线性代数总复习资料
线性代数复习提纲
线性代数复习提纲线性代数是数学中的一个基础课程,涵盖了向量空间、线性变换、矩阵理论等内容。
它在计算机科学、物理学、经济学和工程学等领域都有广泛的应用。
下面是线性代数的复习提纲,帮助你回顾相关的知识点。
一、向量空间1.向量的定义和性质2.向量空间的定义和性质3.子空间的定义和判断条件4.向量的线性相关性与线性无关性5.基和维数的概念二、线性变换1.线性变换的定义和性质2.线性变换的矩阵表示3.线性变换的核与像空间4.线性变换的维数公式5.线性变换的复合与逆变换三、矩阵理论1.矩阵的定义和性质2.矩阵的运算:加法、数乘、乘法3.矩阵的逆与转置运算4.矩阵的秩和行列式5.矩阵的特征值与特征向量四、特殊矩阵和特征值问题1.对称矩阵的性质和对角化2.可逆矩阵与相似矩阵3.正交矩阵与正交对角化4.特征值问题的求解方法五、解线性方程组1.线性方程组的矩阵表示2.高斯消元法与矩阵的初等变换3.初等矩阵的性质与应用4.齐次线性方程组和非齐次线性方程组的解的结构六、向量空间的基变换1.基变换的定义和性质2.过渡矩阵的求解3.变换矩阵的求解与应用4.基变换下的坐标表示和坐标变换公式七、内积空间和正交性1.内积的定义和性质2.内积空间的定义和性质3.正交基和正交投影4.标准正交基和正交矩阵的定义和性质八、二次型与正定性1.二次型的定义和性质2.二次型的矩阵表示和标准化3.正定二次型和半正定二次型的定义和性质4.二次型的规范形和合同变换以上是线性代数的复习提纲,可以通过对每个知识点的回顾、理解和练习来复习线性代数。
在复习过程中,可以结合教材、习题和课堂笔记,通过解题和思考来巩固知识点的掌握。
另外,可以参考相关的教学视频或在线课程来帮助理解和学习线性代数的概念和方法。
最重要的是多做习题,加深对知识点的理解和应用。
线性代数--总复习
可见, 当λ=-4/5时, R(A)=2, R(A|b)=3, 方程组无解. 当λ≠-4/5, 且λ≠-1时 R(A)=R(A|b)=3, 方程组有唯一解.
当λ=-1时, 有
1 −1 −2 1 1 −1 0 3 ( A | b) → 0 0 1 1 → 0 0 1 1 0 0 1 1 0 0 0 0
第三章 向量 线性关系 秩
1. 理解n维向量的概念以及向量的线性运算; 2. 理解向量组的线性组合与线性表示的概念; 3. 理解向量组线性相关, 线性无关的定义, 了解并会用 向量组线性相关, 线性无关的有关性质及判别法; 4. 理解向量组的极大线性无关组和向量组的秩的概念, 会求向量组的极大无关组和秩,理解向量组等价的概念; 5. 理解矩阵秩的概念及与向量组秩的关系及其计算.
0 2/3 0 B = 6 0 3/ 4 0 0 0 6/ 7
−1
0 3 0 0 1/ 3 0 = 0 2 0 0 1/ 4 0 0 0 1/ 7 0 0 1
49页:10, 11, 12, 18
第六章 矩阵的特征值与特征向量
1. 了解矩阵的特征值和特征向量的概念及其求法; 2. 了解矩阵的特征值和特征向量的性质; 3. 了解相似矩阵的概念及性质; 4. 掌握将(实对称)矩阵(正交)相似对角化的方法.
第七章 二次型
1. 掌握二次型及其矩阵表示, 了解二次型秩的概念, 了解合同变换与合同矩阵的概念, 了解二次型的标准形和 规范形的概念以及惯性定理; 2. 掌握用正交变换化二次型为标准形的方法, 会用 配方法化二次型为标准形; 3. 理解正定二次型和正定矩阵的概念, 掌握其判别法.
