汽轮机推力轴承温度超标的原因分析及处理方法

汽轮机推力轴承温度超标的原因分析及处理方法
汽轮机推力轴承温度超标的原因分析及处理方法

汽轮机推力轴承温度超标的原因分析及处理方法

摘要:推力轴承温度超标的问题在各电厂时有发生,因推力轴承推力瓦块乌金温度高, 使机组不能满负荷运行, 给企业的经济效益和设备的安全带来威胁。本文介绍汽轮机推力轴承原理结构基础上,对推力瓦块温度超标原因进行了安装检修及运行等方面分析,并对东汽N60-8.83型汽轮机支持推力联合轴承推力瓦块乌金温度超标进行处理,供从事汽轮机运行、安装和检修的人员参考。

关键词:汽轮机;推力轴承;温度;分析;探讨

1 .支持推力联合轴承的结构

汽轮发电机组的推力轴承主要作用是承受汽轮机转子在运行中的轴向推力,维持汽轮机转子和静止部件间的正常轴向间隙,因此推力轴承的正常工作是汽轮发电机组安全经济运行关键部件之一。推力轴承瓦块温度是推力轴承运行状态的一个重要参数,一但造成瓦块温度超标,乌金磨损烧坏,转子便会发生轴向位移,使汽轮机通流部分发生动静部件碰磨事故。虽然大型汽轮机采用高中压缸对头布置和低压缸采用分流式等措施以减小轴向推力,但轴向推力还是很大的。当工况变动、隔板汽封磨损间隙变大,特别是水冲击、甩负荷时,会产生瞬间轴向推力突增和反推力,从而对推力轴承提出进一步要求。

应用较广泛的推力轴承是密切尔推力轴承,这种轴承在推力盘上装有若干块推力瓦块,瓦块可以是固定的(用于小型机组)和摆动的(用于大、中型机组上)。推力轴承和支持轴承合为一体称推力——支持联合轴承。如图1及图2这种轴承结构,他在国产机组使用得较广泛。为保证轴向推力均匀地分配至各个瓦块上,选用球面支承轴承。轴承径向位置靠轴瓦外圆的垫块及其垫片来调整,轴向位置靠调整环1来调整,参看图1。支持推力联合轴承可以缩短机组轴向长度,但球面支承与球面座之间的球面加工工作量较大。

轴承的推力瓦块分为工作瓦片2和非工作瓦片3,各有十片左右。工作瓦片承受转子的正向推力,非工作瓦片承受部分负荷下可能出现的反向推力。瓦片利用销钉挂在其背面处分半的安装环10上。销钉与瓦片上的孔为较松的配合,瓦片背面有一条突起的肋,使瓦块可绕肋稍作转动,从而使瓦片2与推力盘7之间形成楔形间隙,建立液体摩擦。

图1支持—推力联合轴承

1-调整环;2-工作瓦片;3-非工作瓦片;4、5、6-油封;7-推力盘;8-支撑弹簧;9、10-瓦片安装环;11-油挡

变速箱漏油的原因

变速箱漏油的原因 这两天,咋老有人的变速箱开始漏油了哦,明天,我也要去参加sl的冬日送温暖活动看看了,上天保佑,希望别让摊上这样的不幸 上网百度后发现,咋有这么多车都有漏油的问题啊,难道真的如tsewey同学所言:这世界上还有没有不漏油的车啊?德系的St、Mt、audi、美系的foucs、日系的锐志、皇冠、雅阁,现在连俺们法系的车都开始了,本以为就307有,现在连kx也有了,希望这仅仅是个案。 下面供上变速箱漏油原因的相关资料,希望对tx们有帮助: 一、汽车变速器的使用条件比较苛刻,负荷变化较大。其结构设计十分紧凑,强化程度很高。实际工作时箱内工作温度高,使箱内润滑油产生蒸气,充满箱体空间,导致箱内压力升高。各密封界面都承受这个压力的冲击,往往在最薄弱处油气冲出而产生泄漏。一旦发生泄漏,就会形成一条通道,使泄漏愈来愈严重。如果变速器多处漏油并在箱壳温度较高的情况下,则一般属于变速器盖上的通气塞被灰尘和泥浆阻塞,使通气性能变差。箱内齿轮在大负荷、高速旋转时所产生的热量和油蒸气不能及时排除,导致箱内压力比箱外大气压高,油温也高,引起润滑油过稀。渗漏润滑油是变速器的常见故障之一,润滑油渗漏后,会造成齿轮润滑油量短缺,产生齿 轮及轴承等件的早期磨蚀损坏,缩短变速器的使用寿命,同时还会污染环境。因此探讨变速器润滑油渗漏机理,分析其原因,采取有效技术措施,根治漏油故障有着十分重要的意义。润滑油渗漏机理分析,见表1。 引起变速器漏油除了上述因素之外,还有: 1. 油封轴颈处漏油的原因:油封老化变形,油封弹簧脱落或油封装错方向等,均会使油封失去挡油作用,应更换老化变形的油封,注意油封的安装方向,油封有弹簧圈的一面应朝向有油的一方。轴颈偏磨或凹陷,与油封配合不严,造成漏油,应更换或修复偏磨和凹陷的轴颈。 2. 箱体接合面处漏油的原因:一、箱体接合端面有损伤,应在损伤处适当加厚纸垫,如仍漏油,则应进行焊补修复。二、密封纸垫损坏,应更换相同的密封纸垫。三、箱盖螺丝松动,应及时拧紧。 3. 轴承前接合面处漏油的原因:一、密封纸垫损坏,应及时更换相同的纸垫。二、紧固螺丝松动,应按对角线顺序分次拧紧,但不应拧得过紧,以免损坏纸垫。此外,变速箱通气孔堵塞,变速箱工作时与外界大气隔绝,造成箱内压力升高,也使油从堵塞处渗出。应保持变速箱通气孔畅通,减少箱内的压力,防止漏油。 4. 油封或凸缘磨损,齿轮油量超过规定标准。 5. 各轴端间隙过大,座孔及轴承松旷,衬垫破损失效,密封垫圈损坏或漏装。 6. 各密封件表面的加工质量没有达到产品图纸要求,油封老化失效,紧固螺栓松动。 7. 润滑油使用不当,如:误将后桥用的18 镏分型双曲线齿轮油加入变速器内(即和变速

