2σμN X ,其概率密度函数为644261)(+--=x x e x f π(+∞<<∞-x ),则=μ ,=σ .9. 测量某种零件的长度(单位:cm ),它是服从参数为06.0,05.10==σμ的正态分布的随机变量.若规定长度在02.005.10±(单位:cm )内的零件为合格品,这种零件出现不合格品的概率是 .(用)(x Φ表示)10. .设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=,3,1,31,8.0,11,4.0,1,0)(x x x x x F则X 的概率分布为 .{}X ~N(5,9),(0.5)=0.6915P X a 0.6915a Φ<<<11.设已知标准正态分布函数值,为使则常数.-21-012.(),(),(1)0xe x X F xf x f x ⎧>==⎨≤⎩设连续型随机变量的分布函数为其概率密度为则 . 四、计算题(共40分)1.(10分)已知)2,1(~U X ,求23+=X Y 的概率密度函数.⎪⎩.,0其他求:(1)常数C ;(2)X 取值在⎪⎭⎫⎝⎛-21,21内的概率;(3)X 的分布函数)(x F .{}{}11()0120.5,30.5x x X f x X F x P X P X ⎧-≤≤=⎨⎩<>-3.(10分)设的概率密度为,求其他()的分布函数(),()()⎪⎩≤.0,0x 求:(1)常数A 与B ;(2)X 的概率密度函数)(x f ;(3)X 取值在)3,1(内的概率.五、应用题(共10分)某仪器装有三只独立工作的同型号的电子元件,其寿命(单位:h )都服从参数为600的指数分布,求仪器使用的最初200h 内,至少有一只原件损坏的概率.。
概率论第二章
第二章典型习题一、选择题1、设随机变量X的分布函数F(x)=P{X=1}=()A、0B、C、-D、-2、设离散型随机变量X的概率分布为P{X=i}=c,i=1,2,…,其中c>0是常数,则()A、p=B、p=C、p=c+1D、0<p<1的任意数3、设随机变量X服从指数分布, 则随机变量Y=min{X,2}的分布函数( )A、是连续函数B、至少有两个间断点C、是阶梯函数D、恰好有一个间断点4、设f(x)是连续性随机变量X的概率密度,则f(x)一定是A、可积函数B、单调函数C、连续函数D、可积函数,k=0,1,2,…,则常数a=()5.设随机变量X的概率分布为P{X=k}=a!A、B、C、D、6.设随机变量X服从正态分布N(μ,σ),则随σ的增大,概率P{|X-μ| <σ}应该(A)单调增大(B)单调减小(C)保持不变(D)增减不定7设随机变量X服从正态分布N(μ,),Y~N(μ,);记=P{X≤μ-4},=P{X≥μ+5},则()(A)(B)(C)(D)因μ未知,无法比较和的大小8.设随机变量X的密度函数为(x),Y=-2X+3,则Y的密度函数为(A)-()(B)()(C)-()(D)()9.设(x)与(x)分别是随机变量与的分布函数,为使F(x)=a(x)-b(x)是某一随机变量的分布函数,在下列给定的各组数值中应取()(A)a=,b=(B)a=,b=(C)a=—,b=(D)a=,b=二、填空题1、设离散型随机变量X的概率密度是P{X=i}=,i=0,1,则p=2、设离散型随机变量X的分布函数F(x)=<则随机变量|X|的分布函数3、设X是在区间(0,1)内取值的连续性随机变量,而Y=1-X,已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=4、设f(x)=k(∞<<∞)是一概率密度,则k=若k满足概率等式P{X5、设随机变量X的概率密度为F(x)=其他≥k}=,则k的取值范围是()6、设随机变量X的服从正态分布N(μ,1),已知P{X≤3}=0.975,则P{X≤-0.92}=7、设随机变量X的服从正态分布N(μ,),且二次方程+4y+X=0无实根的概率为0.5,则μ=8、设随机变量X的分布函数F(X),常数a>0,则+∞-∞()=a三、解答题1、袋中装有大小相同的10只球,编号为0,1,2,…,9,从中任取一只,观察其编号,按“大于5,“等于5”,“小于5”三种情况定义随机变量X,并写出X的分布律和分布函数。
(完整版)概率论第二章答案
(完整版)概率论第⼆章答案习题2-21. 设A 为任⼀随机事件, 且P (A )=p (01,,0,A X A =??发⽣不发⽣.写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠13571,24816c c c c+++= 所以3716c=. 所求概率为 P {X <1| X0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的⼆项分布, 随机变量Y 服从参数为3, p 的⼆项分布, 若{P X ≥51}9 =, 求{P Y ≥1}.解注意p{x=k}=kk n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213qp =-=. 从⽽{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独⽴的重复试验中, 每次试验成功的概率相同, 已知⾄少成功⼀次的概率为1927, 求每次试验成功的概率.解设每次试验成功的概率为p , 由题意知⾄少成功⼀次的概率是2719,那么⼀次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解由泊松分布的分布律可知6=λ.6. ⼀袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表⽰取出的3只球中的最⼤号码, 写出随机变量X 的分布律.解从1,2,3,4,5中随机取3个,以X 表⽰3个数中的最⼤值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表⽰取出的3个数以3为最⼤值,P{X =3}=2235C C =101;{X =4}表⽰取出的3个数以4为最⼤值,P{X =4}=1033523=C C ;{X =5}表⽰取出的3个数以5为最⼤值,P{X =5}=533524=C C .X 的分布律是1. 设X求分布函数解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-??