线性代数(本科)总复习题
《线性代数》(本科)总复习题一、单项选择题1.矩阵运算AB 有意义是T B A +有意义的 。
(A)充分条件 (B)必要条件 (C)充要条件 (D)无关条件2.设同阶方阵C B A ,,满足AC AB =,则必有 。
(A)0=A 或C B =(B)0=A 且C B = (C)0=A 或C B = (D)0=A 且C B = 3.设B A ,为同阶可逆矩阵,则下列等式中一定成立的是 。
(A)()T T T B A AB = (B)()***B A AB = (C)()111−−−=B A AB (D)B A AB =4.设A 为n 阶可逆矩阵,且n 为奇数,则下列等式中未必成立的是 。
(A)()T T A A −=− (B)()**A A −=− (C)()11−−−=−A A (D)A A −=−5.设方阵A 满足O A =2,则必有 。
(A)O A = (B)O AA T = (C)O AA =* (D)O A A T =*6.设矩阵B A ,满足I AB =,则 。
(A)I B A T T = (B)I BA = (C)I A B T T = (D)都不对7.设方阵A 满足A A =2,则 。
(A)O A = (B)I A = (C)O A =或I A = (D)都不对8.设方阵A 可逆,且BA AB =,则下列等式未必成立的是 。
(A)22BA B A = (B)T T BA B A = (C)11−−=BA B A (D)**BA B A =9.设向量组s ααα,,,21L 可由向量组t βββ,,,21L 线性表示,且()121,,,r r s =αααL ,()221,,,r r t =βββL ,()32121,,,,,,,r r t s =βββαααL L ,则 。
(A)321r r r =< (B)321r r r =≤ (C)321r r r <= (D)321r r r ≤=10.设n m ×齐次线性方程组O AX =仅有零解,则 。
线性代数知识点归纳,超详细
线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数(理)综合复习资料
线性代数(理)综合复习资料《线性代数(理)》综合复习资料第一章 n 阶行列式一、选择填空题:1、排列542163的逆序数为______________。
2、行列式315412231---中,元素4的代数余子式为。
3、设行列式11 12132122233132333a a a a a a a a a =,则313233212223111213232323a a a a a a a a a --=- 。
4、设行列式1112132122233132333a a aa a a a aa =,则3132332131223223111213222222222222a aaa aa a a a a aa +++=。
5、n 个方程、n 个未知量的齐次线性方程组0Ax =有非零解的充要条件是。
6、设,A B 均为3阶方阵,且3,2A B ==,则2B A A += 。
7、设,A B 均为3阶方阵,且2,3A B ==-,则13A B *-= 。
8、已知多项式111213212223313233()a xa x a xf x a xa x a x a x a x a x+++=++++++,则()f x 的最高次数是。
9、设A 为3阶矩阵且行列式0A =,则下列说法正确的是()(1)矩阵A 中必有一列元素等于0;(2)矩阵A 中必有两列元素对应成比例;(3)矩阵A 中必有一列向量是其余列向量的线性组合;(4)矩阵A 中任一列向量是其余列向量的线性组合。
10、下列说法错误的是()(1)若n 阶线性方程组Ax b =的系数矩阵行列式0A ≠,则该方程组存在唯一解;(2)若n 阶线性方程组0Ax =的系数矩阵行列式0A ≠,则该方程组只有零解;(3)一个行列式交换两列,行列式值不变;(4)若一个行列式的一列全为零,则该行列式的值为零。
二、计算下列行列式1、1534131202115133D ---=---;2、14916491625916253616253649D =3、222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b D c c c c d d dd ++++++=++++++;4、123 (10)3 (12)0..............123 0nn n D n -=-----; 5、122 (22)22 (22)23...2...........222...nD n=;6、120000132000013200 (000032000013)nD =; 7、111222121212n n n n x x x n x x x nD x x x n++++++=+++8、n x a a ax aD aa x=;9、111111222212333123111231n D n n n n =--- ;10、000000000000000n y x y x y x D y x xy=;第二章矩阵一、选择填空题1、设112311131111A --=----??,则A 的秩()r A = 。