汽轮机轴瓦温度高的原因分析及处理

汽轮机轴瓦温度高的原因分析及处理 李守伦,张清宇 (焦作电厂,河南焦作 454159) [摘 要] 对几种典型轴瓦温度高的现象进行分析,并通过适当处理,清除了故障,使轴瓦温度恢复正常。[关键词] 汽轮机;轴瓦;轴瓦温度 [中图分类号]T K263.6 [文献标识码]B [文章编号]10023364(2003)03006202 汽轮机轴瓦温度是机组运行控制的重要参数之一。轴瓦温度高会严重威胁机组的安全运行,本文对几种典型轴瓦温度高的现象进行了分析,并介绍对其的处理方法及结果。 1 300MW 汽轮机2号轴瓦(东方汽轮 机厂) (1)河南省某厂2号机为东方汽轮机厂(东汽)生产的N300 16.7(170)/537/537 ó型(合缸)汽轮 机。机组大修后运行情况良好,在做甩负荷试验时,当转速降至1100r/min 时,2号轴瓦瓦温突然升高,由68e 急剧升至92e ,且随转速降低有升高趋势,后被迫停机。 该机2号轴瓦系带球面套的椭圆轴承,自动调整,双侧进油,为强迫液体润滑轴承。 停机后解体检查,发现该轴承下侧钨金磨损严重,顶轴油孔被钨金全部填塞,油囊已磨平,两侧油孔亦有钨金堆积现象,轴承顶隙增大0.20mm,其它检修尺寸无异常变化。查大修及运行记录,大修时中心调整在制造厂的标准内。启动时油膜压力:1号为4.2MPa,2号为3.8M Pa,3号为4.6M Pa 。冲转后油膜压力:1号为2.6MPa,2号为2.1MPa,3号为2.7MPa 。油膜压力均与中心调整值相吻合,无异常现象。但是,根据现场记录,随运行时间的增加,2号瓦的油膜压力随缸温的增加而逐渐增高,最高达到2.6M Pa 。 (2)东汽型机组2号瓦中心高差设计时预留(0.30~0.36)m m,预留中心高差时已考虑运行中的负荷分配情况。现场观察轴瓦钨金带有磨损痕迹而非烧毁痕迹,判断钨金为运行中磨损。由于停机时1100r/min 为顶轴油泵开启转速,而顶轴油孔被堵死,导致无法形成轴瓦油膜,造成大轴与轴瓦直接磨擦,引起瓦温迅速升高。根据机组运行中2号瓦油膜压力逐渐增高的趋势,判断2号瓦标高随机组运行渐入稳态而逐渐升高,由于预留中心高差不足,导致运行中磨损。 (3)由于3号瓦未磨损,2号瓦被磨损约0.20mm,故仅修刮2号瓦下瓦被磨损的钨金;开出顶轴油囊,疏通顶轴油孔;2号瓦结合面镗去0.20mm 后将轴瓦恢复,预留中心高差增大0.20mm,最终达到(0.50~0.56)mm 。 (4)处理后,机组运行情况良好,2号瓦温度一直在标准范围内,其间因锅炉原因再次停机时瓦温亦无变化。 2 200MW 汽轮机2号轴瓦(东方汽轮 机厂) (1)河南省某电厂6号机为东方汽轮机厂生产的N200 130/535/535型汽轮机。在2000年9月的大 修中进行了通流部分改造。因为更换新转子,致使2号轴瓦处间隙过大,便更换了2号轴承。该轴承为推力支持联合轴承,支持部分为三油楔形式,瓦枕和瓦为球面定位方式。大修后开机过程中,瓦温随转速升高而逐渐升高,当瓦温达到94e 时,被迫打闸停机,其间油膜压力无变化,振动亦保持在30L m 以下。停机后翻瓦检查,发现此瓦支持部分上瓦钨金磨损,下瓦无磨损痕迹,其余部分无异常。瓦各紧力、扬度无变化,顶 技术交流 q w 热力发电#2003(3)

电动机轴承温度更高的原因与处理方法

电动机轴承温度更高的原因与处理方法 电动机运行时,轴承外圈允许温度不应超过95℃,如果超过这个值就是电动机轴承温度过高,也称电动机轴承发热。轴承发热是电动机最常见的故障之一。轻则使润滑脂稀释漏出,重则将轴承损坏,给用户造成经济损失。今就轴承(NSK轴承)发热的原因及处理方法简单介绍如下。 (1)运行中的电动机如果轴承已经损坏,可造成电动机轴承过热。应检查轴承的滚珠或滚珠轴承的轴瓦是否损坏,如有损坏应修理或更换。 (2)在更换润滑脂时,如果混入了硬颗粒杂质或轴承清洗不干净,会使轴承磨损加剧而过热,甚至还有可能损坏轴承。应将轴承和轴承端盖清洗干净后,重新更换润滑脂,且使油室内的润滑脂充满至2/3。 (3)轴承室内缺油。电动机轴承长期缺油运行,摩擦损耗加剧,使轴承过热。定期维护保养,应加润滑脂充满2/3油室或加润滑油至标准油面线,避免电动机轴承缺油运行。(4)润滑脂牌号不对。要尽快更换正确型号的润滑脂。一般应选用3号锂基脂或3号复合钙基脂。 (5)滚动轴承中润滑脂堵塞太多,应清除滚动轴承中过多的润滑脂。 (6)润滑脂有杂质、太脏、过稠或油环卡住。应更换润滑脂,查明卡住原因进行修复,油粘度过大时应调换润滑脂。 (7)轴承与轴、轴承与端盖配合过松或过紧,太紧会使轴承变形,太松容易发生“跑套”。轴承与轴配合过松时可将轴颈涂金属漆或对端盖进行镶套,过紧时应重新加工。 (8)皮带过紧、过松、联轴器装配不良或电动机与被拖动机械轴中心不在同一直线上,使轴承负载增加而发热。应调整皮带松紧度;校正联轴器。

(9)由于装配不当,固定端盖螺丝松紧程度不一致,造成两轴中心不在一条直线上或轴承外圈不平衡,使轴承转动不灵活,带上负载后摩擦加剧而发热,应重新装配。电动机轴承温度 (10)电动机两端盖或轴承盖没装配好,通常是不平行,造成轴承不在正确位置。将两端盖或轴承盖止口装平,旋紧螺栓。 (1 1)检修时换错了轴承型号,要尽快更换正确型号的轴承。 (12)轴承质量差,例如个别钢珠不圆,轴承内外圈锈蚀等,应进行调整或更换轴承(NSK 轴承)。 (13)当电动机震动过大时,会导致电动机轴承磨损加剧,使轴承过热。电动机震动过大的原因有:机壳或基础强度低;地基不平或固定螺丝松动;轴承间隙过大;转子不平衡或转轴弯曲;铁芯变形或松动;定子铁芯压装不紧;风扇不平衡;传动装置不良;机械负载振动等。对应的处理方法:进行加固;用水平仪测地基是否水平,目测电动机安装角度与拖动的机械是否合适,检查底座或其它固定螺丝有无松动;检修轴承,必要时更换;校正转子动平衡,校直转轴;校正重叠铁芯;检查铁芯,并重新压紧;检修风扇,校正平衡,纠正其几何形状;检修传动装置;找出机械负载振动原因并予以消除。 (14)电动机转动部分与静止部分相擦时,轴承偏磨,同时负荷也增加,使得轴承过热。电动机定、转子相碰的主要原因有:轴承严重损坏;轴及铁芯弯曲;电动机端盖磨损等。

