现代控制理论的应用----王力2011117322

合集下载

现代控制理论(浓缩版)

现代控制理论(浓缩版)

现代控制理论(浓缩版)绪论1.经典控制理论与现代控制理论的比较。

经典控制理论也称为古典控制理论,多半是用来解决单输入-单输出的问题,所涉及的系统大多是线性定常系统,非线性系统中的相平面法也只含两个变量。

经典控制理论是以传递函数为基础、在频率域对单输入单输出控制系统进行分析和设计的理论。

它明显具有依靠手工进行分析和综合的特点,这个特点是与20世纪40~50年代生产发展的状况,以及电子计算机的发展水平尚处于初级阶段密切相关的。

在对精度要求不高的场合是完全可用的。

最大成果之一就是PID 控制规律的产生,PID 控制原理简单,易于实现,具有一定的自适应性与鲁棒性,对于无时间延时的单回路控制系统很有效,在工业过程控制中仍被广泛采用。

现代控制理论主要用来解决多输入多输出系统的问题,系统可以是线性或非线性的、定常或时变的。

确认了控制系统的状态方程描述法的实用性,是与状态方程有关的控制理论。

现代控制理论基于时域内的状态空间分析法,着重实现系统最优控制的研究。

从数学角度而言,是把系统描述为四个具有适当阶次的矩阵,从而将控制系统的一些问题转化为数学问题,尤其是线性代数问题。

而且,现代控制理论是以庞得亚金的极大值原理、别尔曼的动态规划和卡尔曼的滤波理论为其发展里程碑,揭示了一些极为深刻的理论结果。

面对现代控制理论的快速发展及成就,人们对这种理论应用于工业过程寄于乐期望。

但现代控制在工业实践中遇到的理论、经济和技术上的一些困难。

所以说,现代控制理论还存在许多问题,并不是“完整无缺”,这是事物存在矛盾的客观反应,并将推动现代控制理论向更深、更广方向发展。

如大系统理论和智能控制理论的出现,使控制理论发展到一个新阶段。

2.控制一个动态系统的几个基本步骤有四个基本步骤:建模,基于物理规律建立数学模型;系统辨识,基于输入输出实测数据建立数学模型;信号处理,用滤波、预报、状态估计等方法处理输出;综合控制输入,用各种控制规律综合输入。

《现代控制理论》课件

《现代控制理论》课件
现代控制理论
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。

控制理论及其应用第1章

控制理论及其应用第1章
要点一
总结词
控制系统的性能指标
要点二
详细描述
控制系统的性能指标是评价系统性能优劣的重要依据。常 见的性能指标包括稳定性、快速性、准确性和鲁棒性等。 稳定性是指系统在受到扰动后能够恢复平衡状态的能力; 快速性是指系统对输入信号的响应速度;准确性是指系统 输出信号与期望信号之间的误差大小;鲁棒性是指系统在 存在不确定性或参数变化时仍能保持稳定和可靠的性能。
优点
离散时间系统模型适用于数字控制系统和计算机控制系统。
缺点
离散时间系统模型的稳定性分析和设计较为复杂,需要具备一定的 数学基础才能理解和应用。
04 控制系统的稳定性分析
稳定性定义与性质
稳定性定义
如果一个系统在受到扰动后能够回到 原始状态,则称该系统是稳定的。
稳定性性质
稳定性具有相对性、局部性和动态性, 不同系统对稳定性的要求不同。
线性二次型最优控制
总结词
线性二次型最优控制是一种常用的优化 控制方法,通过最小化系统状态和控制 变量的二次代价函数,来求解最优控制 策略。
VS
详细描述
线性二次型最优控制基于线性系统模型, 通过状态反馈控制结构,将系统状态和控 制变量进行线性化处理,并采用二次型代 价函数来度量系统性能。通过求解最优控 制问题,得到最优控制策略,使得系统状 态在某种性能指标下达到最优。
03 控制系统的数学模型
传递函数模型
定义
传递函数模型是一种描述线性时不变系统动 态特性的数学模型,通过系统输入和输出的 传递函数来描述系统的行为。
优点
传递函数模型简单直观,易于理解和分析。
缺点
传递函数模型只能描述系统的稳态特性,无 法描述系统的动态过程和暂态响应。
状态空间模型