线性代数总复习大纲及复习题
04-05(2) 线性代数总复习大纲及复习题: 一、 概念1、 行列式的 定义2、 向量组相关与无关的定义3、 对称阵与反对称阵4、 可逆矩阵5、 矩阵的伴随矩阵6、 基与向量的坐标7、 矩阵的特征值与特征向量 8、 正定矩阵 9、 矩阵的迹 10、 矩阵的秩 11、 矩阵的合同 12、 二次型与矩阵13、 齐次线性方程组的基础解系 二、 性质与结论1、 与向量组相关与无关相关的等价结论2、 行列式的性质3、 克莱姆规则(齐次线性方程组有非零解的充要条件)4、 矩阵可逆的充要条件及逆矩阵的性质5、 初等变换与初等矩阵的关系6、A A A A A E **==7、 n 维向量空间坐标变换公式 8、 相似矩阵的性质 9、 合同变换10、 矩阵正定的充要条件11、 线性方程组解的性质与结构定理 三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。
3.已知齐次线性方程组32023020x y x y x y z λ+=⎧⎪-=⎨⎪-+=⎩仅有零解,则λ≠ 04.已知三阶行列式D=123312231,则元素12a =2的代数,余子式12A = -1 ;3.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。
( 对 )4.行列式002002316.02342345= ( 对 ) 5.对向量1234,,,αααα,如果其中任意两个向量都线性无关,则1234,,,αααα线性无关。
( 错 )6. 如果A 是n 阶矩阵且0A =,则A 的列向量中至少有一个向量是其余各列向量的线性组合。
( 对 )7. 向量组s ααα,,,21 线性无关的充分必要条件是其中任一部分向量组都线性无关。
线代复习题
线代复习题
1. 矩阵的基本概念
- 定义矩阵及其元素
- 矩阵的阶数
- 矩阵的表示方法
2. 矩阵的运算
- 矩阵的加法和减法
- 矩阵的数乘
- 矩阵的乘法
- 矩阵的转置
- 矩阵的逆
3. 特殊矩阵
- 零矩阵
- 单位矩阵
- 对角矩阵
- 斜对角矩阵
- 正交矩阵
4. 行列式
- 行列式的定义
- 行列式的计算方法
- 行列式的性质
5. 线性方程组
- 线性方程组的表示
- 高斯消元法
- 线性方程组的解的存在性
- 齐次线性方程组的解
6. 向量空间
- 向量空间的定义
- 基和维数
- 向量的线性组合
- 向量的线性相关性
7. 特征值和特征向量
- 特征值和特征向量的定义
- 特征值和特征向量的计算方法 - 特征多项式
8. 二次型
- 二次型的定义
- 二次型的矩阵表示
- 正定二次型
9. 线性变换
- 线性变换的定义
- 线性变换的矩阵表示
- 线性变换的性质
10. 矩阵分解
- 矩阵的对角化
- 矩阵的谱分解
- 矩阵的QR分解
11. 应用题
- 利用矩阵解决实际问题
- 矩阵在不同领域的应用案例分析
请根据以上复习题进行复习,确保掌握线性代数的基本概念和运算法则。
《线性代数》期末复习大纲及参考答案(最新)
07-08(1) 线性代数总期末考试复习大纲及复习题: 期末考试题型:判断(约占30%)与选择(约占70%) 期末考试形式:开卷 期末复习各章重点第一章 知道行列式的定义并会用定义计算简单的行列式;熟悉并会用行列式的性 质计算行列式,掌握行列式的依行依列展开定理。
第二章掌握向量线性相关与线性无关的定义并会用定义判断向量组相关与无关;会求向量组的极大无关组以及用极大无关组表示其余的向量;熟悉线性方程组解的一般理论,掌握矩阵的初等变换并会用初等变换求解线性方程组;会用初等变换求矩阵的秩.第三章熟悉矩阵的运算性质,特别是矩阵乘法的特殊性(不满足交换律),知道分块矩阵;掌握逆矩阵的定义、伴随矩阵的概念以及关系式E A A A AA ==**,会用伴随矩阵和初等变换求矩阵的逆矩阵;了解初等矩阵及其性质,会解简单的矩阵方程。
第四章 知道向量空间的定义,掌握基变换公式和向量坐标变换公式。
第五章 掌握矩阵的特征值与特征向量的概念以及矩阵能够对角化的条件,会判断一个矩阵能否对角化;掌握相似矩阵的概念及其性质。
第六章 掌握二次型的概念,掌握二次型与矩阵的对应关系,掌握合同矩阵的概念,会判断简单矩阵的合同,掌握二次型正定负定的条件并会判定二次型是否正定。