-(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ?+-===?+= 于是 11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+?---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <求P {X ≤-1}, P {0.3解 P {X 1}(1)0F -=-=≤,P {0.3P {05. 假设随机变量X 的绝对值不⼤于1;11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任⼀⼦区间上取值的条件概率与该区间的长度成正⽐. (1) 求X 的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =; 当1x =-时,1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1. 所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此{1P X -<≤|11}12x X x -<<=+. 于是, 对于11x -<<, 有 {1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=?=对于x ≥1, 有() 1.F x = 从⽽0,1,57(),11,161,1.x x F x x x <-+=-<7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=如果c =( ), 则()f x 是某⼀随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32.解由概率密度函数的性质()d 1f x x +∞-∞=?可得02d 1cx x =?, 于是1=c , 故本题应选(C ).(2) 设~(0,1),XN ⼜常数c 满⾜{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1.解因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从⽽{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某⼀随机变量的概率密度的是( ).(A)cos ,[0,],()0,x x f x π∈=??其它. (B) 1,2,()20,x f x <=其它.(C)22()2,0,()0,0.≥x x f x x µσ--==?可知本题应选(D).(4) 设随机变量2~(,4)XN µ, 2~(,5)Y N µ, 1{X P P =≤4µ-}, {2P P Y =≥5µ+}, 则( ).(A) 对任意的实数12,P P µ=. (B) 对任意的实数12,P P µ<. (C) 只对实数µ的个别值, 有12P P =. (D) 对任意的实数12,P P µ>. 解由正态分布函数的性质可知对任意的实数µ, 有12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, ⼜F (x )为分布函数, 则对任意实数a , 有( ).(A)()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-.解由分布函数的⼏何意义及概率密度的性质知答案为(B). (6) 设随机变量X服从正态分布211(,)N µσ,Y服从正态分布222(,)N µσ,且12{1}{1},P X P Y µµ-<>-< 则下式中成⽴的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) µ1 <µ2. (D) µ1 >µ2.解答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满⾜{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A)2u α . (B) 21α-u. (C)1-2u α. (D) α-1u .解答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成⽴, 应当怎样选择数k ?解因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=??由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=??其它, 要使{}{}≥P X a P X a =<(其中a >0)成⽴, 应当怎样选择数a ?解由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =?,因此a =.4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=,可得2,01,()0,其它.x x f x <(2)22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ??≤≤ 其它, 求P {X ≤12}与P {14X <≤2}.解{P X ≤12201112d 224}x x x ===?;1{4P X <≤12141152}2d 1164x x x ===?. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-??,于是2A =;(2) 由公式()()d x F x f x x -∞=?可得当x ≤0时,()0F x =;当0x <≤1时, 201()d 2xF x x x x ==;当1x <≤2时, 2101()d (2)d 212x x F x x x x x x =+-=--??;当x >2时,()1F x =.所以220,0,1()221, 2.1,021,12x F x x x x x x x =->≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x+<<=其它,对X 独⽴观察3次, 求⾄少有2次的结果⼤于1的概率.解根据概率密度与分布函数的关系式{P a X <≤}()()()d bab F b F a f x x =-=?,可得2115{1}(1)d 48P X x x >=+=.