现代控制理论-2PPT课件

现代控制理论-2PPT课件
现代控制理论
20世纪60年代以后发展起来,以 状态空间法为基础,研究多输入多输出、非线性、时变等复杂系 统的分析和设计问题。
现代控制理论的研究对象与特点
研究对象
现代控制理论以系统为研究对象,包括线性系统、非线性系统、离散系统、连 续系统等。
特点
现代控制理论注重系统的内部结构、状态和行为,强调对系统的整体性能和优 化指标的研究,采用状态空间法、最优控制、鲁棒控制等先进的分析和设计方 法。
现代控制理论-2ppt课件
contents
目录
• 引言 • 线性系统的状态空间描述 • 线性系统的能控性和能观性 • 线性定常系统的稳定性分析 • 线性定常系统的综合与校正 • 非线性系统分析基础
01 引言
控制理论的发展历程
经典控制理论
起源于20世纪初,主要研究单输 入-单输出线性定常系统的分析和 设计问题,采用传递函数、频率 响应等分析方法。
串联校正
在系统中串联一个校正装置,改 变系统的开环传递函数,从而实
现对系统性能的综合与校正。
并联校正
在系统中并联一个校正装置,产生 一个附加的控制作用,以改善系统 的性能。
复合校正
同时采用串联和并联校正方式,以 更灵活地改善系统的性能。
06 非线性系统分析基础
非线性系统的特点与分类
非线性特性
系统输出与输入之间呈现非线性 关系,不满足叠加原理。
本课程的目的和要求
目的
本课程旨在使学生掌握现代控制理论的基本概念和方法,培养学生分析和设计控 制系统的能力,为从事控制工程和相关领域的科学研究和技术开发打下基础。
要求
学生应掌握状态空间法的基本原理和数学工具,了解最优控制和鲁棒控制的基本 思想和方法,能够运用所学知识分析和设计简单的控制系统,并具备一定的实验 技能和创新能力。

现代控制理论于方法PPT课件

现代控制理论于方法PPT课件

线性系统理论
02
线性系统的基本概念
线性系统
在一定的输入信号下,输出信号 与输入信号成正比,且比例系数 是常数。
线性系统的特点
叠加性、齐次性和可加性。
线性系统的分类
时不变系统和时变系统。
线性系统的稳定性分析
稳定性的定义:如果一个系统 在受到扰动后能够恢复到原来 的平衡状态,则称该系统是稳
定的。
线性系统的稳定性条件:系 统的极点必须位于复平面的 左半部分,即系统的极点必
鲁棒控制在工业中的应用
鲁棒控制在工业中广泛应用于 过程控制、电力系统和航空航
天等领域。
在过程控制中,鲁棒控制可以 用于抑制模型误差和扰动,提
高系统的稳定性和可靠性。
在电力系统中,鲁棒控制可以 用于抑制负荷波动和故障扰动 ,保证电力系统的稳定运行。
在航空航天中,鲁棒控制可以 用于抑制外部干扰和内部扰动 ,提高飞行器的稳定性和安全 性。
非线性系统的近似线性化方法
近似线性化方法定义
近似线性化方法是指通过一定的技术手段将 非线性系统近似转化为线性系统,以便于分 析和设计的方法。
近似线性化方法分类
近似线性化方法可以分为基于状态空间的近似线性 化和基于输入输出的近似线性化两类。
近似线性化方法应用
近似线性化方法广泛应用于各种非线性系统 的分析和设计中,如控制系统、航空航天系 统、机器人系统等。
现代控制理论于方法 ppt课件
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论 • 结论与展望
引言
01
控制理论的发展历程
01
经典控制理论
主要关注单输入单输出系统,以传递函数为基础,通过时域分析方法进