复习题1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 3 (对) 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=1或-2 。
(对)3.已知齐次线性方程组32023020x y x y x y z λ+=⎧⎪-=⎨⎪-+=⎩仅有零解,则λ≠ 0(对)4.已知三阶行列式D=123312231,则元素12a =2的代数余子式12A = -1 ;(错)5.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。
线性代数总复习知识点
M
M
am1 L amm
0L 0
M
M
0L 0
0L0
M 0 b11 M
L L
Ma
0 b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L L
b1n
M bnn
bn1 L bnn
∗L∗
M ∗
b11 M
L L
Ma
∗ b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L b1n
M L bnn
)
=
1 det
A
2)分块上下三角阵的行列式
det CA
O B
=
det
A
⋅
det
B
,
det
A O
C B
=
det
A
⋅
det
B
3)利用
det A = λ1λ2 Lλn
其中 λ1,λ2 ,L,λn 是A的n个特征值。
四、求逆矩阵★★★
1.具体矩阵:
① 2阶矩阵——伴随阵法(公式法)
对
A
=
a11 a21
n(n−1)
= (−1) 2 a1na2,n−1Lan1
a1n
a2,n−1 NM
a2n M
n(n−1)
= (−1) 2 a1na2,n−1Lan1
an1 L an,n−1 ann
③范德蒙行列式
1 1L1
x 1
x 2
L
xn
Dn =
x2 1
M
∏ x2 2
线性代数复习资料
线性代数复习资料
以下是一些线性代数的复习资料:
1. 《线性代数及其应用》(Linear Algebra and Its Applications):这是一本经典的线性代数教材,由Gilbert Strang 所著。
书中详细介绍了线性代数的概念、定理和运算,配有大量的例题和习题。
2. MIT 开放课程:麻省理工学院开设了一门名为《线性代数》的公开课,由 Gilbert Strang 教授讲授。
这门课程提供了视频讲座、讲义、习题和解答等资源,可以帮助你巩固线性代数的基础知识。
3. 线性代数的本质(The Essence of Linear Algebra):该系列视频由 3Blue1Brown 制作,以图形化的方式讲解线性代数的概念。
这些视频可以帮助你更好地理解线性代数的核心概念,并提供了一些直观的解释。
4. 网络课程平台:Coursera、edX、Khan Academy 等平台上有许多线性代数的在线课程,可以根据自己的学习需求选择适合的课程进行学习。
5. 习题集:各种线性代数习题集可以帮助你巩固和应用所学知识。
你可以在书店或网上购买一本练习册,或者在网上搜索线性代数习题进行练习。
希望以上资料能够帮助你进行线性代数的复习。
祝你学习进步!。
线性代数考试复习提纲、知识点、例题PDF.pdf
(1) 扩充法
(2) 子式法
1
2
...
m
mn
(1,2
,...,m
) n m
最高阶非 0 子式的阶数就是矩阵的秩,也就是这个向量组
的秩,并且这个子式的行(列)对应的原向量组的向量就
是这个向量组的一个极大无关组。
(3)初等变换法 同法二构成矩阵,对矩阵进行初等变换。
例 9、设向量组
(1) 1,...,t 线性无关, (2) AX = 0 的每一个解都可以由1,...,t 线性表示。 则1,...,t 叫做 AX = 0 的基础解系。 定理 1、设 Amn ,齐次线性方程组 AX = 0 ,若 r(A) = r n ,则该方程组
的基础解系一定存在,且每一个基础解系中所含解向量的个
2x − y + z = 0
例
7、已知线性方程组
−2x1x−1 +2
x2 x2
+ +
x3 x3
= =
−2
,问当
为何值时,它有唯一
x1 + x2 − 2x3 = 2
解,无解,无穷多解,并在有无穷多解时求解。
五、向量组的线性相关性
1,2,...,s 线性相关 1,2,...,s (s 2) 中至少存在一个向量能由其余 向量线性表示。
=s2,...,n 线性相关
1,2 , ...,n
= 0或 2
...
=0。
n
1
n 个 n 维向量1,2,...,n 线性无关
1,2 , ...,n
0或 2
...
