第三章__红外光谱(IR)

合集下载

红外光谱(IR)和拉曼光谱(Raman)

红外光谱(IR)和拉曼光谱(Raman)

3.3红外分光光度计
按分光器将红外分光光度计分为四代: 以人工晶体棱镜作为色散元件的第一代; 以光栅作为分光元件的第二代; 以干涉仪为分光器的傅里叶变换红外光度计是第3代;
用可调激光光源的第4代仪器。
3.3.1双光束红外分光光度计的工作原理:
3.3.2 红外分光光度计的主要部件:
(1)光源: 光源的作用是产生高强度、连续的红外光。 (a)硅碳棒。由硅碳砂加压成型并经锻烧做成。工作温 度1300~1500℃,工作寿命1000小时。硅碳棒不需要预热, 寿命也较长。价格便宜。
波长或波数可以按下式互换:
_
( cm-1)=1/λ(cm)=104/λ(μm)
在2.5μm处,对应的波数值为: _ = 104/2.5 (cm-1)=4000cm-1
一般扫描范围在4000~400cm-1。 波长在2.5~25μm,叫中红外区。 波长0·75~2·5μm叫近红外区。 波长在25~100μm叫远红外区。
到了六十年代,用光栅代替棱镜作分光器的第二代红 外光谱仪投入了使用。这种计算机化的光栅为分光部件的 第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FT-IR) 投入了使用,这就是第三代红外分光光度计。
近来,已采用可调激光器作为光源来代替单色器,研制 成功了激光红外分光光度计,即第四代红外分光光度计, 它具有更高的分辨率和更广的应用范围,但目前还未普及。
υ as
面内变 形振动
δ 面内
面外变 形振动 δ 面外
面内摇摆 ρ
剪式振动
δs
面外摇摆 ω 扭曲振动 τ
跃迁时能级变化的大小为:as > s > δ。
能级变化大的出峰在高频区,即波数值大;能级变化小 的出峰在低频区,即波数值小。

红外光谱(IR)分析copy

红外光谱(IR)分析copy

与红外光谱比较,Raman光谱用于有机化合 物分析有一定优点。
∗因Raman光谱与红外光谱的选择定则不同,
对红外吸收很弱的C≡C、C=C、C-S、S-S等 键的伸缩振动及其它对称振动,都有很强的 Raman散射光。
∗拉曼光谱的另一大优点是不要求样品具有
光透性,可以很容易地得到浑浊样品的拉曼光 谱。 Raman光谱制样简单,很多情况下样品不 需处理,粉、块、薄膜状的固体、液态、溶 液及溶液中的沉淀物均可直接得到散射光谱。 特别是FI-Raman光谱可用作合适的非破 坏现场测试方法,在有机化合物、高分子材 料、医学、文物保护和生物分子研究中的应用 具有其独到之处。
∗特别重要的是:可用水作溶剂。(水是弱的散射
体)因此有利于生物分子、络合物、水污染等问题 的研究。 水分子是一种极性分子,有十分明显的红外吸收 谱带,要得到含水样品的红外吸收光谱却很困难。 相反,水分子的拉曼光谱信号很弱,可以较容易 地得到含水样品的拉曼光谱。因此,拉曼光谱可被 广泛地用于研究含水分的生物体系中,作为一种鉴 别物质结构的分析测试手段。
(问题:键力常数K还表明了红外谱峰位置与什 么因素有密切的关系?)
1-2 多原子分子的振动 在多原子分子中,由于组成原子数目多,以 及分子中原子排布情况不同,故多原子分子的 振动光谱远比双原子分子复杂得多。
1-4 影响峰位变化的因素 虽然基团吸收峰的频率主要由原子的质量和 原子的力常数决定,但基团的特征吸收峰并不 能固定在一个频率位置上,而是在一定范围内 波动。 (为什么?) 分子内部结构和外部环境的改变都可使其频 率发生改变。
4. 空间效应: (1)环状化合物的环张力效应:环张力越大,羰 基νC=O频率越高。 环张力 四元环 > 五元环 > 六元环 (2)空间位阻效应:空间位阻使羰基与双键之间 的共轭受限制,故使νC=O频率增高。 5. 氢键效应:氢键的形成,通常可使伸缩振动 频 率向低波数方向移动。

有机波谱解析-第三章_红外光谱

有机波谱解析-第三章_红外光谱

由于红外光谱吸收强度受狭缝宽度、温度和溶剂等因素影 响,故不易精确测定,在实际分析中,只是通过与羰基等强吸 收峰对比来定性研究。
谱带强度与振动时偶极矩变化有关,偶极矩变化愈 基团极性 大,谱带强度愈大;偶极矩不发生变化,谱带强度为0, 即为红外非活性。 电子效应
红外吸收强度 偶极距变化幅度 振动偶合
伸缩振动(
as
)两种形式。
弯曲振动:原子垂直于化学键方向的运动。又可以分
它们还可以细分为摇摆、卷曲等振动形式。
为面内弯曲振动()和面外弯曲振动( )两种形式,
+和-表示垂直于纸面方向的前后振动。
亚甲基的振动形式
三、分子振动与红外吸收峰的关系
理论上具有特定频率的每一种振动都能吸收相应 频率的红外光,在光谱图对应位臵上出现一个吸收 峰。实际上,因种种原因分子振动的数目与谱图中
纵坐标为: 百分透过率(%) 横坐标为: 波长(µ m)或波 数(cm-1)。
环戊烷
也可用文字形式表示为:2955cm-1(s)为CH2的反对称伸缩振动 (υasCH2),2870cm-1(m)为CH2的对称伸缩振动(υsCH2) 1458cm-1(m) 为CH2的面内弯曲振动(δ面内CH2),895cm-1(m)为CH2的面外弯曲振动 (面外CH2)
诱导效应大于共轭效应, C=O 蓝移至 1735 cm-1
三、空间效应
(1)空间位阻 破坏共轭体系的共平面性,使共
轭效应减弱,双键的振动频率蓝移(增大)。
CH(CH3)2 O O O
CH3 CH3
CH3 CH(CH3)2
CH3
1663cm-1
1686cm-1
1693cm-1
(2)环的张力:环的大小影响环上有关基 团的频率。