现代控制理论应用-00-----

现代控制理论应用-00-----
现代控制理论简单
应用
do
something
控制理论的产生和发展
经典控制理论
现代控制理论
智能控制理论
1、 状态空间描述2、系统的运动与离散化3、系统的能控性与能观性4、系统的状态反馈与状态观测器5、系统的李亚普诺夫稳定性理论
现代控制理论的基础部分
现代控制理论的基本理论
1、最优控制2、最佳估计3、自适应控制4、鲁棒控制
自 适 应 控 制
任何一个动态系统,通常都具有程度不同的不确定性。这种不确定性因素的产生主要由于:
以上两者又称为不确定性的(或随机的)环境因素。
⑶ 系统数学模型的参ຫໍສະໝຸດ 甚至结构具有不确定性。如导弹控制系统中气动力参数随导弹飞行高度、速度、导弹质量及重心的变化而变化。
自适应控制的提法可归纳为:在系统数学模型不确定的条件下(工作环境可以是基本确定的或是随机的),要求设计控制规律,使给定的性能指标尽可能达到及保持最优。
到目前为止,在先进的科技领域出现了许多形式不同的自适应控制方案,但比较成熟并已获得实际应用的可以概括成两大类: ⑴ 模型参考自适应控制; ⑵ 自校正控制。
在控制系统分析中,经常使用如下两类数学模型:
自适应PID控制吸收了自适应控制与常规PID控制器两者优点。有能够适应被控过程参数变化又具有结构简单、鲁棒性好、可靠性高的优点,而使其成为过程控制的一种较理想的自动化装置。
韦氏字典指出“ 适应指改变其自身, 使得其行为适合于新的或者已经改变了的环境。”自适应控制就是具有适应能力的控制器, 即能改变控制器自身的控制系统。自适应控制除了一般控制系统有的反馈回路外, 还有一个用以改变控制器自身的内回路, 称为适应机构。由于增加了这个适应回路,使控制器能在线地降低被控对象或环境变化的不确定性影响。它体现了一种“ 以动制动”的思想。

现代控制理论在汽车行业的应用

现代控制理论在汽车行业的应用

现代控制理论在汽车领域的应用现代控制理论发展于20 世纪50 年代末,它以状态空间方法为主,研究控制系统状态的运动规律,通过反馈系统解决某些非线性和时变系统的控制问题,用于多输入多输出反馈控制系统,可以实现最优控制规律。

作为一名车辆工程专业的研究生,现代控制理论在我所学的领域上也有很多应用。

比如说现代控制理论在内燃机振动主动控制中的应用、在汽车防抱死制动系统中的应用、在汽车悬架控制中的应用等等,下面我将根据自己查阅的资料对这三种应用进行简单介绍。

已有文献阐明了现代控制理论在内燃机振动主动控制领域的应用现状,阐述了各种控制理论与内燃机振动系统的关系。

以现代控制理论中有代表性的最优控制、自适应控制、鲁棒控制为重点分析了现代智能控制理论在振动系统控制中应用的可能性与发展,指出了内燃机振动主动控制领域今后一段时间内的研究重点与方向。

内燃机的振动是有害的,对于有害的振动,人们总是在想方设法将其消减甚至消除。

消减振动一般从两个方面着眼:一是耗散振动能,二是抑制激振力。

耗能的方法有加装阻尼摩擦片、附带质量冲击块;抑制激振力的方法有提高系统刚度、加装动力减振器或是主动对振动系统施加同频反向的抑振力。

通过控制系统对振动主体主动施加抑振力即振动的动态控制(也称有源控制、主动控制)。

该控制系统一般由振动体(内燃机振动系统如曲轴)、振动信息采集器(对于旋转振动系统多用涡流传感器和光电传感器,对于整机多用弹簧质量加速度传感器)、变送器、处理器、控制器、执行器、显示与调节器等部件组成。

其中控制器是系统的核心,控制器的设计应依据振动体即被控对象的特性进行。

本文将依据内燃机的振动的特性探讨控制器设计中运用的各种控制理论问题以及在振动动态控制上各种现代控制理论应用的可能性。

汽车防抱制动系统(简称ABS)实质上是一种制动力自动调节装置。

这种装置使汽车制动系统的结构发生了质的变化,它不仅能充分发挥制动器的制动性能,提高制动减速度和缩短制动距离,而且能有效地提高汽车制动时的方向稳定性,大大改善汽车的行驶安全性。