所以, 3次观察中⾄少有2次的结果⼤于1的概率为223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的⽅程24420x Xx ++=有实根的概率.解随机变量X 的概率密度为105,()50,,x f x <=≤其它,若⽅程有实根, 则21632X -≥0, 于是2X ≥2. 故⽅程有实根的概率为 P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-.9. 设随机变量)2,3(~2N X.(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ; (2) 确定c 使得{}{};P X c P X c >=≤ (3) 设d 满⾜{}0.9P X d >≥, 问d ⾄多为多少?解 (1) 由P {a}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到P {2{||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=0.6977,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤=0.5 .(2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3){}0.9≥P X d > 即13()0.92d Φ--≥, 也就是3()0.9(1.282)2d ΦΦ--=≥,因分布函数是⼀个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +?-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解因为()~2,X N σ2,所以~(0,1)X Z N µσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从⽽2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=. 习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ).(A) 11()33F y -. (B) (31)F y +.(C)3()1F y +. (D)1133()F y -. 解由随机变量函数的分布可得, 本题应选(A).(2) 设()~01,XN ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N .解由正态分布函数的性质可知本题应选(C).2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度. 解若随机变量2~(,)X N µσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a µσ=++ 这⾥1,µσ==, 所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求解 (1)(2)4. ()X f x =1142ln 20x x <, , , 其它,且Y =2-X , 试求Y 的概率密度.解先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X=≥2}y -1{2}P Xy =-<-=1-2()d yX f x x --∞.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -?<-即 121,2(2)ln 20, ,()其它.Y y y f y -<<-?=5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =?-<因为对于0(){Y F y P Y =≤2}{y P X =≤}{y P =X于是随机变量2YX =的概率密度函数为()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<总习题⼆1. ⼀批产品中有20%的次品, 现进⾏有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及⾄多有3件次品的概率.解以X 表⽰抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) ⾄多有3件次品的概率是k k k k C-=∑5358.02.0.2. ⼀办公楼装有5个同类型的供⽔设备. 调查表明, 在任⼀时刻t 每个设备被使⽤的概率为0.1. 问在同⼀时刻(1) 恰有两个设备被使⽤的概率是多少? (2) ⾄少有1个设备被使⽤的概率是多少? (3) ⾄多有3个设备被使⽤的概率是多少?(4) ⾄少有3个设备被使⽤的概率是多少?解以X 表⽰同⼀时刻被使⽤的设备的个数,则X ~B (5,0.1),C -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ; (2)所求的概率是P {X ≥1}=140951.0)1.01(5=--;(3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=且已知1{1}2P X>=, 求常数k , θ.解由概率密度的性质可知e d 1xkx θθ-+∞=?得到k =1.由已知条件111e d 2xx θθ-, 得1ln 2θ=.4. 某产品的某⼀质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥0.8, 问允许σ最⼤是多少?解由{120P ≤X ≤} 200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥0.8,得到40()Φσ≥0.9, 查表得40σ≥1.29, 由此可得允许σ最⼤值为31.20.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞试求: (1) 常数A ; (2) P {0解 (1) 由于||()d e d 1,x x x A x ?+∞==?即02e d 1x A x +∞-=?故2A = 1, 得到A =12.所以φ(x ) =12e -|x |.(2) P {011111e e d (e )0.316.0222xxx ----=-=≈?(3) 因为||1()e d ,2xx F x x --∞=得到当x <0时, 11()e d e ,22x x x F x x -∞==?当x ≥0时, 00111()e d e d 1e ,222 x x x xF x x x ---∞=+=-??所以X 的分布函数为 1,0,2()11,0.2x x F x x -?。
