工程流体力1

合集下载

工程流体力学习题课1-第2-3-4章-部分习题解答

工程流体力学习题课1-第2-3-4章-部分习题解答
h 4 = 2H 4 → H =h
2 2 d2
习题3-14解题示意图1
Dr W-X Huang, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
工程流体力学——习题课(1)——第 2-3-4 章部分习题解答
Fx1 =
y x
H1
D
H2
图 3-26 习题 3-11 附图
1 1 ρ gH1 × ( DL) = × 1000 × 9.8 × 4 × (4 × 10) = 784000 N=784kN 2 2 1 D 1 4 Fx 2 = ρ gH 2 × ( L) = × 1000 × 9.8 × 2 × × 10 = 196000 N=196kN 2 2 2 2
H
h
由此得: H ≥ 122mm + h ≥ 244mm (2) 结合以上正负压操作时结果有:
p / ρ g ≤ h ≤ H − | p| / ρ g
图 3-23 习题 3-8 附图
→ 122mm ≤ h ≤ 178mm
Dr W-X Huang, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
工程流体力学——习题课(1)——第 2-3-4 章部分习题解答
F1-6
习题 3-8 旋风除尘器如图 3-23 所示,其下端出灰口管段长 H,部分插入 水中,使旋风除尘器内部与外界大气隔开,称为水封;同时要求出灰管内液面 不得高于出灰管上部法兰位置。设除尘器内操作压力 ( 表 压 ) p = −1.2 kPa~ 1.2kPa。 净化空气 (1) 试问管段长 H 至少为多少 mm? (2) 若H=300mm,问其中插入水中的部分h应在 什么范围?(取水的密度 ρ =1000kg/m3) 含尘 解:(1) 正压操作时,出灰管内液面低于管外液 面,高差为 h′ = p / ρ g ;为实现水封,出灰管插入深 度 h 必须大于此高差,即

工程流体力学第1章 习题解答

工程流体力学第1章  习题解答

第一章习题解答1-1已知液体的容重为7.00kN/m3,求其密度为多少?解:γ=ρg,ρ=γ/g=7000 / 9.807=1-2压缩机压缩空气,压力从98.1kN/m2升高到6×98.1kN/m2,温度从20℃升到78℃。

问空气体积减小了多少?解:p/ρ=RT , p1/(ρ1T1)= p2/(ρ2T2)98.1/(ρ1293)= 6×98.1/(ρ2351)V2/V1=ρ1/ρ2=351/6*293=20% 所以体积减少了80%。

1-3流量为50m3/h,温度为70℃的水流入锅炉,经加热后水温升高到90℃。

水的膨胀系数α=0.000641/K-1。

问从锅炉每小时流出多少的水?解:α=dV/(VdT)dV=αVdT=0.000641*50*(90-70+273)=9.39 m3/h (单位时间内,体积变化就是流量的变化)所以锅炉流出水量为50+9.39=59.39 m3/h。

1-4空气容重γ=11.5N/m3,ν=0.157cm2/s,求它的动力黏度µ。

解:µ=ρν=νγ/g=0.157*10-4*11.5/9.807=1.84*10-5Ns/m21-5图示为一水平方向运动的木板,其速度为1m/s。

平板浮在油面上,δ=10mm,油的µ=0.09807Pa s⋅。

求作用于平板单位面积上的阻力。

解:τ=µdu/dy=µu/δ=0.09807*1/0.01=9.807Pa.1-6一底面积为40cm×50cm,高为1cm的木块,质量为5kg,沿着涂有润滑油的斜面等速向下运动。

已知v=1m/s,δ=1mm,求润滑油的动力黏度。

解:F=mg.5/13=5*9.807*5/13=18.86Nτ=µdu/dy=µv/δ=F/A所以µ=Fδ/(Av)=18.86*0.001/(0.4*0.5*1)=0.0943Pa s⋅1-7一直径d=149.4mm,高度h=150mm,自重为9N的圆柱体在一内径D=150mm的圆管中下滑。