汽轮机轴瓦温度高的原因分析及处理措施

汽轮机轴瓦温度高的原因分析及处理措施 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

汽轮机轴瓦回油温度高的原因分析及对策 ×××(××××××发电有限责任公司×××× 044602)摘要:本文着重分析了汽轮机组在运行中轴瓦温度升高的原因,轴瓦温度升高严重时会引起机组的振动,轴瓦的烧毁,威胁着机组的安全运行。针对造成轴瓦温度升高的原因提出了防范措施,供运行和检修部门参考。 关键词:汽轮机轴瓦温度 0前言:润滑油系统的作用是润滑轴承和减少轴承的摩擦损失,并且带走因摩擦产生的热量和由转子传过来的热量,并向调节系统和保护装置供油,保证其正常工作,以及向发电机密封瓦提供密封油等,润滑油系统的工作好坏对的正常运行有非常重要的意义。汽轮机转子与发电机转子在运行中,轴颈和轴瓦之间有一层润滑油膜。若油膜不稳定或油膜破坏,转子轴颈就可能和轴瓦发生干摩擦或半干摩擦,使轴瓦烧坏,使机组强烈振动。引起油膜不稳和破坏的因素很多,如润滑油的黏度,轴瓦间隙,轴瓦面积上受的压力等等。在运行中,如果油温发生变化,油的黏度也会跟着变化。当油温偏低时,油的黏度增大,轴承油膜增厚,汽轮机转子容易进入不稳定状态,使汽轮机的油膜破坏,产生油膜震荡,使机组发生振动。现把引起轴瓦温度升高的因素归纳如下: 1.轴瓦进油分配不均,个别轴瓦进油不畅所致。 此种情况下,首先检查轴瓦进油管道入口滤网,是否堵塞。观察回油量是否正常。必要时轴瓦解体全面检查。尤其是刚大修完的机组,根据以往发生的事件来看,多数情况下是由于检修人员的工作疏忽,不认真,在轴瓦回装时,没有仔细检查,清理轴承箱,拆机时油口的封堵忘记拿掉造成开机时轴承温度升高,甚至烧瓦事故。本

轴承箱漏油原因及处理方法

锅炉的风机、磨煤机、给煤机、给粉机等辅机的轴承都采用机油润滑,但其轴承箱漏油现象普遍存在,严重时会影响机组的正常运行。为保障发电机组的安全运行,实现文明生产,近年来对辅机轴承箱的漏油问题进行了技术改造,取得了一定的成效,但也存在一些不足。本文对此进行分析和总结。1漏油原因分析在密封装置中,油往往是以渗漏的形式泄漏到密封连接处的另一侧。造成漏油的基本原因是密封面上有间隙和密封部位内外两侧存在压力差,致使油向压力或能量较低的地方流动。从系统的观点分析,漏油除了以上的基本原因外,还与密封装置的结构设计、安装检修、运行维护等有关,可将其归纳为两大类。1.1管理不善管理不善的主要表现:(1)人员的培训、考核不到位,检修人员工艺水平不高,造成设备振动过大;(2 )为了安全,动静密封安装间隙调整过大使密封失去作用;(3)维护时加油油位过高,不仅引起过大的搅油损耗,且使漏油加剧。1.2结构设计不合理有漏油缺陷的轴承箱一般总存在结构不完善之处,主要有以下几种:(1)油位不正常,偏高。油位不正常的结构原因一是油位镜不清楚,二......( 润滑油轴承箱漏油原因及处理方法 任何转动机械都必须有轴承(或轴瓦)支承,而轴承在使用中必须有相应的润滑系统。润滑系 统中常见的润滑剂有润滑油、润滑脂和固态润滑剂三大类,其中最常用的是润滑油和润滑脂。 润滑脂为固态,不易流动,一般不会发生渗漏现象。润滑油为液态,密封不好,运行中易发生渗 漏现象。而润滑油的载体——润滑油箱,则起着密封作用,润滑油箱的密封结构形式如果不合 理或使用不当,将会造成漏油现象,这是一个很令人头痛的问题,一是轻易使轴承烧损,二是不 仅浪费了润滑油,而且流出的油渗到基础上会造成基础强度下降,所以在设备运行及检修投 入使用后要防止油箱漏油。 润滑油箱对润滑油的密封可看成是静密封和动密封。静密封是箱体盖与箱体之间、侧端盖与箱体之间等各部分之间没有相对运动的部位的密封。只要配合部位平面度达到一般 要求,即可采用加垫片、加密封胶的方法,来解决密封问题。大唐国际乌纱山发电厂引风机(成 都电力机械厂AN35e6(V19+4))润滑油站在投入运行初期,出现过油箱箱盖密封不严,运行中 有漏油现象,经过对箱盖改造,在箱盖增加密封槽,加装密封胶圈,效果明显,没有发生漏油现 象。动密封是轴在旋转中与轴承箱侧端盖所形成的密封。如果此处密封结构选用不当,将会