概率论第二章练习答案解析
《概率论》第二章 练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。
⎰==≤412021)21(xdx X P649)43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他 且EX =31,则a = _____-2___________, b = _____2___________。
⎪⎪⎩⎪⎪⎨⎧=+=+→⎰⎰解之31)(011)(01dx b ax x dx b ax 3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE =+)104(ξD []32161622=-=)(ξξξE E D 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) ,则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:4723=-=b a ,6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。
7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。
8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。
概率论第二章+习题
第二章 随机变量与概率分布一、单项选择题 1.设随机变量的密度函数p(x)= ⎩⎪⎨⎪⎧ 2x x [0、A]0 其他, 则常数A=( )A 、1/4B 、1/2C 、1D 、22.设随机变量的分布列为P{=k}=C2k ,k=1,2,…,则常数C=( )A 、1/4B 、1/2C 、1D 、23.设 ~ N (, 2 ),且概率密度 p(x) =16e -(x-2)2/6 ,则正确的为 ( )A 、= 3 , =2B 、=2, =3C 、=2, = 3D 、= 2 , = 34.设随机变量 的密度函数 p(x) = ⎩⎪⎨⎪⎧Asinx , x [0,]0, 其它 ,则A=( )A 、1B 、1/2C 、1/4D 、2 5.设离散型随机变量X 的分布列为错误!其分布函数为F(x),则 F(3/2) = ( ) A 、 B 、0.3 C 、 D 、6.设随机变量的分布列为⎣⎢⎡⎦⎥⎤1 2 4P 1/4 1/2 , 则常数 =( )A 、1/8B 、1/4C 、1/3D 、1/2 7.在相同条件下,相互独立地进行5次射击,每次射击时命中目标的概率为,则击中目标的次数 的概率分布为 ( )A 、二项分布 B(5,B 、普阿松分布P(2)C 、均匀分布 U, 3)D 、正态分布 N(3, 52) 8.某射手对目标独立地进行射击,直到击中目标为止,设每次击中的概率为2/3,则击中目标前的射击次数X 的概率分布为 ( )A 、P{X=k}= C n k (23 ) k (13) n – k, k=0,1,2,…,n B 、P{X=k}= kk!e –1 ,>0, k=0,1,2,…,nC 、P{X=k}= (23 ) (13 )kk=0,1,2,…D 、P{X=k}= (23 ) (13)k-1k=0,1,2,…9.设随机变量的密度函数为p(x),且p(-x)=p(x),F(x)是的分布函数,则对任意的实数a,有( )A 、F(-a)=1- ⎠⎛0a p(x)dxB 、F(-a)=12- ⎠⎛0a p(x)dxC 、F(-a)=F(a)D 、F(-a)=2F(a)-110.设随机变量 的密度函数为p(x)= ⎩⎪⎨⎪⎧x 0<x ≤12-x 1<x ≤20 其它,则P{<}等于 ( )A 、B 、C 、⎠⎛0(2-x)dxD 、⎠⎛1(2-x)dx二、填空题11.设随机变量的分布函数为 F(x)= ⎩⎪⎨⎪⎧0 x<0sinx 0x</21 x/2 , 则F(/4) = 。
概率论第二章课后习题答案
概率论与数理统计第二章习题[])()()()()式,有利用(显然)()(则若))(()()(从而)()()()(的可加性,有:互不相容,因此由概率与而)(则解:AB P A P AB A P B A P A AB AB A P B A P A B B P A P B A P B A P B P B A B P A P B A B C A B A A B -=-=-⊂-=-⊄-=--+=-=--=⊂**.132)(1)()()(1)()()()|()4(2.05.01.0)()()|()3(25.04.01.0|)2(8.0)1(.2=--=--=========-+=B P AB P A P B P B A P B P B A P B A P A P AB P A B P B P AB P B A P AB P B P A P B A P )()()()()()()(解:7.0)(1)|(1)|()4(4.0)(1)|(1)|()3(72.0)()()()()()()()()2(3.0)()()()()()()|(1.3=-=-==-=-==⋅-+=-+===⋅==A PB A P B A P B P A B P A B P B P A P B P A P AB P B P A P B A P B P B P B P A P B P AB P B A P )解:()()()()()(”成立时“或当)()(”成立时“)(当)()()()()()()(解:B P A P B A P A P AB P A AB B A B AB P A P B A A AB P B A P B P A P AB P B P A P B A P +≤≤≤∴⊆=∅==≤∴⊆==≥+∴-+= 0.4)()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()解:(C P B A P C P B A P C P B P A P C B A P C B A P C P AB P C P B P