现代控制理论0

现代控制理论0
智能控制理论智能控制理论模仿人的智能的工程控制及信息处理等的理论模仿人的智能的工程控制及信息处理等的理论专家系统专家系统模糊控制模糊控制人工神经网络人工神经网络遗传算法遗传算法混沌算法混沌算法不需要被控系统精确的数学模型不需要被控系统精确的数学模型
绪论
控制理论的发展过程
经典控制理论 现代控制理论 智能控制理论
t
线性系统正负阶跃响应
7.5
7
6.5
6
5.5 5
4.5
正阶跃 负阶跃
4
3.5
3
2.5
0
1
2
3
4
5
6
7
8
9
10
t
非线性系统正负阶跃响应
时域法
标准二阶系统及其动态性能
(s)
n2
.
s2 2ns n2
回顾古典控制理论
n
K Tm
自然频率
1
阻尼比
2 TmK
时域法
回顾古典控制理论
3.在对控制系统进行分析时,可以把系统的初 始条件包括进去。
4.有助于采用一些复杂的控制算法。如:自适 应算法等。
5.有助于利用计算机实现及仿真。
经典理论和现代控制理论是有内在联系的,相互 贯通的。这两种方法各有优缺点。学习时注意加以 比较。
现代控制理论中有许多分支,如最优控制、最优 估计和滤波、系统辨识、自适应控制、鲁棒控制和 随机控制等等。基于状态空间的方法在各个分支中 最重要,也影响最广泛,这里只介绍线性系统的状 态空间法。
(屋外温度、门窗)
控制量
(进水量)
被控量
执行机构
被控对象 (房间实际温度)
( 制冷装置)
(空调房间)

现代控制理论课件

现代控制理论课件

图中,I为(n n )单位矩阵,s是拉普拉斯算子,z为单位延时算子。
9
❖ 讨论: 1、状态变量的独立性。
2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、 动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是 唯一的,与状态变量的选取方法无关。
3、动态方程对于系统的描述是充分的和完整的,即系统中的任 何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入
y2
up
yq
被控过程
5
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
6
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
3) 状态空间:以状态向量的各个分量作为坐标轴所组成的n维空间称为状态空间。 4) 状态轨线:系统在某个时刻的状态,在状态空间可以看作是一个点。随着时间的
推移,系统状态不断变化,并在状态空间中描述出一条轨迹,这种轨迹称为状态 轨线或状态轨迹。
5) 状态方程:描述系统状态变量与输入变量之间关系的一阶向量微分或差分方程称
b2
p
bnp
c11 c12 c1n
C
c21
c22
c2n
cq1 cq2
cqn
d11 d12 L
D
d21
d22
L
d2
p
M
dqp

现代控制理论

现代控制理论

非线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引入到系统控制理论中,从而标志着现代控制理论研究的开始。

现代控制理论的研究对象是系统的数学模型,它根据人们对系统的性能要求,通过对被控对象进行模型分析来设计系统的控制律,从而保证闭环系统具有期望的性能。

其中,线性系统理论已经形成一套完整的理论体系。

过去人们常用线性系统理论来处理很多工程问题,并在一定范围内取得了比较满意的效果。

然而,这种处理方法是以忽略系统中的动态非线性因素为代价的。

实际中很多物理系统都具有固有的动态非线性特性,如库仑摩擦、饱和、死区、滞环等,这些非线性动态非线性特性的存在常常使系统的控制性能下降,甚至变得不稳定。

这就使得利用线性系统理论处理非线性动态系统面临巨大的困难。

此外,在控制系统运行过程中,环境的变化或者元件的老化,以及外界干扰等不确定因素也会造成系统实际参数和标称值之间出现较大差别。

因此,基于标称数学模型所设计的控制律一般很难达到期望的性能指标,甚至会使系统不稳定。

综上所述,研究不确定条件下非线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。

非线性动态系统是指按确定性规律随时间演化的系统,又称动力学系统,其理论来源于经典力学,一般由微分方程来描述。

美国数学家Birkhoff[1]发展了法国数学家Poincare在天体力学和微分方程定性理论方面的研究,奠定了动态系统理论的基础。

在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型一般不可能精确得到。

因此,我们只能用近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产生。

所谓鲁棒性就是指系统预期非线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在而遭到破坏的特性,鲁棒控制是非线性动态系统控制理论研究的一个非常重要的分支。

现代控制理论的发展促进了对动态系统的研究,使它的应用从经典力学扩大到一般意义下的系统。

现代控制理论知到章节答案智慧树2023年临沂大学

现代控制理论知到章节答案智慧树2023年临沂大学

现代控制理论知到章节测试答案智慧树2023年最新临沂大学绪论单元测试1.现代控制理论的主要内容()参考答案:非线性系统理论;最优控制;系统辨识;线性系统2.现代控制理论运用哪些数学工具()参考答案:微分方程;线性代数3.控制论是谁发表的()参考答案:维纳4.大系统和与智能控制理论和方法有哪些()参考答案:最优控制;最优估计;系统辨识5.下面哪个不是大系统的特点()参考答案:运用人力多6.哪个不是20世纪三大科技()参考答案:进化论7.经典控制理论形成的目的是采用各种自动调节装置来解决生产和军事中的简单控制问题。