0。
n
例 8、已知向量组1 = (t,2,1) ,2 = (2,t,0) ,3 = (1,−1,1) ,
线性代数总复习讲义PPT课件
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。
线性代数总复习
齐次线性方程组: Am´n Xn´1 = 0m´1 的解集N(A)构成解向量空间; N(A)的基称为齐次线性方程组的基础解系.
r( A) + dim N ( A) = n,
"h Î N ( A), h = k1x1 + k2x2 + L + ksxs .
非齐次线性方程组: A X m´n n´1 = bm´1 的解集不构成向量空间; AX=b的通解 = 齐次通解 + 非齐次特解, 即
=
b3 . (b3,b3)
4/10/4.3
几何理论第三大块:线性方程组的解空间
方程组AX=0的解集N(A)构成解向量空间; N(A)的 基称为基础解系;
dim N ( A) = n - r( A). 若r(A)=n, 则dimN(A)=0, 原方程组有唯一零解; 若r(A)<n, 则dimN(A)>0, 原方程组解空间至少是 一维的,此时有无穷多解.
M j1 j2Ljn
an1 an2 L ann
行列式的性质:(辅导P2) 1.行列式等于0;(4点) 2.行列式的值不变;(4点) 3.行列式的值改变;(2点) 4.特殊行列式的值。(5种)
Cramer法则:(辅导P3)
D
=
ì ï
a11
,
íai1 Ai1
n=1 + ai 2 Ai 2
+L +
ain
Ain ,
7/10/4.3
对于非齐次线性方程组AX=b: 通解 = 齐次通解 + 非齐次特解.
如果AX=b有特解h ,导出方程组AX=0的 通解为x, 则AX=b的通解 X = x + h .
线性代数复习资料
第一部分、复习纲要1、行列式:掌握行列式的计算:①利用行列式的性质②按行(列)展开③利用已知特征值.2、矩阵及其运算:熟练掌握矩阵的运算(线性运算及矩阵乘法),会用伴随矩阵求逆阵,知道矩阵分块的运算律.3、矩阵的初等变换与线性方程组:熟练掌握用矩阵的初等行变换把矩阵化成行阶梯形和行最简形;掌握用初等变换求可逆矩阵的逆矩阵的方法(包括求B A 1-);熟练掌握用矩阵的初等变换求解线性方程组的方法;会讨论带参数的方程组的解的情况.4、向量组的线性相关性:熟悉一个向量能由一个向量组线性表示这一概念与线性方程组的联系;知道两向量组等价的概念;熟悉向量驵线性相关、线性无关的概念与齐次线性方程组的联系;会用初等变换求向量组的秩和最大无关组;掌握齐次方程组的秩与解空间的维数之间的关系,熟悉基础解系的求法;会求向量组生成的向量空间的维数,会求从旧基到新基的过渡矩阵及向量的一个基下的坐标.5、相似矩阵及二次型:了解内积、长度、正交、规范正交基、正交阵、特征值与特征向量的概念;掌握特征值与特征向量的求法,熟悉特征值的性质;知道矩阵相似、合同的概念及性质,熟悉二次型及其矩阵表示,掌握用正交变换把二次型化为标准型的方法;知道对称阵的性质、可对角化的条件,二次型的正定性及判别法等.第二部分、典型题型一、填空题1、设4阶矩阵A 的秩()2R A =,S 是齐次线性方程组0Ax =的解空间,则S 的维数为__2_____,A 的伴随矩阵*A 的秩是______0_______.2、 已知3阶方阵A 的特征值为1,2,-3,则A 的迹t r A =___0_____,det A =___-6_____,*|32|A A E ++=_____25________,3、n 阶矩阵A 可对角化的充分必要条件是_____A 有n 个线性无关的特征向量_________________.对称阵A 为正定的充分必要条件是________ A 合同于单位矩阵E__________.4、向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦它的秩是__3_______,一个最大无关组是_____321,,ααα_______________________.5、 实二次型22212312133924f x x x x x x x =++-+的秩r = ,正惯性指数p = ,它是 定的. 6、设1200250000250038A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则||A = 1 ,1A -= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2300580000120025 . 7、设n 元线性方程组Ax b =的系数矩阵A 的秩为r ,若此方程组有解,则当 r =n 时,方程组有惟一解;当 r <n 时方程组有无穷多解. 8、矩阵00A C B ⎛⎫=⎪⎝⎭的伴随矩阵*C =___⎪⎪⎭⎫⎝⎛A B 00___________. 9、向量123α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵T A αβ=,则6A =___A 510___________.10、设A 为n 阶矩阵(n ≥2),*A 为A 的伴随阵,则当()R A n =时,)(*A R = n ___;当()1R A n =-时,)(*A R = _1 _ ;当()1R A n <- 时,)(*A R = 0 .11、设3阶矩阵A 的特征值为2,1,3-,*2B E A =-(其中*A 是A 的伴随矩阵),则B 的行列式||B =__-385____.12、设12243311A t-⎛⎫⎪=- ⎪ ⎪-⎝⎭,并且A 的列向量组线性相关,则t = 3 . 13、已知4维列向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦所生成的向量空间为V ,则V的维数dim V = _3____.