A P ABC P C AB P B A P C P AB P B P A P C P B P A P B P A P C P C P B P A P C P B P C P A P ABC P BC P AC P BC AC P C B A P ⋅-=⋅=⋅⋅==-⋅=⋅⋅===-+=-+=-+=-+==][][3][2][][][1.7832.04.03.06.03.04.03.06.04.06.03.04.06.0)()()()()()()()()(3.04.0200150)(4.06.0150100)(6.020*******.8=⨯⨯+⨯-⨯-⨯-++=+---++===⨯==⨯======ABC P CA P BC P AB P C P B P A P C B A P D P C P B P A P D C B A )(“击中目标”米处射击”“相距米处射击”“相距米处射击”“相距解:设2112632112|31812|6)2(3.0185|8)1(.9222222222222111111111=++++============ )()()()()()()(”“点数和大于“点数和为奇数”)()()()()(”“点数和为“点数和为偶数”解:B P B A P B A P A P B A P A B P B A A P B P A P B A P A B P B A5360160126047514131413141513151413151413151.10=+-=⨯⨯+⨯-⨯-⨯-++=+---++=======)()()()()()()()()(,)(,)(“丙破译密码”“乙破译密码”“甲破译密码”解:ABC P BC P AC P AB P C P B P A P C B A P C P B P A P C B A61|1011|.11110=====)()()()()()(解:B P AB P B A P C A P AB P A B P1025515510530520|12C C C C C A B P A P AB P B A ⋅⋅=⋅===)()()(球各半”“第二次取出的黄、白球”“第一次取出的全是黄。
概率论 第二章+习题
第二章 随机变量与概率分布一、单项选择题1.设随机变量的密度函数p(x)= ⎩⎪⎨⎪⎧ 2x x[0、A] 0 其他, 则常数 A=( )A 、1/4B 、1/2C 、1D 、22.设随机变量的分布列为P{=k}=C2k ,k=1,2,…,则常数C= ( )A 、1/4B 、1/2C 、1D 、23.设 ~ N (, 2 ),且概率密度 p(x) =16e -(x-2)2/6 ,则正确的为 ( ) A 、= 3 , =2 B 、=2, =3 C 、=2, = 3 D 、= 2 , = 34.设随机变量 的密度函数 p(x) = ⎩⎪⎨⎪⎧Asinx , x[0,]0, 其它,则A=( )A 、1B 、1/2C 、1/4D 、2 5.设离散型随机变量X 的分布列为错误!其分布函数为F(x),则 F(3/2) = ( ) A 、 B 、0.3 C 、 D 、6.设随机变量的分布列为⎣⎢⎡⎦⎥⎤1 2 4P 1/4 1/2 , 则常数 = ( )A 、1/8B 、1/4C 、1/3D 、1/2 7.在相同条件下,相互独立地进行5次射击,每次射击时命中目标的概率为,则击中目标的次数 的概率分布为 ( )A 、二项分布 B(5,B 、普阿松分布P(2)C 、均匀分布 U, 3)D 、正态分布 N(3, 52) 8.某射手对目标独立地进行射击,直到击中目标为止,设每次击中的概率为2/3,则击中目标前的射击次数X 的概率分布为 ( )A 、P{X=k}= C n k (23 ) k (13 ) n – k , k=0,1,2,…,nB 、P{X=k}= kk! e –1 , >0, k=0,1,2,…,n C 、P{X=k}= (23 ) (13 )k k=0,1,2,…D 、P{X=k}= (23 ) (13 )k-1 k=0,1,2,…9.设随机变量的密度函数为p(x),且p(-x)=p(x),F(x)是的分布函数,则对任意的实数a,有( )A 、F(-a)=1- ⎠⎛0a p(x)dx B 、F(-a)=12 - ⎠⎛0a p(x)dx C 、F(-a)=F(a) D 、F(-a)=2F(a)-110.设随机变量 的密度函数为p(x)= ⎩⎪⎨⎪⎧x 0<x ≤12-x 1<x ≤20 其它,则P{<}等于 ( )A 、B 、C 、⎠⎛0(2-x)dxD 、⎠⎛1(2-x)dx二、填空题11.设随机变量的分布函数为 F(x)= ⎩⎪⎨⎪⎧0 x<0sinx 0x</21 x/2, 则 F(/4)= 。
概率论第二章练习答案
概率论第二章练习答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】《概率论》第二章练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。
2. 设连续型随机变量的概率密度函数为: ax+b 0<x<1f (x) =0 其他且EX =31,则a = _____-2___________, b = _____2___________。
3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE 5. 已知X 的密度为=)(x ϕb ax + 且其他,10<<x P (31<x )=P(X>31) , 则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。
7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则P (ξ=)= 0 ;)62.0(<<ξP = 。
8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。
2100xx≥100 ∴ ϕ(x)= 0 其它P (ξ≥150)=1-F(150)=1-⎰⎰=-+=+=150100150100232132********x dx x [P(ξ≥150)]3=(32)3=2789. 设随机变量X 服从B (n, p )分布,已知EX =,DX =,则参数n =___________,P =_________________。
(完整版)概率论第二章随机变量及其分布答案