()参考答案:对8.自适应控制所要解决的问题也是寻求最优控制律,自适应控制所依据的数学模型由于先验知识缺少,需要在系统运行过程中去提取有关模型的信息,使模型逐渐完善。

()参考答案:对9.非线性系统状态的运动规律和改变这些规律的可能性与实施方法,建立和揭示系统结构、参数、行为和性能之间的关系。

()对10.现代控制理论是建立在状态空间法基础上的一种控制理论。

()参考答案:对第一章测试1.下面关于建模和模型说法正确的是()参考答案:建模实际上是通过数据,图表,数学表达式,程序,逻辑关系或者各种方式的组合表示状态变量,输入变量,输出变量,参数之间的关系。

;工程系统模型建模有两种途径,一是机理建模,而是系统辨识。

;无论是何种系统,其模型均可用来提示规律或者因果关系。

2.下面关于控制与控制系统说法错误的是()参考答案:反馈闭环系统控制不可能克服系统参数波动。

3.下面对于状态空间模型描述正确的是()参考答案:对一个系统,只能选取一组状态变量。

;对于线性定常系统的状态空间模型,经常数矩阵非奇异变换后的模型,其传递函数阵的零点是有差别的。

;模型的阶数就是系统中含有储能元件的个数。

4.系统前向通道传递函数阵为G1(s),反馈通道传递函数阵为G2(s),则系统闭环传递函数为()参考答案:G1(s)5.传递函数G(s)的分母多项式为导出的状态空间描述的特征多项式为,则必有()参考答案:6.已知信号的最高频率为wf,则通过离散化后能复原原信号的采样频率为()参考答案:大于等于2wf7.以下叙述正确的是( )参考答案:系统的状态空间模型包括状态方程和输出方程;状态空间模型不仅可以描述时变系统还可以描述时不变系统;状态空间模型存在多种等效的标准型8.系统状态空间模型中的状态变量可能没有实际意义。

现代控制理论在电机中的应用

现代控制理论在电机中的应用

现代控制理论与电机控制刘北070301071电气工程及其自动化0703班现代控制理论在电机控制中的具体应用:自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。

这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。

这种控制方法现已较成熟,已经产品化,且产品质量较稳定。

因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。

近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。

伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。

矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。

但是,这种机械上的简化,导致了电机控制上的难度。

为此,需要电机控制技术的进一步提高和创新。

这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。

电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。

一、三相感应电动机的矢量控制1、 定、转子磁动势矢量三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。

因此,磁场是机电能量转换的媒介,是非常重要的物理量。

为此,对各种电动机都要了解磁场在电动机空间内的分布情况。

感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。

对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。

现代控制理论在工业中的应用

现代控制理论在工业中的应用

现代控制理论在工业中的应用现代控制理论在工业中的应用现代控制理论及其应用现代控制理论是在20 世纪50 年代中期迅速兴起的空间技术的推动下发展起来的。

空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。

这类控制问题十分复杂,采用经典控制理论难以解决。

1958 年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。

在这之前, 美国学者R.贝尔曼于1954 年创立了动态规划,并在1956 年应用于控制过程。

他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。

1960~1961 年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。

几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。

状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。

其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。

到60 年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。

现代控制理论所包含的学科内容十分广泛,主要的方面有: 线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。