IR-1第三章红外光谱-波谱分析课程

IR-1第三章红外光谱-波谱分析课程
光栅型分辨率:0.2cm-1重现性好 扫描速度快(<0.1s),可作快速反应动力学研究
, 并可与GC、LC联用。色散型:只能观测较窄的扫 描 一次需8、15、30s等。 杂散光不影响检测。 对温度湿度要求不高。 光学部件简单,不易磨损。
3.3 试样的处理和制备
3.3a 红外光谱法对试样的要求
薄膜法
高分子化合物可直接加热熔融后涂制或压制成膜。也可 将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶 剂挥发后成膜测定。
4 基团频率和特征吸收
1. 基团频率区和指纹区 2. 红外光谱的区域划分 3. 影响基团频率的因素
4.1基团频率区和指纹区 指纹区:1300 cm-1-600 cm-1
基团频率区 (官能团区或 特征区)
试样:液体、固体或气体
1 试样
– 单一组份的纯物质:纯度>95%或符合商业规格,便于与 纯物质的标准光谱进行对照
– 多组份混合试样:测定前先用分馏、萃取、重结晶或色谱 法进行分离提纯,否则各组份光谱相互重叠,难于判断
A-2 试样中不应含水分: 水有红外吸收(3500及 1640cm-1),严重干扰谱图;腐蚀吸收池的盐窗。
转动能级
△ E电子 △ E振动 △ E转动 红外吸收光谱由分子振动-转动能级跃迁引起的
1.2 红外光区的划分
红外光谱在可见光区和微波光区之间,波长范 围约为 0.75 ~ 1000µm,
1.3 红外光谱的测定过程
当样品受到频率连续变化的红外光照射时,分子 吸收了某些频率的辐射,并由其振动或转动运动 引起瞬时偶极矩的变化,产生分子振动和转动能 级从基态到激发态的跃迁,使相应吸收红外光区域 的透射光强度减弱。记录百分透射率与波数(或 波长)关系曲线,就得到红外光谱。

第三章 红外光谱法--本科生

第三章 红外光谱法--本科生

1. 红外辐射光的频率与分子振动的频率相 当,才能满足分子振动能级跃迁所需的能 量,而产生吸收光谱。 2. 必须是能引起分子偶极矩变化的振动才能 产生红外吸收光谱。
4 吸收谱带的强度
红外光谱的吸收带强度即可用于定量分析,也是 化合物定性分析的重要依据。 基态分子中的很小一部分,吸收某种频率的红外 光,产生振动的能级跃迁而处于激发态。激发态分子 通过与周围基态分子的碰撞等原因,损失能量而回到 基态,它们之间形成动态平衡。跃迁过程中激发态分 子占总分子的百分数,称为跃迁几率,谱带的强度即 跃迁几率的量度。跃迁几率与振动过程中偶极矩的变 化(△μ)有关,△μ越大,跃迁几率越大,谱带强度 越强。
特征区(官能团区)分为三个区域:
(2)2500~1900 为叁键和累积双键区。 主要包括-CC、 -CN等等叁键的伸缩振动,以及-C =C=C、C=C=O等累积双键的不对称性伸缩振动。 对于炔烃类化合物,可以分成R-CCH和R-C C-R两种类型, RCCH的伸缩振动出现在2100~2140 cm-1附近; R-C C-R出现在 2190~2260 cm-1附近;-C N基的 伸缩振动在非共轭的情况下出现在 2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到 2220~2230 cm-1附近。
k /N.cm
7.7 6.4
折合质量μ :μ ↓,(v)↑,红外吸收信号将出现在 高波数区。
v
振 σ
1 k 2 c
吸收峰的峰位:化学键的力常数k越大,原子的折 合质量越小,振动频率越大,吸收峰将出现在高波数 区(短波长区);反之,出现在低波数区(高波长区)
v
v
ቤተ መጻሕፍቲ ባይዱ
结论:
产生红外光谱的必要条件是:

第三章-红外吸收光谱分析

第三章-红外吸收光谱分析

第三章红外吸收光谱分析3.1概述3.1.1红外吸收光谱的基本原理红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。

当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。

如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。

图3-1为正辛烷的红外吸收光谱。

红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。

图中的各个吸收谱带表示相应基团的振动频率。

各种化合物分子结构不同,分子中各个基团的振动频率不同。

其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。

图3-1 正辛烷的红外光谱图几乎所有的有机和无机化合物在红外光谱区均有吸收。

除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。

吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。

吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。

也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

因此,红外吸收光谱在化学领域中的应用,大体上可分为两个方面,即分子结构的基础研究和用于化学组成的分析。

首先,红外光谱可以研究分子的结构和化学键。

利用红外光谱法测定分子的键长和键角,以此推断出分子的立体构型;利用红外光谱法测定分子的力常数和分子对称性等,根据所得的力常数就可以知道化学键的强弱;由简正频率来计算热力学函数等等。