汽轮机轴瓦温度高的原因分析及处理措施

汽轮机轴瓦回油温度高的原因分析及对策 ×××(××××××发电有限责任公司×××× 044602)摘要:本文着重分析了汽轮机组在运行中轴瓦温度升高的原因,轴瓦温度升高严重时会引起机组的振动,轴瓦的烧毁,威胁着机组的安全运行。针对造成轴瓦温度升高的原因提出了防范措施,供运行和检修部门参考。 关键词:汽轮机轴瓦温度 0前言:汽轮机润滑油系统的作用是润滑轴承和减少轴承的摩擦损失,并且带走因摩 擦产生的热量和由转子传过来的热量,并向调节系统和保护装置供油,保证其正常工作,以及向发电机密封瓦提供密封油等,润滑油系统的工作好坏对汽轮机的正常运行有非常重要的意义。汽轮机转子与发电机转子在运行中,轴颈和轴瓦之间有一层润滑油膜。若油膜不稳定或油膜破坏,转子轴颈就可能和轴瓦发生干摩擦或半干摩擦,使轴瓦烧坏,使机组强烈振动。引起油膜不稳和破坏的因素很多,如润滑油的黏度,轴瓦间隙,轴瓦面积上受的压力等等。在运行中,如果油温发生变化,油的黏度也会跟着变化。当油温偏低时,油的黏度增大,轴承油膜增厚,汽轮机转子容易进入不稳定状态,使汽轮机的油膜破坏,产生油膜震荡,使机组发生振动。现把引起轴瓦温度升高的因素归纳如下: 1.轴瓦进油分配不均,个别轴瓦进油不畅所致。 此种情况下,首先检查轴瓦进油管道入口滤网,是否堵塞。观察回油量是否正常。必要时轴瓦解体全面检查。尤其是刚大修完的机组,根据以往发生的事件来看,多数情况下是由于检修人员的工作疏忽,不认真,在轴瓦回装时,没有仔细检查,清理轴承箱,拆机时油口的封堵忘记拿掉造成开机时轴承温度升高,甚至烧瓦事故。本人见过的这种事故就有三起。所有这种事故经验教训要引起我们的足够重视。若轴瓦经认真检查未发现问题,则可以适当加大轴瓦进油口节流孔板的孔径,增加进油量。 2.轴瓦工作不正常。检修时轴瓦间隙、紧力不合适,安装时不到位,造成轴瓦偏斜,致使运行中轴瓦油膜形成不好而发热。 某厂一台125MW机组在大修中发现#5轴瓦磨损严重,各部间隙严重超标,经补焊、车削后,由检修人员进修修刮、研磨处理。开机后#5瓦振动0.036mm,回油温度80度,立即打闸停机解体检查,用塞尺检查轴瓦侧隙,发现轴瓦偏斜。翻出下瓦,发现轴瓦接触角偏大,顶轴油囊磨损。分析原因为:此轴瓦为椭圆瓦,自位能力差,安装时轴瓦未放正,造成轴瓦偏斜,导致轴瓦接触不良,使轴瓦局部过载后发热,造成顶轴油囊磨损。轴瓦在按标准

锅炉辅机轴承箱漏油原因及治理方法分析

锅炉辅机轴承箱漏油原因及治理方法分析 发表时间:2017-08-17T14:32:46.983Z 来源:《基层建设》2017年第11期作者:袁庆郁 [导读] 摘要:近年来,锅炉辅机轴承箱漏油及其及治理问题得到了业内的广泛关注,研究其相关课题有着重要意义。 华电能源股份有限公司佳木斯热电厂黑龙江佳木斯 154005 摘要:近年来,锅炉辅机轴承箱漏油及其及治理问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了锅炉辅机轴承箱漏油的多方面原因,并结合相关实践经验,分别从改变润滑方式、负压密封防漏以及组合密封方式等多个角度与方面,就其治理方法展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:锅炉辅机;轴承箱;漏油;原因;治理 前言 作为锅炉辅机应用中的一项重要方面,对其轴承箱漏油的治理占据着极为关键的地位。该项课题的研究,将会更好地提升对轴承箱漏油原因的分析与掌控力度,从而通过合理化的措施与途径,进一步优化锅炉辅机在实际应用中的最终整体效果。 1 漏油原因分析 在密封装置中,油往往是以渗漏的形式泄漏到密封连接处的另一侧。造成漏油的基本原因是密封面上有间隙和密封部位内外两侧存在压力差,致使油向压力或能量较低的地方流动。从系统的观点分析,漏油除了以上的基本原因外,还与密封装置的结构设计、安装检修、运行维护等有关,可将其归纳为两大类。 1.1 管理不善 管理不善的主要表现:(1)人员的培训、考核不到位,检修人员工艺水平不高,造成设备振动过大;(2)为了安全,动静密封安装间隙调整过大使密封失去作用;(3)维护时加油油位过高,不仅引起过大的搅油损耗,且使漏油加剧。 1.2 结构设计不合理 (1)油位不正常,偏高。油位不正常的结构原因一是油位镜不清楚,二是对于组合式轴承箱,由于两端轴承直径不一致,会引起油位的不正常。例如某修造厂生产的M53611型离心风机,两端轴承型号分别为32334与46330,由产品手册可知轴承外径对应为360mm和320mm。两轴承最低滚动体中心线相差15mm。当向心轴承油位正常时,向心推力轴承的油位必然偏高。对这种轴承箱漏油问题的处理,除进行轴封改造外,将其油箱一隔为二,对两轴承的油位分别控制,可取得很好的效果。(2)密封装置过于简单,如采用简单的环形间隙密封或环形间隙密封加毡圈密封。环形密封间隙一般要求为(0.1~0.3)mm,但实际间隙达不到要求,约为1mm,从而使密封效果更差。毡圈密封的材料为羊毛毡,纤维易老化而使密封效果变差。此外,毡圈密封仅对粘度较大的润滑油密封效果较好。(3)关于透气孔问题。封闭式轴承箱内的温度和压力往往高于外部,若轴承箱上通气孔堵塞或用普通无通气孔螺栓代用,则在轴封处会引起内外压力差,导致漏油。 2 治理方法 2.1 改变润滑方式 轴承的润滑方式主要有2种,润滑油润滑和润滑脂润滑。润滑脂是由润滑油和稠化剂混合而成的胶状润滑剂,其流动性小,不易流失,因此密封装置简单,维护保养方便。将稀油润滑改为脂润滑能解决漏油问题,但要注意润滑脂的剪切率是否满足要求。一般利用滚动轴承的速度因素d×n代表油脂所受的剪切率。其中d为轴承内径,mm;n为转速,r/min。若d>65mm,可用dm代替d,dm为轴承内外径的平均值。若d×n<许用值,可考虑改用脂润滑,否则会造成轴承烧毁、轴损坏的事故。值得注意的是,一般资料介绍该许用值为4×105,但实际上,各种轴承使用润滑脂时都有一个速度极限系数,且不同轴承允许的速度极限系数相差很大。 2.2 负压密封防漏 轴承箱一般为下部充满油的封闭连通空腔,对于风机轴承箱,若利用风机入口风道负压,在轴承箱内产生一定的负压,则轴封处的内外压差Δp就会产生阻力R阻止油渗漏。此方法既有改造成功的例子,也有改造失败的例子,其关键是箱体内要有适度的负压。因此,一要保证轴承箱除轴封处外不应有其它漏风之处,二要从风机负压较大的地方接入。这种方法虽能消除漏油,但在轴承箱内形成的负压随风机调节变化,不易控制。轴承箱内的负压小,起不到密封效果;负压过大,会将外部环境中灰尘、水分吸入轴承箱内,使轴承和润滑油被污染,故该法不宜推广。 2.3 组合密封方式 2.3.1 迷宫加油封 径向迷宫+双向油封形成的组合密封设计特点是采用双油封反向安装,同时起到防漏油和防外部灰尘和水分侵入的作用。迷宫的动环同时可起一挡油环的作用,但由于甩到壁面上的油又顺壁流到迷宫处,加重了迷宫密封的负担,若能处理好甩出的油,将它引回到油池,其密封特性将更好。也有改进后,省去油封仍用毡圈的例子。其缺点是,迷宫结构的间隙要求较高,设计加工安装较麻烦。设计迷宫结构应注意:(1)迷宫的曲折弯道一般3~5道。弯道多则径向尺寸大,加工安装较困难;弯道少则流阻小,效果较差。(2)迷宫径向间隙取(0.2~0.5)mm;轴向间隙要考虑轴受热后会伸长,取(1~2)mm。 2.3.2 组合式迷宫 组合式迷宫密封装置由3道迷宫密封组合而成,其特点是密封效果好,结构简单,基本不需维护。工作原理是轴承转动带起的油流到圆螺母转动环上,在圆螺母转动环、端盖、轴组成的第1道迷宫密封和轴、端盖、原毡圈腔形成的第2道迷宫密封阻挡下,渗出的油一部分沿端盖上的回油孔回到油池,另一部分在端盖上的直通型迷宫阻隔下沿端盖上的回油槽回到油池。层层阻挡和二次回流,起到了有效的密封作用。该装置的动静部分的径向间隙很重要,间隙过大,密封效果较差;间隙过小,精度等级要求提高,增加加工安装的困难。径向间隙一般取(0.1~0.3)mm。 2.3.3 异形挡油环+引油环 该装置从原理上属于离心密封和迷宫密封组合治漏,但在结构上采用引流环,将油引回油池,隔断和阻止液体进入泄漏缝隙。具体改造方法是将轴承并紧螺母改造成异形挡油环。同时加工端盖内部并在其上加装一引油环。工作原理是当设备转动时,轴承碾溅到外侧的润滑油沿异形挡油环切线方向成75°~90°甩出,一部分被抛甩到轴承室,另一部分被抛甩到端盖,然后被引油环收集流回轴承箱。同时异形