完整版工程流体力学教案

完整版工程流体力学教案

授课时间班级授课顺序第1次课课题绪论、流体的物理性质目的要求1、了解流体力学工程与历史背景;2、了解流体力学的研究方法;3、明确理解流体的概念及连续介质假设、流体的主要物理参数;4、掌握牛顿内摩擦定律.教学内容要占八、、1、工程流体力学的研究任务和研究方法2、流体的概念及连续介质假设3、流体的主要物理参数4、流体的粘性工一■—重点:流体的概念及连续介质假设、流体的粘性、牛顿内摩擦定律.J2T 1任J27难点:连续介质假设、牛顿内摩擦定律.通过经典力学的知识引入本门课程,结合大量的实例讲解流体力学的开展过程及其重要性,增加学生对本课程的学习积极性.本此课以讲 述为 主,结合多媒体手段.1导论 1.1 工程流体力学的研究任务和研究方法 讲清工程流体力学的研究对象、研究内容、开展历程和研究方法,重 点介绍流体力学的开展历程和研究方法.说明工程流体力学在工程实践中的具体应用范围, 有重点地介绍流 体力学新的开展方向及在生产生活中的作用.〔20分钟〕通过与固体力学的比拟,引出流体力学各物理参数的概念,以及连续 介质假设和牛顿内摩擦定律.把抽象的概念具体化.____ 彳 0 :玄右卜"今 R /4寺/S 山侬也教 学 思路与 教法设 计首先介绍流体的概念,并对物质的根本属性进行总结,突出介绍流体与固体之间的差异所在.〔8分钟〕讲清流体质点概念、流体连续介质模型的主要物理意义.〔12分钟〕1.2流体的密度、重度、比体积与相对密度讲清流体几个根本物理量,使学生掌握流体的密度、重度、比体积与相对密度的根本定义和公式,并对常见的水和空气的一些参数有所了解. 〔10分钟〕讲解流体的热膨胀性和可压缩性定义及计算公式,使学生掌握体积膨胀系数、体积压缩率和体积模量的概念和物理意义.〔10分钟〕1.3流体的粘性本节为重点,详细向学生介绍粘性的定义和牛顿内摩擦定律以及粘性的表示方法和单位,应使学生掌握动力粘度、运动粘度和恩氏粘度三者之间的区别和变换关系.最后向学生介绍粘度的变化规律,理想流体和实际流体.〔25分钟〕小结.布置作业:习题:1-9; 1T0; 〔5分钟〕通过生活中有趣的流表达象分析,学生对课程产生了一定的兴趣.课后分析授课时间班级授课顺序第2次课课题流体静力学目目的要V9 求1、明确理解流体静压强及根本特性;2、掌握流体静力学根本方程;3、掌握静压强的计算;4、掌握静压强的表示方法.教学内容要点1、作用于静止流体上的力2、流体静压强及其特性3、静止流体的平衡微分方程4、重力作用下静止流体中的压强分布规律5、静压强的表示方法及其单位重占难占重点:静止流体的平衡微分方程的建立及应用. 难点:静止流体的平衡微分方程的建立及应用.教学路与教旺设计2流体静力学介绍流体静力学定义以及流体静止状态的两种形式:相对静止和绝对静止.〔5分钟〕2.1作用于静止流体上的力画图讲解静止流体所受作用力的种类以及质量力和外表力的性质. 重点讲清质量力与惯性力之间的关系.〔10分钟〕2. 2流体静压强及其特性介绍压强的概说明流体静压强的两个重要特性.详细推导特性二,并给出流体静压强全微分公式,说明流体静压强是标量的具体含义.〔15分钟〕2. 3静止流体的平衡微分方程式画图推导静止流体的平衡微分方程式,并说明其物理意义.〔分钟〕综合平衡微分方程,得出压强差公式.介绍力势函数、有势力的定义以及相应的物理意义.〔10分钟〕给出等压面XE义,并由压强差公式引出等压面方程,介绍等压面的三个性质,由此说明判断等压面的原那么和方法.〔10分钟〕2.4重力作用下静止流体中的压强分布规律说明重力场中流体的根本特征,并推出流体静力学根本方程,详细分析流体静力学根本方程的能量意义和几何意义. 集中介绍概念:位置水头、压强水头、静力水头和淹深的概念.〔15分钟〕2. 5静压强的表示方法及其测量介绍概念大气压强、表压强、绝对压强和真空度,并对它们之间的关系画图详细说明.〔5分钟〕讲解压强测量的三种主要方式,并说明每一种的具体应用场合.详细介绍测压管、测压计、差压计和微压计的主要原理和具体测量方法.〔10分钟〕教学内容安排恰当,课堂节奏紧凑,学生对本次课内容理解较好.课后分析授课时间班级授课顺序第3次课课题流体静力学目的1、掌握相对平衡的问题.