第三章红外吸收光谱

第三章红外吸收光谱

CH3, CH2
酯C=O CH2,CH3 CH3 酯得特征 酯得特征
3)官能团
CH2
CH3
4)可能得结构
C=O
C-O
νas(C-O-C)
1180cm-1
5)确定结构
O
1240cm-1
O C CH3
1160cm-1
例3、某化合物分子式C8H8,试根据如下红外光 谱图,推测其结构。
例3解:
1)不饱和度 分子式: C8H8,
(CH2)n
gC-H(oop)
1-己烯和1-己炔
g=CH2 (面外) (CH2)n
例2:烷烃(另一种形式得IR谱)
例3:烯烃
例4:炔烃
例5:苯环上得取代
例6:芳香族化合物
例7:醇类化合物
例8:酚类化合物
例9:醚类化合物
例10:羰基化合物-醛类
例11:羰基化合物-酮类
例12:羧酸类化合物
结构验证 其不饱和度与计算结果相符;并与标准谱图对照证明结构正确。
例5、化合物C4H8O,根据如下IR谱图确定结构, 并说明依据。
O
CCC
例5解:
1)不饱和度 分子式: C4H8O,
2)峰归属
U=1-8/2+4=1
波数(cm-1 )
归属
结构信息
3336 3078 2919,2866 1622 1450 1036
例13:酯类化合物
例14:酸酐类化合物
例15:酰卤类化合物
例16:酰胺类化合物
H 3 C C
例17:胺类化合物
例18:腈类化合物
O
O
O
H C O CH2CH2CH 3 H3C C O C H2CH3 H3CH 2C C O C H3

红外光谱

红外光谱

• (2). 空间障碍(空间位阻)
3.空间效应
• (3)环张力:环外双键和环上羰基随着 环的张力增加,其频率也相应增加。
4.氢键
• 分子内氢键:使谱带大幅度向低频方向移动。
4.氢键 乙醇在不同浓度下分子间氢键的影响
4.氢键
分子间氢键: 使OH基的伸缩振动吸收发生位移
5. 互变异构
6.振动偶合效应
研究。但由于该光区能量弱,除非其它波长区间内没有合适的
分析谱带,一般不在此范围内进行分析。
3.1 概述

二、红外光谱法的特点

紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有
共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有 偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出
现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外, 几乎所有的有机化合物在红外光谱区均有吸收。
第三章 红外光谱
郭海明 河南师范大学
3.1 概述
发展史
1800年英国的天文学家willam在测定太阳光内外的温度 效应时,发现了红外光的存在。
1903年(103年以后)找到了红外光的检测方法,红外光
与物质之间的内在关系得以发展。 1930年红外光开始应用于化合物结构的研究,至今广泛 地用于化合物的定性分析、定量分析、化学动力学研究, 已经成为化学工作者不可缺少的分析工具。
2.振动方程式(Hooke定律)
化学
键长
键能
力常数
波数范围

C―C
(nm)
0.154
(KJ mol-1)
347.3
k(N.cm-1)
4.5
(cm-1)
700~1200

第3章红外光谱法

第3章红外光谱法

Rayleigh散射:
激发虚态
弹性碰撞;无能
E1 + h0
h(0 - )
量交换,仅改变方向
Raman散射:
h0
非弹性碰撞;方
向改变且有能量交换 E1
E0 + h0
h0 h0 V=1
h0 +
E0
V=0
Rayleigh散射
Raman散射
h
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态;
发生振动能级跃迁需要能量的大小取决于键两端原子 的折合质量和键的力常数,即取决于分子的结构特征。
14.06.2019
分析化学研究所
第8页
分子中基团的基本振动形式
1.两类基本振动形式
伸缩振动
弯曲振动
亚甲基
14.06.2019
亚甲基
分析化学研究所
第9页
伸缩振动
甲基的振动形式
弯曲振动
对称 υ s(CH3) 2870 ㎝-1
频峰
14.06.2019
分析化学研究所
第13页
官能团区和指纹区
• 官能团区 4000~1300cm-1是基团伸缩振动出现的区域,对鉴定 基团很有价值
• 指纹区 1300~600cm-1是单键振动和因变形振动产生的复杂光 谱区,当分子结构稍有不同时,该区的吸收就有细微 的差异,对于区别结构类似的化合物很有帮助。
共轭效应:使共轭体系中的电子云密度平均化,使双键略有伸 长,因此,双键的吸收频率向低波数方向位移。
中介效应:当含有孤对电子的原子(如:O, N, S等)与具有多 重键的原子相连时,也可起类似的共轭作用,使吸收频率向低 波数方向位移。

第三章 红外吸收光谱完整版本ppt课件

第三章 红外吸收光谱完整版本ppt课件

解析完后,进行验证,不饱和度与计 算值是否相符,性质与文献值是否一致, 与标准图谱进行验证
谱图对照应注意:所用的仪器在分辨 率和精确度一致;测定的条件一致;杂质 引进的吸收带应仅可能避免。
.
三、红外光谱解析实例C8H16
例一:未知物分子式为C8H16,其红外图谱如 下图所示,试推其结构。
.
解:由其分子式可计算出该化合物不饱和度为1, 即该化合物具有一个烯基或一个环。
C C 2100
H 763 ,694(双峰)
CO 1638 C(C 芳环)1597 ,1495 ,1445
.