轴承温度标准

轴承温度标准-泵轴承温度标准 GB3215-82 4.4.1 泵工作期间,轴承最高温度不超过80 JB/T5294-91 3.2.9.2 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T6439-92 4.3.3 泵在规定工况下运转时,内装式轴承处外表面温度不应高出输送介质温度20,最高温度不高于80。外装式轴承处外表面温升不应高处环境温度40。最高温度不高于80 JB/T7255-94 5.15.3 轴承的使用温度。轴承温升不得超过环境温度35,最高温度不得超过75 JB/T7743-95 7.16.4 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T8644-1997 4.14 轴承温升不得超过环境温度35,最高温度不得超过80 电机轴承温度规定、出现异常的原因及处理。 规程规定,滚动轴承最高温度不超过95?C,滑动轴承最高温度不超过80?C。并且温升不超过55?C(温升为轴承温度减去测试时的环境温度);具体见HG25103-91 轴承温升过高的原因及处理: (1)原因:轴弯曲,中心线不准。 处理;重新找中心。 (2)原因:基础螺丝松动。 处理:拧紧基础螺丝。 (3)原因:润滑油不干净。 处理:更换润滑油。 (4)原因:润滑油使用时间过长,未更换。 处理:洗净轴承,更换润滑油。 (5)原因:轴承中滚珠或滚柱损坏。 处理:更换新轴承。

按照国家标准,F级绝缘B级考核,电机温升控制在80K(电阻法),90K(元件法)。考虑到环境温度40度的情况,电机运行最高温度不能超过120/130度。轴承温度最高允许95度。用红外检测枪测量轴承室外表面的温度,经验上,4极电机最高点温度不能超过70度。对于电机本体,不用监测。电机制造完成后,一般情况下,他的温升基本上是固定的,不会随着电机运行发生突变或者不断增长。而轴承是易损件,需要检测。

汽轮机组推力瓦轴承温度升高的原因分析

汽轮机组推力瓦轴承温度升高的原因分析 我厂所用汽轮机为N4.2-3.60型4.2MW凝汽式汽轮机。本人在学习与实际操作中,认识到保障及影响汽轮机安全经济运行的因素有:轴位移、轴振动、润滑油系统、保安油系统、轴承温度、冷凝水系统等。本人在论文中着重以汽轮机轴承温度对汽机运行地影响展开论述介绍。 汽轮机组推力瓦轴承的主要作用是承受汽轮机转子在运行中的轴向推力,维持汽轮机转子和静止部件间的正常轴向间隙,因此,推力轴承的正常工作是汽轮机组安全经济运行的先决条件之一。在汽轮机组运行中,影响推力瓦温度的因素有很多,在此主要阐述其原理与处理措施。

汽轮机知识要点 (3) 1、汽轮机结构 (3) 2、汽轮机的工作原理 (3) 2.1、推力轴承结构 (5) 2.2、推力轴承作用 (6) 2.3、推力轴承受力分析 (6) 三、推力瓦轴承温度升高的原因分析 (7) 3.1、润滑油系统异常或进入杂质 (7) 3.2、汽轮机发生水击或蒸汽温度下降 (8) 3.3、汽轮机临界转速喘振情况下 (10) 3.4、汽轮机启停不当 (12) 3.5、蒸汽品质不良,叶片结垢、蒸汽流量不足 (13) 3.6、机组突然甩负荷,或调速汽门突然失灵关闭 (14) 四、建议 (14) 总结 (16) 实习体会 (16)

汽轮机知识要点 1、汽轮机结构 我厂所用汽轮机为N4.2-3.60型4.2MW凝汽式汽轮机。本汽轮机为单缸凝汽式汽轮机,本体主要由转子部分和静子部分组成。转自部分包括整锻转子、叶片、危急遮断器、盘车齿轮、联轴器等;静子部分包括汽缸、蒸汽室、喷嘴组、调节级护套、隔板、汽封、轴承、轴承座、调节汽阀等。 2、汽轮机的工作原理 汽轮机是利用水蒸汽的热能作功的旋转式原动机。汽轮机在工作时先将水蒸汽的热能转变为水蒸汽的动能,再把水蒸汽的动能转变成转轴旋转的机械能。