概率论与数理统计练习题系 专业 班 姓名 学号第二章 随机变量及其分布(一)一.选择题:1.设X 是离散型随机变量,以下可以作为X 的概率分布是 [ B ](A )1234111124816Xx x x x p (B ) 123411112488X x x x x p (C )1234111123412Xx x x x p(D ) 1234111123412X x x x x p -2.设随机变量ξ的分布列为 01230.10.30.40.2X p )(x F 为其分布函数,则)2(F =[ C ](A )0.2 (B )0.4 (C )0.8 (D )1 二、填空题:1.设随机变量X 的概率分布为0120.20.5X p a ,则a = 0.32.某产品15件,其中有次品2件。
现从中任取3件,则抽得次品数X 的概率分布为 P{X=0}=22/35;P{X=1}=12/35; P{X=2}=1/353.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X 的概率分布为 P{X=k}=k kkC -⨯10103.07.0,10,,0Λ=k 或X~B(10,0.7)三、计算题:1.同时掷两颗骰子,设随机变量X 为“两颗骰子点数之和”求: (1)X 的概率分布; (2)(3)P X ≤; (3)(12)P X >(1) P{X=2}= P{X=12}=1/36; P{X=3}= P{X=11}=1/18;P{X=4}= P{X=10}=1/12; P{X=5}= P{X=9}=1/9;P{X=6}= P{X=8}=5/36;P{X=7}=1/6(2) P{X=2}=1/36; P{X=3}=1/18 (3) P{X>12}=02.产品有一、二、三等品及废品四种,其中一、二、三等品及废品率分别为60%,10%,20%及10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。
《概率论》第二章习题
第二章 事件与概率1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少?解:这五个字母自左往右数,排第i 个字母的事件为A i ,则42)(,52)(121==A A P A P ,21)(,31)(1234123==A A A A P A A A P 1)(12345=A A A A A P 。
利用乘法公式,所求的概率为2、有三个孩子的家庭中,有一个是女孩,求至少有一个男孩的概率。
解:有三个孩子的家庭总共有23=8个类型。
设A={三个孩子中有一女},B={三个孩子中至少有一男},A 的有利场合数为7,AB 的有利场合为6,依题意所求概率为P 〔B|A 〕,则()768/78/6)()(===A P AB P A B P . 3、假设M 件产品中包含m 件废品,今在其中任取两件,求:〔1〕取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;〔2〕两件中有一件不是废品的条件下,另一件是废品的条件概率;〔3〕取出的两件中至少有一件是废品的概率。
3、解:〔1〕M 件产品中有m 件废品,m M -件正品。
设A={两件有一件是废品},B={两件都是废品},显然B A ⊃,则 ()1122()/m M m m M P A C C C C -=+ 22/)(M m C C B P =, 题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==121/)(/221122---=+=-m M m C C C C C C M m m M m M m . 〔2〕设A={两件中有一件不是废品},B={两件中恰有一件废品},显然A B ⊂,则(),/)(2112M m M m m M C C C C A P --+= 211/)(M m M m C C C B P -=.题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==12/)(/2112211-+=+=---m M m C C C C C C C M m M m m M M m M m . 〔3〕P{取出的两件中至少有一件废品}=())1()12(/2211---=+-M M m M m C C C C M m m M m . 4、袋中有a 只黑球,b 只白球,甲乙丙三人依次从袋中取出一球〔取后不放回〕,试分别求出三人各自取得白球的概率〔3≥b 〕。
概率论第二章习题
解 设Ai表示第i次试验成功的事件,则 P(Ai)=p, P(Ai)=1-p . 将试验进行到出现一次成功为止, 所需的试验次数 X=1,2,…,k,… X=k时,前k-1次试验均未成功,第k次试验才成功,由于各次试验相 互独立,故
P{X=k}=P(A1A2…Ak-1Ak)=P(A1)P(A2)…P(Ak-1)P(Ak)=(1-p)k-1p X的分布律为 P{X=k}=p(1-p)k-1 , k=1,2,… (3)一篮球运动员的投篮命中率为45%.以X表示他首次投中时累计 已投篮的次数,写出X的分布律,并计算X取偶数的概率. 解 这是(1)中p=0.45的情况,故X的分布律为 P{X=k}=0.45(0.55)k-1 , k=1,2,…
x1 0, 1 F ( x ) 2( x 2),1 x 2 x 1, x2
F(x) 1 3/2 1 2 x f(x)
o
o
1
(2) n=7 所求概率为 P{X3}=P{X=3}+P{X=4}+P{X=5}+P{X=6}+P{X=7} =1-P{X<3}=1-[P{X=0}+P{X=1}+P{X=2}]
7 7 7 7 2 6 1 0.7 0.1 0.7 0.3 0.75 =0.353 0 1 2
第二章习题
1. 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取 出的3只球中的最大号码,写出随机变量X的分布律.
5 5! 解 基本事件是从5只球中同时取3只,有 3 3!2! 10 种取法. X只能取值3,4,5.
3 3 中取,有 3 种取法. P{ X 4} . 2 10
概率论第二章习题(答案)
A.1 e1
. 设随机变量 X 的方差为 2,则根据切比雪夫不等式有(C)
A. P X EX 2 1
4
C. P X EX 2 1
2
B. P X EX 2 3
4
D. P X EX 2 1
2
二.填空与计算题
1. 设随机变量 X 服从参数为 1 的泊松分布,则 P X EX 2 .