要求教学内容要1、流体的相对静止占八、、重占难占重点:流体的相对静止.难点:流体的相对静止.2.7流体的相对静止再次强调流体的相对静止意义,简单说明静止流体在容器作等速直线 运动时遵守流体静力学根本规律.〔10分钟〕分析静止流体在容器作等加速直线运动时的平衡规律,重点说明对此 类问题的具体分析方法:先写出流体的单位质量力,再列出等压面方 程,而后推导出流体静压强分布规律,得出最终的流体压强分布公式. 〔25分钟〕由此再推导出二种特例情况下流体静压强分布规律.〔20分钟〕分析静止流体在容器作等角速度旋转运动时的平衡规律,重点说明对 此类问题的具体分析方法:先写出流体的单位质量力,再列出等压面方 程,而后推导出流体静压强分布规律,得出最终的流体压强分布公式.〔20分钟〕由此再推导出两种特例情况下流体静压强分布规律.60分钟〕教 学 思路与 教法设 计小结.〔5分钟〕应该多结合具体实例讲解该局部内容. 课后分析授课时间班级授课顺序第4次课课题流体静力学目的要求1、掌握静止流体对平壁和曲壁合力的计算;教学内容要占八、、1、静止流体对壁面作用力的计算重占难占重点:静止流体对平壁和曲壁的合力计算.难点:静止流体对平壁和曲壁的合理计算.教学思路与教法设计2.6静止流体对壁面作用力的计算总压力概念.介绍本节主要内容.〔10分钟〕讲解静止流体对平面壁总压力的计算,之中介绍面积矩、惯性矩和压力中央等概念.〔20分钟〕讲解静止流体对曲面壁总压力的计算,重点说明压力体定义及其具体确定方法,并由此简述阿基米德原理.〔25分钟〕讲解实例.〔15分钟〕小结,布置本草习题:习题:2-4; 2-10; 2-13 ; 2-15; 2-18. 〔10分钟〕学生对压力体的理解有一定难度.课后分析授课时间班级授课顺序第5次课课题流体运动学根底r理解描述流体运动的方法;目的2、理解流体运动中的根本概念;要求3、掌握连续性方程的意义和作用.内容要1、研究流体运动的两种方法卜2、流体运动中的根本概念八、\3、连续性方程重点:流线和迹线的求法、连续性方程的意义和作用. 占又隹占难点:流线和迹线的求法.3流体运动学根本方程流体运动学定义,描述流体运动的几个根本运动规律.〔10分钟〕3.1研究流体运动的两种方法流场的概念,介绍研究流体运动的两种方法:拉格朗日法和欧拉法.教学主要说明两种方法的异同点,重点介绍欧拉法.〔15分钟〕思路与3.2流体运动中的根本概念教法设讲解欧拉法分析流体运动时的几个根本概念:定常流动、非定常流计动、均匀流动、一维流动、迹线、流线〔重点〕、流管、流束、过流断面、流量、平均速度.〔35分钟〕3. 3连续性方程式说明流体运动遵循的质量守恒定律就是连续性方程.〔25分钟〕小结,布置本章习题:3-1; 3-5o 〔5分钟〕到达了预期的教学效果. 课后分析授课时间班级授课顺序第6次课课题伯努利方程目的要求1、理解不可压缩理想流体的运动方程2、掌握伯努利方程的意义及应用教学内容要占八、、1、理想流体的运动微分方程式2、理想流体的伯努利方程式3、实际流体总流的伯努利方程式4、伯努利方程的应用重占难占重点:伯努利方程的意义及应用.难点:伯努利方程的意义及应用.教学思路与教法设计3流体运动学根本方程流体动力学定义及研究内容.〔5分钟〕3. 4理想流体的运动微分方程式画图推导理想流体的欧拉运动微分方程式,并说明各局部物理意义. 〔15分钟〕3. 5理想流体的伯努利方程式利用外力做功的能量关系,推导理想流体沿流线的伯努利方程式.〔10分钟〕引进几个根本概念:动能修正系数、缓变流动、缓变过流断面.〔10 分钟〕画图推导理想流体总流的伯努利方程式,并联系流体静力学根本方程说明各局部参量的能量意义和几何意义.〔10分钟〕3.7实际流体总流的伯努利方程式及其应用根据对理想流体总流的伯努利方程的修正得到实际流体总流的伯努利方程形式,并说明其应用条件.〔15分钟〕介绍毕托管、文丘里流量计的分析过程.〔25分钟〕通过数学函数的推导,学生能更好理解伯努利方程.课后分析授课时间班级授课顺序第7次课课题伯努利方程的应用目的要求1、掌握伯努利方程的意义及应用教学内容要占八、、1、伯努利方程的应用重占难占重点:伯努利方程的建立.难点:伯努利方程的建立.