二、解答题1、设3112513420111533D ---=---,D 的(,)i j 元的代数余子式记作ij A ,求31323334322A A A A +-+. 2、计算n 阶行列式121212333nn n n x x x x x x D x x x ++=+4、设112201102P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,500010005-⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .5、设202010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 200010002⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .6、非齐次线性方程组123123212322,2,2.x x x x x x x x x λλ-++=-⎧⎪-+=⎨⎪+-=⎩当λ取何值时有解?并求出它的通解.7、非齐次线性方程组13123123,421,642 3.x x x x x x x x λλλ+=⎧⎪++=+⎨⎪++=+⎩当λ取何值时有解?并求出它的通解.8、设方阵A 满足:220A A E --=,证明A 及2A E +都可逆,并求1A -及1(2)A E -+9、设n 阶矩阵A 和B 满足AB A B =+,(i )证明A E -为可逆矩阵;(ii )若350120002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求B .10、已知向量11010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,2222a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,,33111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,416b β⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦, (a )问a ,b 取何值时,β不能由向量组123,,ααα线性表示?(b )问a ,b 取何值时,β能由向量组123,,ααα线性表示?并且写出其一般表示式.、D 、之和的值求第四行各元素余子式设行列式22350070222204033--=11、求向量组1133α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3112α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4213α⎛⎫ ⎪= ⎪ ⎪⎝⎭的一个最大无关组与秩,并把其余向量用最大无关组线性表示.12、已知二次型为 222123232334f x x x x x =+++(1)写出二次型f 的矩阵表达式;(2)求一个正交变换x Py =,把二次型f 化为标准形,并写出该标准形..、ax x x x b x x a x x x x x x x x b a 、通解并在有无穷多解时求其无解或有无穷多解有惟一解线性方程组为何值时问?.123,2)3(,122,0,,1343214324324321⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++.AP P P ,a a A 、Λ=Λ⎪⎪⎪⎭⎫ ⎝⎛=-1,,6002802214使并求可逆矩阵的值试求常数相似于对角阵若矩阵。
线性代数复习总结(重点精心整理)
线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数总复习及典型例题
线性代数总复习
第一章
行列式
第一节 n阶行列式的定义
当m = n 时,n元非齐次线性方程组 Ann x b 有惟一解的充分必要条件是系数矩阵A的行列式
A0
齐次线性方程组 Ax 0 一定有解: (1) R(A) = n (2) R(A) < n
Ax 0 只有零解
Ax 0 有非零解
并且通解中有n-r个自由未知量.
齐次线性方程组 Ax 0 的具体解法: (1)对系数矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A与n之间的大小关系,从而判断方程组解 的情况:唯一解(零解),无穷解(非零解)。
第三章 线性方程组
其中 B A b
非齐次线性方程组 Ax b
(1) R A R B (2) R(A) = R(B ) R(A ) < n R(A ) = n
无解 有解:
Ax b有唯一解 ;
Ax = b 有无穷多解.
并且通解中有n-r个自由未知量.
非齐次线性方程组 Ax b 的具体解法: (1)对增广矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A 、 R B 以及n之间的大小关系,从而判断 方程组解的情况:无解,唯一解,无穷解。 (2)在判断有解的情况下,继续对行阶梯形矩阵施 行初等行变换,将其化为行最简形,并写出最简形 对应的线性方程组进行求解。如果方程组有无穷多 个解,需写出通解形式。
Er O O O m n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回
线性代数总复习
r2 2 1 2 2 1 1 r3 r2 0 0 2 1 0
0 0 0 0 5 r43r2 0 0 0 0 1
r3 5 r4 r3
1 2 2 1 1 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0
R ( A ) 2 , R ( B ) 3 .