与传统的比例、积分、微分控制(PID)不同,先进控制通常是一种基于模型的控制策略,如模型预测控制。

目前,专家控制、神经网络和模糊控制等智能控制技术正成:为先进控制的一个重要发展方向。

先进控制通常用于处理复杂的多变量过程控制问题,如大时滞、多变量耦合、被控变量与控制变量存在着各种约束等。

先进控制是建立在常规单回路控制之上的动态协调约束控制,可使控制系统适应实际工业生产过程动态特性和操作要求。

【现代控制理论】第一章+绪论

【现代控制理论】第一章+绪论
控制论是一种思想、一种方法、 一种工具、一门学科。
人类在20世纪所取得的巨大技 术成就,控制科学与技术的作 用非常显著。
引言
钱学森曾经从生产力,特别是技术革命 的进程分析了控制论的产生和发展。
他强调: “我们可以毫不含糊地说,从科学理论的 角度来看,20世纪上半叶的三大伟绩是相对 论、量子论和控制论,也许可以称它们为三 项科学革命,是人类认识客观世界的三大飞 跃。”
1.2 控制理论的分析比较
1.2.1 经典控制理论 1、形成和发展
① 在20世纪30-40年代,初步形成。 ② 在20世纪40年代形成体系。 2、主要研究对象:单机自动化,SISO线性定常系 统 3、主要数学工具:常微分方程、拉氏变换 4、主要研究方法:根轨迹法、频域法和传递函数
1.2.1 经典控制理论
引言
随着社会的发展和科学的进步,控制的必要性体现在方方 面面:
飞机的自动驾驶系统、宇宙飞船系统和导弹制导系统; 数控机床,工业过程中流量、压力、温度的控制; 机器人控制、城市交通控制、网络拥塞控制; 生物系统、生物医学系统、社会经济系统。
1.1 控制理论的发展历程
经典控制理论 现代控制理论 新发展——大系统理论 智能控制 1.1.1 经典控制理论 自动控制思想及其实践历史悠久,可以追溯到久远
1892年,俄国李雅普诺夫在《论运动稳定性的一 般问题》中建立了动力学系统的一般稳定性理论。
1932年,美国奈奎斯特Nyquist提出了 根据频率响应判断系统稳定性的准则, 奠定了频域法的基础。
1.1.1 经典控制理论
1945年,美国伯德Bode在《网络分析和反馈放大器设 计》中提出频率响应法-Bode图。
6、经典控制理论的局限性:
① 难以有效地应用于时变系统、多变量 系统

现代控制理论课件

现代控制理论课件

y2
up
yq
被控过程
12
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
13
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
8
❖ 经典控制理论:
引论
数学模型:线性定常高阶微分方程和传递函数;
分析方法: 时域法(低阶1~3阶)
根轨迹法 频域法
近似分析
适应领域:单输入-单输出(SISO)线性定常系统
缺 点:只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态。
❖ 现代控制理论:
数学模型:以一阶微分方程组成差分方程组表示的动态方程
6
❖ 现代控制理论的基本内容 ❖ 科学在发展,控制论也在不断发展。所以“现代”两个字加在“控制理
论”前面,其含义会给人误解的。实际上,我们讲的现代控制理论指的 是五六十年代所产生的一些控制理论,主要包括: ❖ 用状态空间法对多输入多输出复杂系统建模,并进一步通过状态方程求 解分析,研究系统的可控性、可观性及其稳定性,分析系统的实现问题; ❖ 用变分法、最大(最小)值原理、动态规划原理等求解系统的最优控制 问题;其中常见的最优控制包括时间最短、能耗最少等等,以及它们的 组合优化问题;相应的有状态调节器、输出调节器、跟踪器等综合设计 问题; ❖ 最优控制往往要求系统的状态反馈控制,但在许多情况下系统的状态是 很难求得的,往往需要一些专门的处理方法,如卡尔曼滤波技术来求得。 这些都是现代控制理论的范畴。 ❖ 六十年代以来,现代控制理论各方面有了很大的发展,而且形成几个重 要的分支课程,如线性系统理论,最优控制理论,自适应控制理论,系 统辩识理论,等等。

现代控制理论及其在直流电机位置控制中的应用

现代控制理论及其在直流电机位置控制中的应用

中文论文题目:现代控制理论及其在直流电机位置控制中的应用英文论文题目:Modern Control Theory and Application inThe DC Motor Location Control姓名:指导教师:专业名称:所在学院:论文提交日期摘要控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。

现代控制理论极点配置控制方法是线性系统综合中的重要问题,它是一种寻求一个反馈控制律,使得闭环传递函数的极点位于希望位置的一种控制器设计方法。

本文首先介绍了现代控制理论的产生、发展、内容及其与经典控制理论的差异,提出了学习现代控制理论的重要意义。

随后介绍了采用现代控制理论极点配置的控制方法为小型直流电机设计位置控制系统,并应用Matlab/Simulink软件对控制系统进行辅助分析和设计。

关键词:现代控制理论,极点配置,控制系统AbstractControl theory as a science and technology, has been widely used in all aspects of our social life。