解:
U
2
29
1
7
7
可能含有苯环
2
1638cm1强吸收 为 CO 3270cm1有吸收 NH 1132353123003300ccccmmmm( ( 1111吸强 强收) ) C N含 含NHCCCH 13023608ccmm11 为CH H 1597 ,1495 和 1445cm(1 三峰) 为 C(C 芳环) 763 和 694cm(1 双峰) 为 H(单取代)
❖ 3387、3366 cm-1 :NH2的伸缩振动; ❖ 1624 cm-1 : NH2弯曲振动; ❖ 1274 cm-1 :C-N伸缩振动;
❖综合上述信息及分子式,可知该化合物为:
邻苯二胺
.
图谱解析实例 例1 某化合物,测得分子式为C8H8O,其红外
光谱如下图所示,试推测其结构式。
C8H8O红外光谱图
1查找基团时先否定以逐步缩小范围2在解析特征吸收峰时要注意其它基团吸收峰的干扰3350和1640cm1处出现的吸收峰可能为样品中水的吸收3吸收峰往往不可能全部解析特别是指纹区4掌握主要基团的特征吸收

【2024版】第三章-红外吸收光谱分析-4

【2024版】第三章-红外吸收光谱分析-4
CH 3
附图A1 固载氯烷基硅氧烷原料硅胶在常温时测 定的IR谱图
附图A2 固载氯烷基硅氧烷的硅胶中间体在常温 时测定的IR谱图
附图A3 氯烷基硅氧烷做偶联剂研制的杀菌剂产 品在常温时测定的IR谱图
附图A4 固载氯烷基硅氧烷原料硅胶在200℃时测 定的IR谱图
附图A6 固载氯烷基硅氧烷的硅胶中间体在 200℃时测定的IR谱图
MeO
MeO Si O SiCH 2CH2CH2Cl + MeOH
MeO
以硅胶为载体通过γ-氯丙基三甲氧基硅烷固载 季铵盐制备水不溶性杀菌剂
CH 3
Si
CH2Cl + N CnH2n+1
Si
CH 2
CH 3
叔胺可以是 N,N-二甲基-n 烷基胺,n 为 12-18。
CH 3 N + CnH2n+1Cl-
入封闭液体池中,液层厚度一般为 0.01~1mm。
液体和溶液试样
液体和溶液试样
(2)液膜法 ➢ 沸点较高的试样,直接滴在两片盐片之间,形成液膜。 ➢ 一些固体也可以溶液的形式进行测定。 ➢ 常用的红外光谱溶剂应在所测光谱区内本身没有强烈的
吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 如CS2(1350-600cm-1)和CCl4(4000-1350 cm-1) 等。
(3)试样的浓度和测试厚度应选择适当,以使光谱图中 的大多数吸收峰的透射比处于20%~80%范围内。
制样的方法
1 .气体样品 气态样品可在玻璃气槽内进行测定,它
的两端粘有红外透光的NaCl或KBr窗片。先 将气槽抽真空,再将试样注入。
气体样品
液体和溶液试样
(1)液体池法 沸点较低,挥发性较大的试样,可注

红外光谱法

红外光谱法


指纹区:波数在1330~667cm-1(波长7.5~15μm) 的区域称为指纹区。 在该区域中各种官能团的特征频率缺乏鲜明的特征性。 在指纹区包括有单键的伸缩振动及变形振动所产生的复 杂光谱。当分子结构稍有不同时,该区的吸收就有细微 的差异,而且峰带非常密集,犹如人的指纹,故称指纹 区。因此,可以利用分子结构上的微小变化所引起的指 纹区内光谱的明显变化来确定有机化合物的结构。
2、特征峰与相关峰
红外吸收光谱具有极强的特征性。在含有许多原子基团 的复杂分子中,这种特征性与各类型化学键振动的特征相 关联。组成分子的各种原子基团都有自己的特征红外吸收 的频率范围和吸收峰,称这些能用于鉴定原子基团存在并 有较高强度的吸收峰为特征峰,其相应的频率称为特征频 率或基团频率。 对于一个基团来说,除了有特征峰之外,还有一些其它 振动形式的吸收峰。将这些相互依存及可相互佐证的吸收 峰称为相关峰。 在实际分析中,由于样品中含有多种原子基团,并相互 影响,给分析带来一定的难度。此时用一组相关峰鉴别其 团的存在显得尤为重要。
带强度较弱。
2、偶极矩的影响 由量子力学得出,吸收系数与偶极矩变化量(Δμ)的平 方成正比,即ε(Δμ)2。而Δμ又与分子或基团的偶极矩、 分子的对称性及振动形式等有关。
§2.3 化合物基团频率及特征吸收峰
一、红外吸收光谱中的常用术语
1、基频峰与泛频峰
基频峰:其分子的振动能级从基态(V0)跃迁到第一激发态(V1) 跃迁几率大,故强度也大。 泛频峰 倍频峰: 从基态跃迁至第二、第三激发态时所产 生的吸收峰。由于振动能级间隔不等距, 所以倍频不是基频的整数倍。 组频峰:一种频率红外光,同时被两个振动所吸 收即光的能量由于两种振动能级跃迁。 泛频峰:因不符合跃迁选律,发生的几率很小,显示为弱峰。

红外光谱(IR)和拉曼光谱(Raman)

红外光谱(IR)和拉曼光谱(Raman)