设有向量组 A,如果能在 A中选出 r个向量
1,2, ,r, 满足下面两个条件:
(1)向量组 A 0:1,2, ,r线性无关;
(2)向量组 A中的每一个向量都能由向量组 A 0 线性表示。
则称向量组 A 0 为向量组 A的最大无关组。
最大无关组所含向量的个数 r称为向量组的秩。
上页 下页 返回
向量组的秩的求法
上页 下页 返回
线性代数总复习
2、n阶行列式的计算 (1) 利用行列式的性质计算 (化为三角形)
性质1 行列式与它的转置行列式相等. 性质2 互换行列式的两行(列),行列式变号. 性质3 行列式的某一行(列)中所有的元素都
乘以同一数 k ,等于用数 k 乘此行列式.
性质4 行列式中如果有两行(列)元素成比 例,则此行列式为零.
秩 小 于 向 量m个;向数量 组 线 性 无 关必的要充 条 件R是(A)m.
上页 下页 返回
线性代数总复习
n 个 n 维向 1,2, 量 ,n 线性相关
R ( A ) R (1 ,2 , ,n ) n
|A | | 1 ,2 , ,n | 0
n 个 n 维1 ,向 2 , ,n 线 量 无 性 关
x1 x3 0, x1 x2 0,
x 2 x 3 0.
上页 下页 返回
线性代数总复习
由于此方程组的系数 列行 式 1 01 1 1 0 20 011
故方程组 x1x只 2x3有 0 , 零 所 向 解 以 量 b1,b2,b3线性 . 无关
上页 下页 返回
线性代数总复习
3、最大无关组及向量组的秩
i 1 ,2 , ,n
D a 1 j A 1 j a 2 j A 2 j a n A n j j
j 1 ,2 , ,n
上页 下页 返回
线性代数总复习
例 3 1 1 2 5 1 3 4
D 2 0 1 1 1 5 3 3
5 1 1 1
c12c3 11 1 3 1
c4 c3 0 0 1 0 5 5 3 0
上页 下页 返回
线性代数总复习
5 11 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6
2 8
2 40.
5 5 0 5
上页 下页 返回
二、矩阵
线性代数总复习
1、矩阵的逆的求法
(1)公式法(伴随法)
A11
A1
1 A,其中A A
A 12
A1n
A21 A
上页 下页 返回
线性代数总复习
1
1
1
1
例
设a 1
1
2 2
,
a
2
2 1 3
,
a3
1 4 0
,
b
0
3 1
,
证明向量 b能由向量组a1,a2,a3 线性表示,并
求表示式。
解 法一 只需证矩阵 A(a1,a2,a3)与矩
阵 B (A ,b ) (a 1 ,a 2 ,a 3 ,b )有相同的秩。
解
1 (A:b)B22
2 4 4
2 8 2
1 0 3
1 2 3
3 6 0 6 4
上页 下页 返回
线性代数总复习
1 2 2 1 1
B
2 2
4 4
8 2
0 3
2 3
3 6 0 6 4
r2 2 r1 1 2 2 1 1 r3 2 r1 0 0 4 2 0
r4 3r1
0 0
0 0
2 1 5 6 3 1
上页 下页 返回
线性代数总复习
由最简形知,方程组 Axb的通解为
3 2 3 c 2 x c 2 1 2 c 1
1 0 c
从而
3c2
bAx(a1,a2,a3) 2c1
c
( 3 c 2 )a 1 (2 c 1 )a 2 c3a
其中c为任意常数。
上页 下页 返回
22
An1
A n2
A2n Ann
其中A为A的伴随矩阵,
Aij为行列式A中元素aij的代数余子式 .
上页 下页 返回
(2)初等变换法
线性代数总复习
(A:E) 行的初等变换 ( E :A1)
上页 下页 返回
线性代数总复习
1 2 3 例1 求方阵 A 2 2 1 的逆矩阵.