电机滑动轴承漏油原因分析及处理01

电机滑动轴承漏油原因分析及处理 张坤 (贵州天福化工有限责任公司,贵州福泉550501) [摘要]化工生产企业中,使用较多的是大功率轴瓦电机。轴瓦电机通常使用强制润滑系统。在运行过程中,轴瓦电机频繁发生漏油现象。本文对轴瓦电机漏油原因进行了分析,提出了解决方案,可供同行业在类似的应用中参考。 [关键词]轴瓦电机;漏油;原因分析;处理方案 电动机在工业领域中的使用非常普遍。化工生产企业中,使用较多的是大功率轴瓦电机。大功率轴瓦电机通常使用强制润滑系统。在运行过程中,轴瓦电机频繁发生漏油,主要表现为滑动轴承漏油。针对这一问题,通过检修维护的实践,分析了电机漏油的原因,得出了一些切实有效的解决方案,可供同行在类似的应用中参考。 1 滑动轴承工作原理 电机轴与轴瓦间的配合是间隙配合,当静止时,两者之间存在间隙;工作时,油室中的油在轴下方与轴瓦的间隙中产生一定的挤压力,在达到一定转速后,产生的油压可将轴抬起,从而在间隙之间形成油流。转速一定时,油流可起到稳定轴周围侧压的平衡,保证轴与轴瓦间隙稳定,同时,通过循环带走转动做功是的热量的作用。 2 滑动轴承漏油原因分析及解决方案 2.1滑动轴承内外压差大。强制润滑的轴瓦,润滑油本身具有一定压力,在轴高速运转时油会产生气泡(部分来自甩油环对油的冲击),从而产生一定压力。电机在运行时由于风扇作用会产生一定负压,从而增大油室内外压差(内压大于外压),导致漏油。为了平衡油室内外压差,在设计上设计了油室与外界的通气管,以平衡油室内外压差,但在使用中若因维护不到位或设备长周期运行,致使该平衡管连接松动或对外呼吸孔堵塞,将进一步增大油室内外压差,使漏油现象发生。 解决方案:定期对设备进行检查维护,检查平衡管是否松动,及时清理呼吸孔中的灰尘等杂物。 图1 回油管路图2 呼吸孔

汽轮机推力轴承温度超标的原因分析及处理方法

汽轮机推力轴承温度超标的原因分析及处理方法 摘要:推力轴承温度超标的问题在各电厂时有发生,因推力轴承推力瓦块乌金温度高, 使机组不能满负荷运行, 给企业的经济效益和设备的安全带来威胁。本文介绍汽轮机推力轴承原理结构基础上,对推力瓦块温度超标原因进行了安装检修及运行等方面分析,并对东汽N60-8.83型汽轮机支持推力联合轴承推力瓦块乌金温度超标进行处理,供从事汽轮机运行、安装和检修的人员参考。 关键词:汽轮机;推力轴承;温度;分析;探讨 1 .支持推力联合轴承的结构 汽轮发电机组的推力轴承主要作用是承受汽轮机转子在运行中的轴向推力,维持汽轮机转子和静止部件间的正常轴向间隙,因此推力轴承的正常工作是汽轮发电机组安全经济运行关键部件之一。推力轴承瓦块温度是推力轴承运行状态的一个重要参数,一但造成瓦块温度超标,乌金磨损烧坏,转子便会发生轴向位移,使汽轮机通流部分发生动静部件碰磨事故。虽然大型汽轮机采用高中压缸对头布置和低压缸采用分流式等措施以减小轴向推力,但轴向推力还是很大的。当工况变动、隔板汽封磨损间隙变大,特别是水冲击、甩负荷时,会产生瞬间轴向推力突增和反推力,从而对推力轴承提出进一步要求。 应用较广泛的推力轴承是密切尔推力轴承,这种轴承在推力盘上装有若干块推力瓦块,瓦块可以是固定的(用于小型机组)和摆动的(用于大、中型机组上)。推力轴承和支持轴承合为一体称推力——支持联合轴承。如图1及图2这种轴承结构,他在国产机组使用得较广泛。为保证轴向推力均匀地分配至各个瓦块上,选用球面支承轴承。轴承径向位置靠轴瓦外圆的垫块及其垫片来调整,轴向位置靠调整环1来调整,参看图1。支持推力联合轴承可以缩短机组轴向长度,但球面支承与球面座之间的球面加工工作量较大。 轴承的推力瓦块分为工作瓦片2和非工作瓦片3,各有十片左右。工作瓦片承受转子的正向推力,非工作瓦片承受部分负荷下可能出现的反向推力。瓦片利用销钉挂在其背面处分半的安装环10上。销钉与瓦片上的孔为较松的配合,瓦片背面有一条突起的肋,使瓦块可绕肋稍作转动,从而使瓦片2与推力盘7之间形成楔形间隙,建立液体摩擦。 图1支持—推力联合轴承 1-调整环;2-工作瓦片;3-非工作瓦片;4、5、6-油封;7-推力盘;8-支撑弹簧;9、10-瓦片安装环;11-油挡

机械设备渗油、漏油8种情况原因分析与解决办法

机械设备渗油、漏油8种情况原因 分析与解决办法 设备渗油、漏油不仅浪费,也是造成环境卫生难以彻底清理干净的一个重要原因,严重的话会影响正常生产。 1.设计选型不合理造成油封失效造成漏油 各种设备使用的环境不同,采用的润滑油质也不尽相同,油品中所含化学成分也不相同。设计制造时未考虑所使用的油品化学成份,采用了普通材料制造的油封。 安装使用后该油封在化学腐蚀下很快失效,造成漏油,更换一次非常费时、费力。在设备检修时要充分考虑设备使用的环境和润滑油,选择适合的油封予以更换,以延长使用寿命。 2.制造精度低或维修不当造成的漏油

在轴类零件加工或维修时,对轴承安装部位一般都比较重视,往往忽视了油封安装位置的加工,此位置加工粗糙或维修不当形成局部损伤。设备运转时,本体问题使得油封唇口很快损坏失效造成漏油。 所以在加工或维修时应对油封工作处的精度和粗糙度严加控制,确保此处的加工质量,才能保持油封的长期有效运行。 3.排气帽配置不合理,油池或设备箱体内存在正压气体 此问题主要是设计制造不合理所致,设备在运转中由于摩擦生热,温度升高,润滑油中的分子气化。如果不及时合理的将气体排出油池或箱体,就会在形成正压,造成从密封薄弱处渗油。

一般来说,在设备顶部安装有排气帽。但由于设计时对温度的选择和计算不合理,排气帽没有将产生的气体全部及时排出箱体,造成箱体内存在正压。 解决的办法是加大排气帽上的排气孔,使得正压气体及时合理排出。还有一种情况是润滑油随着气体一起从排气帽中漏出。这种情况下就要将排气帽的导管加长,使得油、气混合气体充分冷却后将润滑油回到箱体中,而不要与气体一起排出。 4.轴承通盖回油孔设计不合理 对于自带油润滑的设备,为了充分润滑轴承,设计者都考虑了怎样向轴承供给足够的润滑油,但对润滑油怎样回到油箱壳体内考虑的不够全面。 润滑轴承后的油不能及时回流到油箱壳体中,在轴承与通盖之间的空间集聚,随着轴的旋转而突破密封渗出。 解决的办法是加大回油孔和设置合理的导油槽,及时合理的将油回到油箱壳体中。 5.进、出油管道配置不合理造成漏油 对于循环供油润滑的设备来讲,一般供油管道比较小,回油管道较大。回油管道安装时必须具有一定的向下的斜度,尽量减少弯头。否则回油不畅,润滑点处集油过多形成正压造成渗油或漏油。 6.操作方法不当造成漏油 带有润滑油站的设备的正常操作应该先将润滑油加热到一定