到了六十年代,用光栅代替棱镜作分光器的第二代红 外光谱仪投入了使用。这种计算机化的光栅为分光部件的 第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FT-IR) 投入了使用,这就是第三代红外分光光度计。
近来,已采用可调激光器作为光源来代替单色器,研制 成功了激光红外分光光度计,即第四代红外分光光度计, 它具有更高的分辨率和更广的应用范围,但目前还未普及。
第三章 红外光谱(IR)和拉曼光谱(Raman)
3.1引言 3.1.1红外光谱的发展
红外光谱(Infrared Spectroscopy,简称IR) 拉曼光谱(Raman)
分子光谱
两者得到的信息可以互补。
在十九世纪初就发现了红外线,到1892年有人利用岩盐棱 镜和测热幅射计(电阻温度计)测定了20多种有机化合物的 红外光谱。
1905年科伯伦茨发表了128种有机和无机化合物的红外 光谱,红外光谱与分子结构间的特定联系才被确认。
到1930年前后,随着量子理论的提出和发展,红外光 谱的研究得到了全面深入的开展,并且依据测得的大量物 质的红外光谱。
1947年第一台实用的双光束自动记录的红外分光光度计 问世。这是一台以棱镜作为色散元件的第一代红外分光光 度计。
μ’ 为折合质量。 μ’=m1m2/(m1+m2) (m为原子质量)
原子质量用相对原子量代替:
m1=M1/N,
M1、M2为原子量,N为阿佛加德罗常数。
m2=M2/N 。
μ为折合原子量
μ=
M1 M2 M1 M2
将π、c和N的数值代入(2)式,并指定将键力常数(见p 61 表3-1)中 的105代入。
键 H-C H-C C-C C=C C≡C C-O C=O C-Cl C≡N

仪器分析教程第3章 红外光谱

仪器分析教程第3章 红外光谱
多原子分子中,基本振动的数目叫振动自由度。 每一个基本振动都代表了一种振动的形式,都有它 固有的特征频率,都可能产生相应的红外吸收峰。
一. 基本振动的类型 伸缩振动和弯曲振动。
1. 伸缩振动(Stretching Vibration)
用 v 表示。 特点:成键原子沿键轴方向伸缩,键长发生周 期性的变化,其键角不变。 当分子中原子数 >=3 时,可产生对称伸缩振动
键或官能团的吸收频率,这种现象叫诱导效应。
诱导效应的影响沿着分子中的化学键而传递,
与分子的几何形状无关。
羰基碳上的 电负性基团使羰基伸缩振动吸收峰
向高频方向移动(蓝移)。
O R-C-R O R-C-Cl O F-C-F O CH3-C-O-CH=CH2 为什么 ? vC=O 1770cm-1 1928cm-1 1800cm-1 1715cm-1 O R-C-H O R-C-F O R-C-NH2 1680cm-1 O CH3-C-O-CH2CH3 1734cm-1 1920cm-1 1730cm -1
例:水分子(非线性分子)。 振动自由度数 = 3 × 3 - 6 = 3
3600~3000cm-1
1647cm-1
990~400cm-1
例:
CO2分子(线性分子)。 振动自由度= 3×3-5 = 4
2349 cm-1
667 cm-1
3.1.3 红外吸收峰强度
intensity of Infrared absorption band (一)红外吸收峰强度的表示方法
O R- C
H- NH C- R O
1690 cm-1 3500 cm-1 1650 cm-1
HN- H
游离:
vC=O vN-H

第三章 红外吸收光谱法

第三章 红外吸收光谱法

因此,并非所有的振动都会产 生红外吸收,只有发生偶极矩变化 (△≠0)的振动才能引起可观测 的红外吸收光谱,该分子称之为红 外活性的; △=0的分子振动不能 产生红外振动吸收,称为非红外活 性的。
当一定频率的红外光照射分 子时,如果分子中某个基团的振 动频率和它一致,二者就会产生 共振,此时光的能量通过分子偶 极矩的变化而传递给分子,这个 基团就吸收一定频率的红外光, 产生振动跃迁。
2 辐射与物质间有相互偶合作用,为了满足这个 条件,分子振动时其偶极炬必须发生变化(保证 红外光的能量能传递给分子)。
分子由于构成它的各原子的电负性的不同, 也显示不同的极性,称为偶极子。通常用分子的 偶极矩()来描述分子极性的大小。
分子的偶极距是分子中正、负电荷中心的距离 (r)与正、负电荷中心所带电荷(δ)的乘积, 它是分子极性大小的一种表示方法。
第一节 红外光谱法基本原理
一、概述
1. 红外光谱
红外光谱是是一种分子 光谱,是分子中基团的 振动和转动能级跃迁产 生的吸收光谱。也称分 子的振动光谱或振转光 谱。
E1 υ
υ υ
2
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
J J J
1
0
J
E0
分子振动吸收光谱
分子转动吸收光谱
但由于在分子的振动跃迁过程中也常常伴随转动跃迁, 使振动光谱呈带状。所以分子的红外光谱属带状光谱。
种。
但对于直线型分子,若贯
穿所有原子的轴是在x方向,
则整个分子只能绕y、z轴转
动,因此,直线性分子的振
动形式为(3n-5)种。
例如:三个原子的非线性分子H2O,有3个振动自由度。
红外光谱图中对应出现三个吸收峰, 3650cm-1,1595cm-1,3750cm-1。