教学思路与教法设计3. 8实际流体总流的伯努利方程式及其应用讲解伯努利方程的物理意义,伯努利应用的条件,以及如何建立伯努利方程式.〔15分钟〕介绍孔板流量计和射流泵原理及分析过程.〔35分钟〕最后,结合几道具体的例题讲解,并做随堂练习.〔40分钟〕教学内容和方法安排得当,学生对此局部内容找我较好. 课后分析授课时间班级授课顺序第8次课课题动量定理及其应用目的要求1、掌握动量方程及其应用;2、了解动量矩方程.教学内容要占八、、1、动量定理及其应用2、动量矩定理及其应用重占难占重点:动量定理及其应用.难点:3.11动量定理及其应用详细推导流体的动量守恒原理,并对动量定理的几种不同形式进行分说明其各局部含义.利用动量方程对流体运动的几种典型情况进 行求 〔70分钟〕简单介绍动量矩定理,以及它应用的方面.〔10分钟〕 小结,布置本章习题:3-11; 3-14; 3-22; 3-27; 3-36.〔 10 分析, 教学解. 思路与 教法设 计 钟〕学生对流体的受力分析理解不是很透彻. 课后分析授课时间班级热动普授课顺序第9次课课题习题课目的对所学的知识进行总结要求教学内容要作业讲评占八、、重占难占教学思路与教法设计把学生没有掌握透彻的知识,通过实例讲解进行分析,到达了预期的课后效果分析授课时间班级授课顺序第10次课课题流体在管路中的流动目的要求1、掌握流体运动分两种类型及判别方法;2、正确理解层流和紊流的特征;3、了解沿程能量损失和局部能量损失的原因;4、掌握沿程能量损失的计算.教学内容要占八、、1、管路中流体流动的两种状态2、能量损失的两种形式3、圆管中的层流流动重占难占重点:恒定均匀流的沿程损失.难点:恒定均匀流的沿程损失.教学思路与教法设计4流体在管路中的流动介绍流体流动的主要方式.〔10分钟〕4.1管路中流体流动的两种状态介绍雷诺实验装置及实验过程,说明流动的三种不同状态:层流、湍流和过渡状态.并重点解释雷诺数和上、下临界流速等概念.〔25 分钟〕4. 2能量损失的两种形式利用公式说明流动阻力的两种形式:沿程阻力和局部阻力.并利用伯努利方程向学生解释清楚能量损失的具体物理含义.〔25分钟〕4. 3圆管中的层流流动利用牛顿内摩擦定律推导出圆管中的层流流动微分方程, 并以此分别导出速度分布公式、流量公式以及切应力分布公式.〔30分钟〕通过多媒体动画演示实际流动状态,学生很容易理解.课后分析授课时间班级授课顺序第11次课课题流体在管路中的流动目的要求1、掌握圆管中的湍流流动;2、掌握沿程阻力系数和局部阻力系数确实定;3、了解管路计算原那么和根本方法.教学内容要占人1、圆管中的湍流流动2、管中流动沿程阻力系数确实定3、局部阻力系数确实定4、管路计算重占难占重点:沿程阻力系数和局部阻力系数确实定.难点:沿程阻力系数和局部阻力系数确实定.教堂思路与教法设计4.5圆管中的湍流流动首先说明湍流与层流的本质区别,而后介绍研究湍流的统计时均法,主要解释概念:脉动、时均速度、时均值等.〔15分钟〕由时均速度引出湍流流动的时均速度结构,着重介绍粘性底层厚度.并根据雷诺数大小说明水力光滑流水力粗糙流动是湍流流动的两种不同流动状态,并穿插介绍水力光滑管和水力粗糙管概念.〔15 分钟〕根据普朗特混和长度理论,推导出湍流切应力分布规律公式和断面速度分布公式.〔15分钟〕4. 8管中流动沿程阻力系数确实定由管道沿程损失引出尼古拉兹实验,并说明参量间关系.此后利用尼古拉兹曲线图说明流体流动在五个区域流动中入值的理论和经验公式计算方法.由此再说明莫迪图与尼古拉兹曲线图二者之间的关系, 以及莫迪图的使用方法.〔20分钟〕4. 9局部阻力系数确实定介绍局部能量损失的三种形式,并说明产生局部能量损失的主要原因.〔5分钟〕详细讲解断面忽然扩大的局部阻力系数计算方法及过程.说明Z i 和Z 2代表的意义.〔10分钟〕小结,布置习题:4-8 ; 4-13.〔10分钟〕内容较多,学生应该课下及时看书复习.课后分析授课时间班级授课顺序第12次课课题相似理论和量纲分析目的要求1、掌握量纲分析法及其应用;2、掌握力学相似概念和主要相似准那么的意义及应用.教学内容要占八、、1、相似理论2、量纲分析及其应用重占难占重点:量纲一致原理及相似理论.难点:量纲一致原理应用.