轴承温度标准

一、轴承温度标准-泵轴承温度标准 1、GB3215-82 4.4.1 泵工作期间,轴承最高温度不超过80℃ 2、JB/T5294-91 3.2.9.2 轴承温升不得超过环境温度40,最高 温度不得超过80℃ 3、JB/T6439-92 4.3.3 泵在规定工况下运转时,内装式轴承处 外表面温度不应高出输送介质温度20℃,最高温度不高于80℃。外装式轴承处外表面温升不应高处环境温度40℃。最高温度不高于80℃ 4、JB/T7255-94 5.15.3 轴承的使用温度。轴承温升不得超过环 境温度35℃,最高温度不得超过75℃ 5、JB/T7743-95 7.16.4 轴承温升不得超过环境温度40℃,最 高温度不得超过80℃ 6、JB/T8644-1997 4.14 轴承温升不得超过环境温度35℃,最 高温度不得超过80℃ 二、电机轴承温度规定、出现异常的原因及处理 规程规定,滚动轴承最高温度不超过95℃,滑动轴承最高温度不超过80℃。并且温升不超过55℃(温升为轴承温度减去测试时的环境温度);具体见HG25103-91 轴承温升过高的原因及处理: (1)原因:轴弯曲,中心线不准。处理;重新找中心。 (2)原因:基础螺丝松动。处理:拧紧基础螺丝。 (3)原因:润滑油不干净。处理:更换润滑油。

(4)原因:润滑油使用时间过长,未更换。处理:洗净轴承,更换润滑油。 (5)原因:轴承中滚珠或滚柱损坏。处理:更换新轴承。按照国家标准,F级绝缘B级考核,电机温升控制在80K(电阻法),90K(元件法)。考虑到环境温度40℃的情况,电机运行最高温度不能超过120/130℃。轴承温度最高允许95度。用红外检测枪测量轴承室外表面的温度,经验上,4极电机最高点温度不能超过70℃。对于电机本体,不用监测。电机制造完成后,一般情况下,他的温升基本上是固定的,不会随着电机运行发生突变或者不断增长。而轴承是易损件,需要检测。

汽轮机轴瓦温度高分析与处理

汽轮机组轴瓦温度高的分析及处理 李亮 (1.内蒙古电力工程技术研究院,内蒙古 呼和浩特) 摘要: 分析某汽轮机300MW 机组普遍存在的2号轴瓦温度高原因,阐述了影响可倾瓦温度的关键因素,并通过合理选择轴承的油隙、调整轴瓦的负荷分配、修刮可倾瓦的进出油楔、扩大进油节流孔等手段,使改型机组2号轴瓦温度明显降低。 某汽轮机300MW 直接空冷机组,首次启动后#2瓦温度偏高,尤其是#2B 侧温度最高达105℃,且还有增大趋势。经调整润滑油温在42℃左右时,瓦温略有下降,但始终高于102℃。停机翻瓦检查,瓦块有明显划痕,最终通过调整轴承的油隙、调配轴瓦的负荷分配、修刮可倾瓦的进出油楔、扩大进油节流孔等手段,使机组2号轴瓦温度明显降低。这对保障机组安全、稳定运行具有重要的意义,同时对解决同类型机组存在的同样问题具有重要的参考价值。 一、机组轴系简介 本机组为两缸两排汽型式,转子总长7364(不含主油泵轴及危急遮断器),高压转子与低压转子之间采用止口对中,刚性联轴器联接。轴系示意图见图一 图一 东汽300MW(合缸)汽轮发电机组轴系示意图 如图一所示,本机组共6个支持轴承,1#和2#轴承为可倾瓦轴承,3#和4#椭圆轴承通用,单侧进油,另一侧开有排油孔,上瓦开周向槽。各轴承设计参数如表一: ?÷óí±?×a×ó í?á|?á3Dáa?á?÷(?Dμí????) ?£?±?ú???÷ 1# 2#·??D??×a×ó 3#áa?á?÷(μíμ???) ·¢μ??ú×a×ó μí??×a×ó4#5#6#

表一 支持轴承主要参数 下计算的。 二、瓦温升高现象 机组启动升速过程中,瓦温逐渐上升,尤其在2000rmp 高速暖机后继续冲转时,瓦温升高明显,定速时达到#2瓦B 侧稳定达到100℃左右,并网带负荷后还有升高趋势,经调整润滑油温在42℃左右时,瓦温略有下降,但始终高于102℃。图二为机组启动升速过程中瓦温变化曲线。 40 50607080901001100 5 10 15 20 25 30 机组转速(rmp*100) 瓦 温(℃) 图二 机组启动过程中瓦温变化曲线 二、瓦温偏高原因分析 1.轴封漏汽的影响:该机组为高中压合缸结构,为缩短转子长度,减少轴承数,将2#瓦布置在中压缸排汽口内,受汽缸、汽封的温度和漏汽量影响较大。