常建华第3章IR

常建华第3章IR
_
3.2 红外光谱基本原理 3.2.1 化学键的振动与频率 双原子分子中化学键的振动可按谐振子处理。
m1
m2
用虎克定律来表示振动频率、原子质量和键力常数之间 的关系:
υ=
1 2


若用波数取代振动频率,则有下式:

1

10 N
5

=
2c

=
2 c

Cm-1
(2)
K为键力常数,其含义是两个原子由平衡位置伸长0.1nm(lA0) 后的回复力,单位是 dyn/cm。 μ’ 为折合质量。 μ’=m1m2/(m1+m2) (m为原子质量) m2=M2/N 。
分子的振动分为伸缩振动和变形振动两类。
伸缩振动是沿原子核之间的轴线作振动,键长有变化 而键角不变,用字母υ来表示。 伸缩振动分为不对称伸缩振动υas和对称伸缩振动υs。
变形振动是键长不变而键角改变的振动方式,用字母δ 表示。
伸缩 振动 υ 亚甲基 的振动
对称伸 缩振动
υ
S
不对称 伸缩振动
υ
as
面内摇摆 面内变 形振动 变形 振动 δ 面外变 形振动 δ 面外 δ 面内 面外摇摆 扭曲振动 剪式振动
红外光谱的峰强可以用摩尔吸收系数表示: =
1 CL
Lg T T
0
(4)
式中:为摩尔吸收系数; C为样品浓度,mol/L; L为吸收池厚度,cm; T0为入射光强度;T为出射光强度。 当l00时,峰很强,用Vs表示。 在20~100,为强峰,用S表示。 在l0~20,为中强峰,用m表示。 在l~l0,为弱峰,用w表示。 另外,用b表示宽峰,用Sh表示大峰边的小肩峰。
(2)分光系统 分光系统包括入射狭缝到出射狭缝这一部分。主要由 反射镜、狭缝和分光器组成。作用是将复式光分解成单 色光。分光系统也叫单色器。 (a)狭缝。 (b)反射镜。

第三章红外光谱分析法(波普分析)

第三章红外光谱分析法(波普分析)

第三章红外光谱分析法紫外-可见吸收光谱常用于研究具有共轭体系的有机化合物,而红外吸收谱则主要研究在振动中伴随偶极矩变化的化合物。

通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可用以鉴定未知物结构组成或确定其化学基团。

由于红外光谱分析特征性强,对气体、液体、固体均可分析,是鉴定有机化合物的最常用的方法之一。

常用的范围是400 - 4000cm-1。

一、红外吸收光谱的基本原理红外吸收光谱产生应满足两个条件:(1)辐射应具有能满足物质产生振动跃迁所需的能量;(2)辐射与物质间有相互偶合作用。

分子在振动过程中必须有瞬间偶极矩的改变。

对称分子:没有偶极矩,辐射不能引起共振,无红外活性。

如:N2、O2、Cl2 等。

非对称分子:有偶极矩,红外活性。

分子的振动可近似看为一些用弹簧连接的小球的运动。

分子的振动能级(量子化): E振=(V+1/2)hnV:化学键的振动频率;n:振动量子数。

任意两个相邻的能级间的能量差为:K化学键的力常数,与键能和键长有关, m为双原子的折合质量 m =m1m2/(m1+m2)发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征。

多原子分子的振动多原子分子的振动较双原子分子振动复杂得多。

其振动的基本类型有伸缩振动(ν)和弯曲振动(δ)两大类。

伸缩振动是指原子沿键轴方向伸缩,使键长发生周期性变化的振动。

由于振动偶合作用,3个原子以上的基团还可分为对称伸缩振动和不对称伸缩振动,表示为ν对称和ν不对称。

弯曲振动又叫变形或变角振动,指基团键角发生周期性变化的振动。

弯曲振动的力常数较小,因此常出现在低频区。

红外吸收峰的强度主要取决于吸收过程中偶极矩的变化。

变化越大,吸收越强。

通常两个原子的电负性相差越大,吸收越强。

如C=O吸收峰是大多数红外谱图中吸收最强的峰。

二、基团频率与特征吸收峰组成分子的各个基团均有其特定的红外吸收区域。

根据化学健的性质,可将其分为四个区:4000 - 2500 cm-1 氢键区;2500 - 2000 cm-1 参键区;2000 - 1500 cm-1 双键区;1500 - 1000 cm-1 单键区。