教学思路与教法设计相似理论详细讲解力学相似的概念,推倒主要的相似判据,重力相似判据、粘性力相似判据和压力相似判据〔30分钟〕量纲分析及其应用详细讲解布金汉定理.结合实例讲解布金汉定理的应用〔50分钟〕本章小结.〔10分钟〕学生对布金汉定理的理解有一定难度. 课后分析授课时间班级授课顺序第13次课课题压力管路目的要求1、掌握压力管路的分类;2、掌握压力管路的水力计算;教学内容要占八、、1、压力管路的分类2、压力管路的水力计算重占难占重点:串并联管路的水力计算.难点:串并联管路的水力计算.压力管路介绍压力管路在工程实际中的主要应用.〔10分钟〕压力管路的分类〔10分钟〕教学思路与教法设计长管的水力计算〔20分钟〕复杂管路的水力计算〔50分钟〕根本完本钱次课的相关内容. 课后分析授课时间班级授课顺序第14次课课题压力管路目的要求1、掌握压力管路的水力计算;教学内容要占八、、1、压力管路的水力计算重占难占重点:分支管路的水力计算.难点:分支管路的水力计算.教学思路与教法设计压力管路复杂管路的水力计算〔60分钟〕短管的水力计算〔30分钟〕根本完本钱次课的相关内容. 课后分析授课时间课题孑L 口出流目的要求1、掌握孔口出流的分类;2、掌握薄壁小孔出流的特征;教学内容要占八、、1、孔口出流的分类2、薄壁小孔口自由出流重占难占重点:薄壁小孔出流.难点:薄壁小孔出流.教学思路与教法设计孔口出流介绍孔口出流在工程实际中的主要应用和研究方法.〔10分钟〕孔口出流的分类本节主要讨论孔口出流的一些根本概念:薄壁孔口、厚壁孔口、大孔口、小孔口、自由出流、淹没出流.重点介绍薄壁孔口和厚壁孔口的主要技术特征.〔20分钟〕薄壁小孔口自由出流分析推导薄壁小孔口自由出流时的各个特征参数计算公式.〔60分钟〕课后分析学生独立分析实际问题的水平还有欠缺.授课时间课题一元不稳定流失目的要求1、了解水击的现象;2、了解水击压力计算和水击的预防.教学内容要占八、、1、水击的产生和水击波的传播2、水击的分类3、水击压力的计算4、水击的预防和利用重占难占重点:水击的预防和利用难点:水击的预防和利用充分利用多媒体软件的特点给学生演示水击的这个动画过程. 结合实际的流体运动,再进行相关的理论知识分析.教学思路与教法设计课堂反响较好. 课后分析授课时间班级授课顺序第17次课课题非牛顿流体目的要求1、掌握非牛顿流体的流变性和流变方程;2、塑性流体的流动规律;3、了解塑性流体的水力计算.教学内容要占八、、1、非牛顿流体的流变性和流变方程;2、塑性流体的流动规律.重占难占重点:非牛顿流体的流变性和流变方程;塑性流体的流动规律.难点:塑性流体的流动规律教学思路与教法设计非牛顿流体介绍流变性的相关概念,以及非牛顿流体的流变曲线〔20分钟〕重点讲解塑性流体的静止根本规律和运动规律,分析其流动状态,以及与水头损失之间的关系.〔40分钟〕讲解钻井工程中,钻井泵压力和功率的相关计算.〔25分钟〕本章小结,布置本章习题:6-6o 〔5分钟〕课后分析学生对实际应用有很浓厚的兴趣.授课时间班级授课顺序第18次课课题气体的一元流动目的要求1、掌握压力波的传播、音速、马赫数;2、掌握一元稳定流的根本方程.教学内容要占八、、1、声速和马赫数2、可压缩气体的一元流动的根本方程式重占难占重点:一元稳定流的根本方程.难点:一元稳定流的根本方程.教学思路与教法设计气体的一元流动简单介绍气体一元流动的概念及气体动力学研究内容和对象.〔5 分钟〕声速和马赫数通过例子推导出气体运动传播速度公式〔三种不同形式〕.〔15 分钟〕介绍马赫数概念及物理意义.〔5分钟〕可压缩气体的一元流动的根本方程式与液体的伯努利方程以及连续性方程比拟,推导出可压缩气体的一元流动的连续性方程和伯努利方程.〔20分钟〕小结,布置习题:7-3 ;7-4o 〔5分钟〕随堂练习〔40分钟〕教学效果较好. 课后分析授课时间班级授课顺序第19次课课题气体的一元流动目的1、掌握一元气流的根本特征要求2、了解气体在变截面管〔喷嘴〕中的流动教学内容要占八、、1、一元气流的根本特征2、气体在变截面管〔喷嘴〕中的流动重占难占重点:一元气流的根本特征.难点:一元气流的根本特征.本节米用自学加提问的方式进行教学.教学思路与教法设计完本钱堂课的教学方案.课后分析。