大型火电厂汽轮机轴承振动大的原因及对策分析 闫冰

大型火电厂汽轮机轴承振动大的原因及对策分析闫冰 发表时间:2019-11-15T17:24:11.423Z 来源:《基层建设》2019年第24期作者:闫冰[导读] 摘要:随着社会经济的不断发展,同时也是顺应可持续发展的要求,火电厂的规模和装机容量也在逐渐扩大。山东电力建设第三工程有限公司山东青岛 266100 摘要:随着社会经济的不断发展,同时也是顺应可持续发展的要求,火电厂的规模和装机容量也在逐渐扩大。汽轮机作为大型火电厂的重要组成部分,得到了广泛关注。一方面,汽轮机的正常运转能够使电力得到有效的规划。另一方面,随着装机容量的增大,汽轮机轴承仍然存在着振动较大的情况,需要技术人员去解决。 关键词:大型火电厂汽轮机;轴承震动; 随着时代的进步,工业生产及居民日常生活中,电能供给提出了新的质量要求。作为大型火电厂的重要设备,汽轮机运行状态直接影响到电能的正常供给。在实际工作中,汽轮机故障,尤其是轴承振大,为居民日常生产与生活造成了严重的影响,因此深入分析汽轮机轴承振大原因及处理措施,具有非常重要的意义。 1汽轮机轴承振大原因 1.1汽流激振。大型火电厂轴承转动中,气流激振现象比较常见,由此导致振动幅度变大,原因包含:1)汽轮机通过叶轮及安装的叶片,将蒸汽机械能转换为动能,蒸汽对叶片不断冲击,因叶片所占面积大,且末级叶片比较长。气流到达轮机尾端,运行不规则且比较混乱。同时,叶片具有膨胀与收缩性,连续性振动影响下发生改变,影响到汽轮机流经通道出现激振。2)气流激振与传统振动方式有所差异,其主要体现在频率不稳定,气流激振频率严重分化,如果汽轮机处于低频状态,其分量数值就会增大,产生较大的气流差值,运行参数不断变大,发生轴承振大。 1.2转子热变形。随着装机容量的增长,转子长度也不断增加,转子出现热变形,导致机组振动出现异常。首先,根据转子热变形机组振动特点,振动幅度与机组转子运行时间密切相关。转子运行时间越长,其产生的热量就越多,温度也不断增加。转子运行是有规则的,有相应的承受标准。如果高出现有负载量,就会影响汽轮机组冷却状态,转子自身金属特点也会改变。尤其在机组启动到定速时间,很多汽轮机转子都会出现热变形。其次,转子不断受热,就会发生弯曲变形,呈现出“凹凸不平”,在运作渠道中机组运行受阻,发生异常振动。此外,转子材质不同,其承受内应力也不同,热量释放也有所差异。转子受热后,导致振动倍数不断增加,结合热量散发频率形成相位波动,此种情况下,转子异常振动更加明显。 1.3摩擦振动。摩擦振动引起振大主要体现为:1)受转子影响,机组运行中,工作温度不断升高,导致机组内外部形成气压差。如果气压差发生变化,振动信号也会不同,受线性冲击影响,主工频产生新的不平衡力并占据主导地位,由此形成振动加剧现象。2)转子与轴承摩擦过程中,火电机组分化统一区间波形,分化数量大,波形发生“削顶”现象,导致振动加剧。3)汽轮机持续运转情况下,突然骤停,导致相位变化,轴承临界值出现降速,原始温度变小。由此温度突然升高或降低,就会引起汽轮机抖动,产生摩擦导致振动加剧。 1.4轴封供汽压力。在汽轮机组中,轴封是重要构成部件,其结构、材质与形状也会造成轴承振动。其材质构造,一般通过高压封片进行安装。机组运行时,温度升高无法规避,高压封片类似于硬性组件,外部结构比较脆弱,使用不当会发生软化问题。如果轴封受热变形,就会使轴封供气压力变大,封片发生倒伏,高压端蒸汽外漏,低压端空气进入。随着负荷变化,轴封呈现高低起伏不同的变化,尤其是低压缸轴封供气压力与内部蒸汽两者之间的压力差,导致振动加剧。(5)人员操作不规范。汽轮机组运行中,操作人员操作不规范,也是引起轴承振大的重要因素。部分火电厂操作人员主管认为自身经验丰富,不用检查就可进行操作,因此实际执行时,不会严格依照步骤进行操作,甚至出现错误操作,导致润滑油发生中断。一旦润滑油中断,轴承失去支撑动力,汽轮机动静部分出现严重的摩擦,从而引起振动加剧问题。 2.大型火电厂汽轮机轴承振动大的处理方法 2.1 仔细检查排除汽流激振现象 仔细排查气流激振现象非常必要。主要内容有: (1)运行人员进行定期检查,根据汽轮机的特点进行气流激振的信息记录。 (2)分析故障。检查人员应该以“月”或者“年”为标准,将每一次振动所出现的时间以及相关数据对应。并根据机组轴承振动中的最大值与最小值的比较,绘制出相应的曲线。 (3)曲线的分析工作。曲线的走势与变化幅度都代表着汽轮机在负荷临界点的速率变化。检查人员应该采用逐一排除的方式,根据蒸汽流量的不同进行气汽压的调整,最终达到气流激振排除的目的。 2.2 控制转子温度,避免因受热不均产生热变形 控制转子温度的措施主要体现在以下几个方面: (1)工作人员要进行转子的状态性检查,以转子系统的均和性为主,将旋转的重心进行重新调整。如果重心以规范化布局的形式呈现在机组内部,那么则会使轴承的工频减弱,从而实现转子温度控制的目标。 (2)运行人员定期监视转子的温度及偏心,合理安排机组检修时间,将偏心大的转子进行直轴,消除弯曲情况,避免转子热弯曲的发生。 (3)加强机组的开停机管理,使转子受热均匀,避免转子热弯曲。通过以上措施从而减少动静摩擦,防止振动产生。 2.3 掌握摩擦振动原理,减轻摩擦振动现象 首先,工作人员应该从摩擦的基本原理出发,研究振动现象。摩擦振动主要体现在转子上。当转子出现热弯曲的现象时,汽轮机会出现运动不规则、剧烈抖动等情况。由于转子的受力面積不同,所以摩擦力的大小也不尽相同。如果摩擦力相对较大,转子在不断运行下的温度也会随着升高,两个截面中的运转不平衡加剧。转子的某一局部会出现过热的现象,从而造成转子弯曲,振动增加。所以,工作人员应该从摩擦的原理出发,检查与核实问题。主要有: (1)记录振动的稳定性,及时检查转子质量。检查人员要调整机组运行中的温度与频率,将相邻两轴承之间的位置进行有效的调整。按照汽轮机的负荷、转速以及运转时间进行逐一统计,在运动规则性得以体现。(2)调整两个截面的位置,实现受力的均匀性与平衡性,减少摩擦过程中的热量。

电机温度标准

GB3215-82 4.4.1 泵工作期间,轴承最高温度不超过80 JB/T5294-91 3.2.9.2 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T6439-92 4.3.3 泵在规定工况下运转时,内装式轴承处外表面温度不应高出输送介质温度20,最高温度不高于80。外装式轴承处外表面温升不应高处环境温度40。最高温度不高于80 JB/T7255-94 5.15.3 轴承的使用温度。轴承温升不得超过环境温度35,最高温度不得超过75 JB/T7743-95 7.16.4 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T8644-1997 轴承温升不得超过环境温度35,最高温度不得超过80 规定是这样,但是各个制造厂由于制造工艺不同可能会有点细微差别,但是不会太大的 没什么感觉 30度 有暖意 40以下 明显知道发热 45度以下 能长久触摸并无困难 50度 能长久触摸极限或只能触摸10秒 55度 触摸3秒 60度 触摸至感觉热后必须马上缩手 70度

不敢再次触摸 70以上 个人经验感觉 通常我们衡量电机发热程度是采用“温升”而不是用“温度”,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。下面就一些基本概念进行讨论。 1 绝缘材料的绝缘等级 绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。 所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。 2 温升 温升是电机与环境的温度差,是由电机发热引起的。运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。这些都会使电机温度升高。另一方面电机也会散热。当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。 3 温升与气温等因素的关系 对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。 (1) 当气温下降时,正常电机的温升会稍许减少。这是因为绕组电阻r下降,铜耗减少。温度每降1℃,r约降%。

相关文档
最新文档