C. E( X C)2 E( X )2 D. E( X C)2 E( X )2
16. 设随机变量 X 的分布函数为 F (x) ,则随机变量Y 2 X 1的分布函数为(D)
A.
F
y 2
1
B.
2F(y) 1
C. 1 F ( y) 1
2
2
D.
F
y 2
1 2
17. 设随机变量 X 的密度函数为 f (x) ,则随机变量Y 3 2 X 的密度函数为(B)
度,
f (x) af1(x), bf2 (x),
x 0, (a 0,b 0)
x0
为概率密度,则 a,b 应满足(A).
A .2a 3b 4 ; B .3a 2b 4 ; C .a b 1; D .a b 2 .
11.
设随机变量 X
服从正态分布
N
(1
,
2 1
)
,随机变量 Y
服从正态分布
解: 由 EX 2 2 , P X EX 2 P X 2 e1 . 2
2. 设 随 机 变 量 X 概 率 分 布 为 P X k C (k 0,1, 2,) , 则
A. a 3 5,b 2 5 ; B. a 2 3, b 2 3 ;
C. a 1 2 , b 3 2 ; D. a 1 2 ,b 3 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 事件与概率1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少解:这五个字母自左往右数,排第i 个字母的事件为A i ,则42)(,52)(121==A A P A P ,21)(,31)(1234123==A A A A P A A A P 1)(12345=A A A A A P 。
利用乘法公式,所求的概率为()()()()12345123412312154321)()(A A A A A P A A A A P A A A P A A P A P A A A A A P =301121314252=⋅⋅⋅⋅= 2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。
解:有三个孩子的家庭总共有23=8个类型。
设A={三个孩子中有一女},B={三个孩子中至少有一男},A 的有利场合数为7,AB 的有利场合为6,依题意所求概率为P (B|A ),则()768/78/6)()(===A P AB P A B P . 3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。
3、解:(1)M 件产品中有m 件废品,m M -件正品。
设A={两件有一件是废品},B={两件都是废品},显然B A ⊃,则 ()1122()/m M m m M P A C C C C -=+ 22/)(M m C C B P =, 题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==121/)(/221122---=+=-m M m C C C C C C M m m M m M m . (2)设A={两件中有一件不是废品},B={两件中恰有一件废品},显然A B ⊂,则(),/)(2112M m M m m M C C C C A P --+= 211/)(M m M m C C C B P -=. 题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==12/)(/2112211-+=+=---m M m C C C C C C C M m M m m M M m M m . (3)P{取出的两件中至少有一件废品}=())1()12(/2211---=+-M M m M m C C C C M m m M m .4、袋中有a 只黑球,b 只白球,甲乙丙三人依次从袋中取出一球(取后不放回),试分别求出三人各自取得白球的概率(3≥b )。
解:A={甲取出一球为白球},B={甲取出一球后,乙取出一球为白球},C={甲,乙各取出一球后,丙取出一球为白球}。
则 )()(b a a A P += 甲取出的球可为白球或黑球,利用全概率公式得 )|()()|()()(A B P A P A B P A P B P +=ba b b a b b a a b a b b a b +=-+⋅++-+-⋅+=111 甲,乙 取球的情况共有四种,由全概率公式得)|()()|()()|()()|()()(B A C P B A P B A C P B A P B A C P B A P AB C P AB P C P +++=21)1)((22)1)(()1(-+-⋅-+++-+-⋅-++-=b a b b a b a ab b a b b a b a b b 2)1)(()1(21)1)((-+⋅-++-+-+-⋅-+++b a b b a b a a a b a b b a b a ab ba b b a b a b a b a b a b +=-+-++-+-+=)2)(1)(()2)(1(. 5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。
解:设B={两数之和大于10},A i ={第一个数取到i},9,,1,0Λ=i 。
则101)(=i A P , 5,3,2,9/)1()|(,0)|()|(10Λ=-===i i A B P A B P A B P i ;,9/)2()|(-=j A B P j9,8,7,6=j 。
由全概率公式得欲求的概率为∑====90356.04516)|()()(i i i A B P A P B P . 6、甲袋中有a 只白球,b 只黑球,乙袋中有α只白球,β只黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少解:设A 1={从甲袋中取出2只白球},A 2={从甲袋中取出一只白球一只黑球},A 3={从甲袋中取出2只黑球},B={从乙袋中取出2只白球}。