工程流体力学 第1,2章

工程流体力学 第1,2章
• 系统研究 古希腊哲学家阿基米德《论浮体》(公元前250年)奠定了 流体静力学的基础
2020年1月10日
FESTO气动中心
2020年1月10日
FESTO气动中心
2020年1月10日
FESTO气动中心
2020年1月10日
FESTO气动中心
2020年1月10日
FESTO气动中心
2020年1月10日
1.535104 (N )
克服摩擦所消耗的功率为:
N T 1.535104 3.77 5.79104(Nm / s) 57.9(kW )
2020年1月10日
■流体FE的S压TO缩气性动中心
在一定的温度下,单位压强增量引起的体积变化率定 义为流体的压缩性系数,其值越大,流体越容易压缩, 反之,不容易压缩。
FESTO气动中心
第二阶段(16世纪文艺复兴以后-18世纪中叶)流体 力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1612年 伽利略——物体沉浮的基本原理 • 1650年 帕斯卡——“帕斯卡原理” • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
2020年1月10日
1.1.2 FE流ST体O气连动中续心介质模型
• 连续介质模型 将流体作为由无穷多稠密、没有间隙的流体质点构成的连 续介质,这就是1755年欧拉提出的“连续介质模型”。
• 在连续性假设之下,表征流体状态的宏观物理量如速度、 压强、密度、温度等在空间和时间上都是连续分布的,都 可以作为空间和时间的连续函数。
• 理论 1823年纳维,1845年斯托克斯分别提出粘性流体运动