有机波谱分析课件第三章++红外光谱

有机波谱分析课件第三章++红外光谱

影响吸收峰数目的因素:
吸收峰减少原因:没有偶极矩变化的振动不产生红外吸 收;吸收频率相同,简并为一个吸收峰;有时频率接近, 仪器分辨不出,表现为一个吸收峰;有些吸收程度太弱, 仪器检测不出;有些吸收频率超出了仪器的检测范围。
吸收峰增多原因:产生倍频峰( 0 2、 3) 和组频峰(各种振动间相互作用而形成)——统称泛频; 振动偶合—相邻的两个基团相互振动偶合使峰数目增多; 费米共振—当倍频或组合频与某基频峰位相近时,由于相 互作用产生强吸收带或发生峰的分裂,这种倍频峰或组频 峰与基频峰之间的偶合称为费米共振
(一)红外吸收光谱仪主要部件
红外光谱主要部件有:光源、样品池、单色器、检测器、 放大记录系统
根据红外吸收光谱仪的结构和工作原理不同可分为:色散 型红外吸收光谱仪和傅立叶变换红外吸收光谱仪(FI-IR)
1、光源
能发射高强度连续红外辐射的物质,常采用惰性固体作光源
能斯特灯—由锆、钇、铈或钍的氧化物 特点:发射强度大,尤其在高于1000cm-1的区域;稳定
可测定固、液、气态样品:
气态:将气态样品注入抽成真空的气体样品池 液态:液体样品可滴在可拆池两窗之间形成薄的液膜或将 液体样品注入液体吸收池中 固态:1~2mg 固体样品 + 100~200 mg KBr 研磨混 匀后 压成 1mm 厚的薄片
用于测定红外光谱的样品有较高的纯度(>98%),样 品中不应含有水分
有机结构分析课件
第三章 红外光谱
化学化工学院: 裴 强
QQ: 23403960;Tel: 15937681641 E-mail: peiqiang_6@
学习要求:
1、了解红外光谱的一般原理 2、了解红外光谱的特点及实验方法 3、掌握官能团的吸收波数与结构的关系 4、掌握红外光谱解析的步骤、熟练运用红外光 谱解析有机分子结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各类取代苯的倍频吸收和面外弯曲振动吸收
甲苯的红外光谱图
苯乙烯的红外光谱图
~1630cm-1:C=C伸缩振动;~1600,1580,1450cm-1:苯环骨架振动
α -甲基萘的红外光谱图
苯环二取代的红外光谱 (a. 邻位 b. 间位 c. 对位)
3 醇、酚和醚
醇和酚存在三个特征吸收:羟基OH 伸缩振动和弯曲 振动,C-O伸缩振动。
O R C R' VC=O ~1715 O R C C=C 1685~1670 O R C ~1695 O R C NH2 ~1675cm-1
()
()
(p)
试比较下列两个化合物中哪一个羰基的振动波数相对较高?
CHO A (CH3)2N B CHO
共轭效应:共轭效应使不饱和键的波数显著降低
苯基乙炔
~3340cm-1 :叁键上C—H伸缩振动,~3020cm-1: 苯环=C—H伸缩振动 ~2115cm-1: 三键伸缩振动
1-己炔
正丁腈
2、3 丙二烯类
• 两个双键共用中间碳原子,耦合强烈, 1600厘米-1无吸收,在2000-1915厘米-1和 1100-1000厘米-1附近有不对称和对称伸 缩振动,两峰相距900厘米-1,前者为中 强峰,后者为弱峰。
VC=C
1645
1610
1560
H
H
H
υ υ
C=C
-1 cm 1645 -1 3017cm
-1 1610cm -1 304=C
H
5、空间位阻
一般共轭使振动频率降低
6、跨环共轭效应
7. 成键碳原子的杂化状态(杂化轨道中S成分越高,其电负性越强)
C H VC-H 3300 C H 3100 C H 2900
8. 振动的偶合
分子内两基团位置很近并且振动频率相同或相近时, 它们之 间发生强相互
作用, 结果产生两个吸收峰, 一个向高频移动, 一个向低频移动。
8、振动耦合效应
• 含有若干个相同的化学键的振动频率发生 分裂的现象称为耦合效应。当一个化学键 的伸缩振动与另一个化学键的振动吸收频 率很接近时,就会发生振动耦合。 • 一个化学键的某一种振动的基频和他自己 或另一个连在一起的化学键的某一种振动 的倍频或组频很接近时,可以发生耦合, 这种耦合成为费米共振。
外在因素
制各样品的方法、溶剂的性质、氢键、样品所处物态、 结晶条件、吸收池厚度、色散系统以及测试温度等
正己酸在液态和气态的红外光谱 a 蒸气(134℃)b 液体(室温)
红外光谱仪及样品制备技术
• 色散型红外光谱仪 • 傅立叶变换红外光谱仪(FTIR) • 红外样品的制备
色散型红外光谱仪
傅立叶变换红外光谱仪
v = ——
~
1
2C
K M
m1 M= m1
m2 + m2
双原子分子红外吸收的频率决定于折合质量和键力常数。
C-H
C-C
1200
C-O
1100
C-Cl
800
C-Br
550
C-I
500
cm-1
3000
C C
C=C 1680~1620
C C 1200~700
v cm-1
力常数/g.s-2
2200~2100
3. 氢键的影响
使基团化学键的力常数减小, 伸缩振动波数降低、峰形变宽。
醇羟基: 游离态 二聚体 多聚体 3600~3640cm-1 3500~3600cm-1 3200~3400cm-1 变化范围:40 100 200cm-1 羧酸及胺类等化合物, 分子间形成氢键后, 其相应吸收频 率均移向低波数. 当羰基(O)是氢键受体时, 其羰基特征 吸收频率向低频移动 40~60cm-1
4. 环的张力 一般而言, 环的张力增大时, 环上有关官能团的吸收频率逐 渐升高。
CH2 VC=C 1651 1657 CH2 1690 CH2 CH2 1750
O VC=O 1715 1745
O 1780
O 1815
O
• 环内双键的C=C伸缩振动吸收频率随环的减小即张力增大而
降低。
环的张力增大时, 环上有关官能团的吸收频率逐 渐升高。 环内双键的C=C伸缩振动吸收频率随环的减小而降低。
四. 影响官能团吸收频率的因素
主要讨论分子结构变化时,官能团红外吸收频率的变化。
2. 电子效应 1)诱导效应
VC=O O R C R' ~1715 O R C Cl ~1800 O R C F ~1869cm-1
卤原子吸电子诱导效应,使羰基双键极性增强,C=O的力常数 变大,吸收向高波数移动。
1、质量效应
X-H键的伸缩振动波数(cm-1)
化学键 C-H 波数(cm-1) 3000 化学键 F-H 波数(cm-1) 4000
Si-H
Ge-H Sn-H
2150
2070 1850
Cl-H
Br-H I-H
2890
2650 2310
诱导效应
注意与前面谱图的差别:在3000cm-1附近的峰
2)共轭效应 羰基与双键共轭,C=O键长增加,降低了羰基的双键性, 使吸收频率移向低波数。
第三章 红外光谱(IR) 一.概述 波长(m) 近红外区: 0.75 ~ 2.5 波数(cm-1) 13330 ~ 4000
中红外区:
远红外区:
2.5 ~ 15.4
15.4 ~ 830
4000 ~ 650
650 ~ 12
绝大多数有机化合物红外吸收波数范围:4000 ~ 665cm-1 红外谱图中,横坐标:吸收波长()或波数()。吸收峰位置。 纵坐标:透过率(T%)或吸光度(A)。吸收峰强度。 二. 基本原理 用一定频率的红外光照射分子,分子发生振动能级的跃迁。 分子的振动分为:伸缩振动()、弯曲振动()。