Modern control theory pole placement control method is linear system integration is an important issue,it is a search for a feedback control law, the closed—loop transfer function poles in a desired position controller design method。

This paper describes the generation of modern control theory, development, content and the differences with classical control theory is proposed to learn the significance of modern control theory. Then introduced the use of modern control theory pole placement control method for small DC motor position control system design and application of Matlab / Simulink software control system aided analysis and design.Keywords: Modern control theory,Pole placement,Control system目录摘要 ............................................................................................................................... I Abstract........................................................................................................................ I I 第 1 章引言 . (1)第 2 章现代控制理论 (1)2.1现在控制理论的产生与发展 (1)2。

现代控制理论13页PPT

现代控制理论13页PPT
现代控制理论发展的主要标志 (1)卡尔曼:状态空间法; (2)卡尔曼:能控性与能观性; (3)庞特里雅金:极大值原理;
现代控制理论的主要特点
研究对象: 线性系统、非线性系统、时变系统、多 变量系统、连续与离散系统
数学上:状态空间法
方法上:研究系统输入/输出特性和内部性能
内容上:线性系统理论、系统辩识、最优控制、自 适应控制等
3.智能控制理论 (60年代末至今)
1970——1980 大系统理论 控制管理综合 1980——1990 智能控制理论 智能自动化 1990——21c 集成控制理论 网络控制自动化
(1) 专家系统;(2)模糊控制,人工智能 (3) 神经网络,人脑模型;(4)遗传算法 控制理论与计算机技术相结合→计算机控制技术
现代
研究对象:单入单出(SIS0)系统,线性定常 工具:传递函数(结构图),已有初始条件为零时才适用 试探法解决问题 : PID串联、超前、滞后、反馈 研究对象:多入多出(MIMO)系统、
线性定常、非线性、时变、 工具:状态空间法、研究系统内部、
输入-状态(内部)-输出 改善系统的方法:状态反馈 、输出反馈
描述建模,创造了许多经验模式。 分析法 状态空间 基于数字的精确分析。 几何法
(3)设计:带参数修正 1948年 美国数学家维纳《控制论》
2.现代控制理论:
(50年代末~70年代初)
现代控制理论是以状态空间法为基础,研究 MIMO,时变参数结构,非线性、高精度、高 性能控制系统的分析与设计的领域。
4、控制理论发展趋势
企业:资源共享、因特网、信息集成、 信息技术+控制技术 (集成控制技术)
网络控制技术
计算机集成制造CIMS:(工厂自动化)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代控制理论的应用----王力2011117322
现代控制理论的应用
2011117322 王力物联网工程现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论;广义的
是指60年代以来发展起来的所有新的控制理论与方法。

采用状态观测器对系统状态进行估计(或称重构)实际反馈控制主要优点是理论体系严谨完整;可获得理想的最优控制性能,设计过程较少依赖经验试凑;主要缺点是要求系统模型准确,否则实际控制性能并非最优,即控制系统鲁棒差;理论较抽象,缺乏直观性,不易理解,需要较多数学知识;性能指标函数中的加权Q和R选取无定量准则可循,也需凭经验选取,故设计结果也与设计人员有关。

自动控制系统是指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。

其组成结构是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式;性能指标:定性的有稳(定性)、准(确性)、快(速性);控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。

现代控制理论主要应用于航空类飞行器控制现代控制理论是基
于时域的系统分析方法,目前基本都是高端如火箭发射,导弹制导之类的复杂系统基于动态矩阵的预测控制等。

比如在汽车中运用的自适应控制,汽车制动防抱死系统的控制,自适应估计等定速巡航系统的初衷是让车辆运行在最佳的发动机转速—油耗平衡点,汽车发动机的转速跟扭矩、油耗是有一定比例关系的,单位距离油耗最省的发动机转速所对应的速度就是巡航速度,这个定速巡航巡航系统就是个典型的现代控制系统,车辆快了,它帮你松油门,车辆慢了,它帮你踩。