则由全概率公式得)()|()()|()()|()(332211A P A B P A P A B P A P A B P B P ++=221122221222222222a a ab b a a b a b a b C Cc C C c C c c C C C C ααβαβαβ+++++++++++=++. 7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少 解:A 1={从第一袋中取出一球是黑球},……,A i ={从第一袋中取一球放入第二袋中,…,再从第1-i 袋中取一球放入第i 袋中,最后从第i 袋中取一球是黑球},N i ,,1Λ=。
则)()(,)(11b a b A P b a a A P +=+=. 一般设)()(b a a A P k +=,则)()(b a b A P k +=,得 )()()|()()|()(111b a a A P A A P A P A A P A P k k k k k k k +=+=+++. 由数学归纳法得 )()(b a a A P N +=8、飞机有三个不同的部分遭到射击,在第一部分被击中一弹,或第二部分被击中两弹,或第三部分被击中三弹时,飞机才能被击落,其命中率与每一部分的面积成正比,设三个部分的面积的百分比为,,,若已击中两弹,求击落飞机的概率。
解:设A 1={飞机第一部分中两弹},A 2={飞机第二部分中两弹},A 3={飞机第一部分仅中一弹},A 4={其它情况},则.),(4321Ω=+++≠=A A A A j i A A j i φ.04.02.02.0)(,01.01.01.0)(21=⨯==⨯=A P A PA 3={第一弹中第一部分且第二弹中第二部分,或第一弹中第一部分且第二弹中第三部分,或第一弹中第二部分且第二弹中第一部分,或第一弹中第三部分且第二弹中第一部分},18.01.07.01.02.07.01.02.01.0)(3=⨯+⨯+⨯+⨯=A P ,.77.0)]()()([1)(3214=++-=A P A P A P A P设B={飞机被击落},则 .0)|(),3,2,1(1)|(4===A B P I A B P i由全概率公式得∑==41)()|()(i i i A P A B P B P .23.018.004.001.0=++= 错误算法: 3()0.10.20.10.70.09P A =⨯+⨯=,设B={飞机被击落},则 .0)|(),3,2,1(1)|(4===A B P I A B P i由全概率公式得∑==41)()|()(i ii A P A B P B P 0.010.040.090.14.=++= 原因是忽略了飞机中弹的次序。
9、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n回时出正面的概率,并讨论当∞→n 时的情况。
解:设A i ={第i 回出正面},记)(i i A P p =,则由题意利用全概率公式得)()|()()|()(111i i i i i i i A P A A P A P A A P A P ++++=(1)(1)(21)(1)i i i pp p p p p p =+--=-+-。
已知c p i =,依次令1,,2,1Λ--=n n i 可得递推关系式),1()12(1p p p P n n -+-=- ,),1()12(21Λp p p P n n -+-=--).1()12()1()12(12p c p p p p P -+-=-+-=解得,)12(])12()12()12(1)[1(122---+-++-+-+-=n n n p c p p p p P Λ当1≠p 时利用等比数列求和公式得11)12()12(1)12(1)1(---+-----=n n n p c p p p p .)12()12(212111---+--=n n p c p (*) (1)若1=p ,则C p C p n n n =≡∞→lim ,; (2)若0=p ,则当12-=k n 时,c p n =;当k n 2=时,c p n -=1。
若21=c ,则21lim ,21=≡∞→n n n p p 若121≠c ,则n n p c c ∞→-≠lim ,1不存在。
(3)若10<<p ,则由(*)式可得.21)12()12(2121lim lim 11=⎥⎦⎤⎢⎣⎡-+--=--∞→∞→n n n n n p c p p 10、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。
以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。
试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。
解:令i i i C B A ,,分别表示第i 次交换后,甲袋中有两只白球,一白一黑,两黑球的事件,则由全概率公式得)|()()|()()|()()(11111n n n n n n n n n n n C A P C P B A P B P A A P A P A P p +++++++==n n n n q r q p 410410=⋅++⋅=, )|()()|()()|()()(11111n n n n n n n n n n n C B P C P B B P B P A B P A P B P q +++++++==,211211n n n n n n r q p r q p ++=⋅++⋅=, )|()()|()()|()()(11111n n n n n n n n n n n C C P C P B C P B P A C P A P C P r +++++++==n n n n q r q p 410410=⋅++⋅=. 这里有11++=n n r p ,又1111=+++++n n n r q p ,所以1121++-=n n p q ,同理有n n p q 21-=,再由n n q p 411=+得)21(411n n p p -=+。