对称烯、炔等无吸收峰或吸
红外吸收强度及其表示符号
摩尔消光系数(ε) 强度 符号
>200
75~200 25~75 5~25 0~5
很强
强 中等 弱 很弱
VS
S M W VW
影响红外光谱吸收强度的因素
振动中偶极矩的变化幅度越大,吸收强度越大
• 极性大的基团,吸收强度大 • 使基团极性降低的诱导效应使吸收强度减小, 使基团极性增大的诱导效应使吸收强度增加。 • 共轭效应使π电子离域程度增大,极化程度增 大,吸收强度增加。 • 振动耦合使吸收增大,费米振动使倍频或组频 的吸收强度显著增加。 • 氢键使参与形成氢键的化学键伸缩振动吸收显 著增加。
官能团区分为:X-H区、三键区和双键区。
4000~2500cm-1 (X-H区) O-H N-H C-H S-H ... 官能团区 2500~1900cm-1 (三键区含累积双键)C C C N C=C=C C=C=O 1900~1350cm-1 (双键区)C=O C=N N=O C=C(烯或芳环骨架振动) 指纹区 1350~650cm-1 (单键区) C-C C-O C-N C-X
烷烃吸收峰
正己烷的红外光谱图
2,2,4-三甲基戊烷的红外光谱图
2、不饱和烃
• 烯烃 • 炔烃 • 芳香烃
2、1 烯烃 烯烃双键的特征吸收
影响双键碳碳伸缩振动吸收的因素
• 对称性:对称性越高,吸收强度越低。 • 与吸电子基团相连,振动波数下降,吸 收强度增加。 • 取代基的质量效应:双键上的氢被氘取 代后,波数下降10-20厘米-1。质量效应 • 共轭效应:使波数下降约30厘米-1 。
红外样品的制备
• 固体样品:溴化钾压片法 、糊状法 、溶 液法 、薄膜法 、显微切片 、热裂解法 • 液体样品的制备:溶液法、成膜法 • 气体样品的制备:充入气体样品槽。
气体样品槽
各种化学键的红外吸收位置
六、各种有机化合物的红外光谱
• • • • • • • • • 饱和烃 不饱和烃 醇、酚和醚 含羰基化合物 含氮化合物 其他含杂原子有机化合物 金属有机化合物 高分子化合物 无机化合物
R1CH=CHR2(顺)
R1CH=CHR2(反) R1R2C=CHR3
730-650
980-965 840-790
2、2
炔烃
• C-H伸缩振动:3340-3300厘米-1,波数高于烯 烃和芳香烃,峰形尖锐。 • C-C叁键伸缩振动:2100厘米-1 ,峰形尖锐, 强度中到弱。干扰少,位置特征。末端炔基该 吸收强。分子对称性强时,该吸收较弱。 • 腈类化合物,C-N叁键伸缩振动出现在23002220厘米-1,波数比炔烃略高,吸收强度大。
迈克逊干涉仪
干涉图
FTIR光谱仪的优点
• 光学部件简单,只有一个动镜在实验中运动, 不易磨损。 • 测量波长范围宽,其波长范围可达到 45000~6cm-1 • 精度高,光通量大,所有频率同时测量,检测 灵敏度高。 • 扫描速度快,可作快速反应动力学研究,并可 与GC、LC联用。 • 杂散光不影响检测。 • 对温度湿度要求不高。
对称 伸缩振动 伸缩振动 (键长改变) 分子振动 弯曲振动
(键角改变)
不对称 伸缩振动 面内弯曲振动 面外弯曲振动
• 双原子分子振动
多原子分子振动
常见术语
• 基频峰、倍频峰、合频峰、热峰
• 基频峰是分子吸收光子后从一个能基跃迁到相邻 的高一能基产生的吸收。 • 倍频峰是分子吸收比原有能量大一倍的光子之后, 跃迁两个以上能级产生的吸收峰,出现在基频峰 波数n倍处。为弱吸收。 • 和频峰是在两个以上基频峰波数之和或差处出现 的吸收峰。为弱峰。 • 热峰来源于跃迁时低能态不是基态的一些吸收峰。
五. 红外吸收峰的强度 红外吸收强度取决于跃迁的几率: 跃迁几率 ab
2
Eo
2
2
ab
跃迁偶极矩
相关文档
最新文档