3 4 3
0 1
1 2
1 1
2 0
2 1 10
线性代数总复习 上页 下页 返回
线性代数总复习
1 1 0 2
1 1 0 2
D 0
1
1
2
r3 r1
0
1
1
2
1 2 1 0 r4 2r1 0 1 1 2
2 1 10
0 3 1 4
1 1 0 2
1 1 0 2
r3 r2 0 1 1 2 r4 r3 0 1 1 2
解得其通解为
k13c2 k2 2c1 k3 c
其中c为任意常数。
故向量 b可由向量组 a1,a2,a3线性表示,且
bk1a1k2a2k3a3 ( 3 c 2 )a 1 (2 c 1 )a 2 c3a
其中c为任意常数。
上页 下页 返回
线性代数总果存在
向量组 a1,a2, ,am的秩
线性代数总复习
矩阵 A (a 1,a 2, ,a m )的秩
最大无关组的求法
若Dr是矩A阵 的一个最高阶非 ,零 则 Dr 子式 所在r的 列即是列向量组 最的 大一 无个 关D组 r , 所在r的 行即是行向量组 最的 大一 无个 关 . 组
下面把矩阵 B化为行最简形:
上页 下页 返回
线性代数总复习
B (A ,b ) (a 1 ,a 2 ,a 3 ,b )
1
1 2 2
1 2 1 3
1 1 4 0
1 0
行的初等变换
1 0
3 1
0 0
0 1 0 0
3 2 0 0
2
1
0 0
R (A )R (B )2
向量 b可由向量组 a1,a2,a3线性表示。
上页 下页 返回
线性代数总复习
三、向量之间的关系
1、线性组合
定义 给定 A : 向 1,2, 量 ,m 和 组 b 向 ,如量 果 一 组 1 , 2 , 数 ,m ,使
b 1 1 2 2 m m
则向b是 量向量 A的 组线性组合, 向量这 b能时称 由向量组 A线性表示.
上页 下页 返回
r1 2r3 r2 5r3
1 0 0 1 3 2 r2(2)
0 0
2 0
0 1
3 1
6 1
5 1
r3
(1)
r2
(2)1 A01
101003
13 33
3532. 52
r3 (1)0
0
2 11
2 1
121 21
上页 下页 返回
线性代数总复习
利用初等行变 的换 方求 法逆 ,阵 还可 矩阵 A1B.
A 1 ( A B ) ( E A 1 B )
(初等变换法)
线性代数总复习
A E12
2 2
3 1
1 0
0 1
0 0
3 4 3 0 0 1
r22r1 1 2 3 1 0 0 r1 r2 0 2 5 2 1 0
r3 3r1 0 2 6 3 0 1 r3 r2
上页 下页 返回
线性代数总复习
r1 r2 r3 r2
1 0 2 1 1 0r1 2r3 0 2 5 2 1 0 0 0 1 1 1 1r2 5r3
线性代数总复习
法二 设 k1a1k2a2k3a3b
即
1 1 1 1
k
1
1 2 2
k
2
2 1 3
k
3
1 4 0
0
3 1
也即
k1 k2 k3 1
k1 2k1
2k k2
2
k3 4k3
0 3
2 k 1 3 k 2 1
上页 下页 返回
线性代数总复习
解 设x有 1,x2,x3使
x1b1x2b2x3b30
即 x ( 1 1 2 ) x 2 ( 2 3 ) x 3 ( 3 1 ) 0 ,
亦 ( x 1 x 3 ) 1 ( x 即 1 x 2 ) 2 ( x 2 x 3 ) 3 0 ,
因1,2,3线性无关,故有
一、行列式 二、矩阵 三、向量之间的关系 四、线性方程组的解 五、特征值与特征向量
一、行列式
1、二阶三阶行列式的计算
线性代数总复习
Da11 a21
a a1 22 2a1a 122 a1a 22.1
a 11 a 12 a 13
a 21 a 22 a 23 a1a 12a 233 a1a 22a 331 a1a 32a 132 a 31 a 32 a 33 a1a 12a 332 a1a 22a 133 a1a 32a 23,1
R ( A ) R (1 ,2 , ,n ) n |A | | 1 ,2 , ,n | 0
上页 下页 返回
线性代数总复习
例1 已知
1
0