现代控制理论的应用于实际存在的很大的问题是系统模型是否准确
可靠,因为模型如果不可靠,理论的完美与否也没有任何意义。

而在汽车中的自适应控制就是对现代控制论的一个很好地应用。

自适应系统主要由控制器、被控对象、自适应器及反馈控制回路和自适应回路组成自适应控制系统有三个显著特点:
1、控制器可调:相对于常规反馈控制器固定的结构和参数,自适应控制系统的控制器在控制的过程中一般是根据一定的自适应规则,不断更改或变动的;
2、增加了自适应回路:自适应控制系统在常规反馈控制系统基础上增加了自适应回路(或称自适应外环),它的主要作用就是根据系统运行情况,自动调整控制器,以适应被控对象特性的变化;
3、适用对象:自适应控制适用于被控对象特性未知或扰动特性变化范围很大,同时又要求经常保持高性能指标的一类系统,设计时不需要完全知道被控对象的数学模型。

:一、自适应控制在汽车主动悬架上的应用应用于主动悬架的自适应控制方法主要有增益调度控制、模型参考自适应控制和自校正控制三类:增益调度控制是一种开环自适应控制,通过监测过程的运行条件来改变控制器参数;模型参考自适应控制(即简化自适应控制)通过跟 1
踪一个预先定义的参考模型,按照反馈和辅助控制器参数的自适应控制规则,使非线性时变的悬架系统达到预期的最优性能;自校正控制是将受控对象参数在线估计与控制器参数整定相结合,形成一个能自动校正控制器参数的离散实时计算机控制系统(即数据采样系统),是目前应用最广的一类
自适应控制方法。

自适应控制方法已在德国大众汽车公司的底盘上得到了应用。

模型参考自适应控制
工业产生背景是:70STR 是年代发展起来的一种随机自适应控制,2
过程控制由于强随机干扰、模型未知、参数时变、大时滞等因素,导致常规的控制方法效果差。

它是参数在线估计与随机最小方差控制的结合,已有广泛的应用成果,其难点在于收敛性。

车辆动力学模型参考模型
参考模型自适应控制图
3
千克簧上质量为300 簧上质量为500千克
轮胎动载荷
4
悬架动变形
二、最优控制理论在电力系统励磁控制中的应用技术的综合励磁调节器、基于非线性最优和PID1对于非线性系统的同步发电机而言,当它偏离系统工作点或系统发生较技术的电力系统稳定器,就会出现误大扰动时,如果仍然采用基于PID差。

为此,可以将其用基于非线性最优控制技术的励磁调节器。

但是,非线性最优控制调节器存在着对电压控制能力较弱的缺点,所以用一种技术的电力系统稳定器有机结合的PID能够将非线性最优励磁调节器和新型励磁调节器的设计原理。

、自适应最优励磁控制器2将自适应控制理论与最优控制理论相结合,通过多变量参数辨识、最优 5
反馈系数计算和控制算法运算三个环节,可以实现同步发电机励磁的自适应最优控制。

3、基于神经网络逆系统方法的非线性励磁控制神经网络逆系统方法将神经网络对非线性函数逼近学习能力和逆系
统方法的线性化能力相结合,构造出物理可实现的神经网络逆系统,从而实现了对被控系统的大范围线性化,能够在无需系统参数的情况下构造出伪线性复合系统,从而将非线性系统的控制问题转化为线性
系的控制问题。

、基于灰色预测控制算法的最优励磁控制4预测控制是一种计算机算法,它采用多步预测的方式增加了反映过程未来变化趋势的信息量,因而能克服不确定性因素和复杂变化的影响。

灰色预测控制是预测控制的一个分支,它需建立灰微分方程,能较好地对对发电机的功率偏差、转速偏差、电,N)系统作全面的分析。

应用GM(1压偏差序列值进行建模,经全面分析后求出各状态量的预测值,同时根据最优控制理论求出以预测值为状态变量的被控励磁控制系统的最优反馈增益,从而得出具有预测信息的最优励磁控制量。

三、运载火箭的制导和控制
把航天器送入预定的轨道需要用多级火箭运载,其制导和控制系统必须根据预先设计的发射弹道来控制火箭发动机的多次启动和关机,并相应地稳定和调整火箭的姿态,还需要控制级间分离。

现代火箭制导采用最优化理论和小型数字计算机的迭代制导方法,根据火箭受扰动后的运动状态参数来选择最优或次优的弹道,因此具有较大的灵活性,并可获得较大的运载能力。

1、迭代制导已经用于美国“土星”号运载火箭和“阿波罗”飞船的登月飞行。

2、另一种更完善的综合制导方法是在控制系统中配备姿态控制子系统 6
(硬件称自动驾驶仪)。

7
8。

相关文档
最新文档