工程流体力学课后习题答案1-3章[精.选]

工程流体力学课后习题答案1-3章[精.选]

第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。

【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯相对密度 330.906100.9061.010w ρδρ⨯===⨯【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。

求水的压缩系数和弹性系数。

【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。

罐装时液面上压强为98000Pa 。

封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。

若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P p dV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆t p V V ?,相比之下可以忽略由压力变化引起的体积改变,则 由 200L β+=t V V dT 得 1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。

工程流体力学1

工程流体力学1

PPT文档演模板
工程流体力学1
四、流体力学的研究方法及其应用
流体力学研究流体这样一个连续介质的宏 观运动规律以及它与其它运动形态之间的相互 作用,其研究方法有理论研究、数值计算和实 验三种,三种方法取长补短,相互促进,彼此 影响,从而促使流体力学得到飞速的发展。
PPT文档演模板
工程流体力学1
1.理论研究
PPT文档演模板
工程流体力学1
4.应用
流体力学在生产部门中有着非常广泛的应 用,可以这样说,目前已很难找出一个技术部 门,它与流体力学没有或多或少的联系。
航空工程和造船工业中,飞机和船的外形设 计;在水利工程中,大型水利枢纽,水库,水 电站,洪峰预报,河流泥沙;动力机械中蒸气 透平,喷气发动机,压缩机,水泵;在石油工 业中,油气集输,油、气、液的分离,钻井泥 浆循环,注水,压裂,渗流;金属冶炼和化学 工业等。
例如:在标准状态下, 1μm3任何气体含 有个分子2.69×107。 液体分子间距比气体小, 1μm3液体体积中有3.35×1010液体分子个。
PPT文档演模板
工程流体力学1
在大多数工程应用中,人们关心的是大量 分子的总体统计效应,而不是单个分子的行为, 流体力学的一切宏观参数(密度、温度、压强) 都是大量分子行为的统计平均值。当从宏观角 度研究流体的机械运动时,就认为流体物质是 连续。
在流体力学中,把流体质点作为最小的研 究对象,每个质点都含有大量的分子,故分子 随机出入该微小体积不会影响宏观特性,能保 持宏观力学特性。因此,有理由认为流体是连 续介质。
PPT文档演模板
工程流体力学1
连续性介质模型特点:
1).客观上存在宏观上足够小而微观上足够大的 小体积,这个小体积在几何上为一个点,此点称 为流体质点;

《工程流体力学》习题1~7章参考答案

《工程流体力学》习题1~7章参考答案






过程装备与控制工程专业核心课程教材
工程流体力学
习题参考答案
主讲:陈庆光
化学工业出版社教材出版中心
黄卫星, 陈文梅主编. 工程流体力学, 北京:化学工业出版社教材出版中心,2001.8
习题 1-1 如图 1-9 所示,一个边长 200mm 重量为 1kN 的滑块在 20 斜面的油膜上滑动,油膜 厚度 0.005m,油的粘度 µ = 7 × 10−2 Pa ⋅ s 。设油膜内速度为线性分布,试求滑块的平衡速度。
V= 1000 3 1000 (因为是正方形容器,厚度为 3m) 。 m 的油,使左侧容器中的油的高度增加了 ρ油 g 3ρ油 g
假设此时右侧容器的水位在原来的基础上升高了 ym,则根据左右容器的尺寸关系,左侧的油 柱将下降 2ym。再根据等压面(等压面下降了 2ym 的高度)的性质有: 1000 1000 + ρ油 g h ( y + 2 y ) + (3 − 2) ⇒ y = 9 ρ g ≈ 0.01134m = 11.34mm 3ρ g = ρ水 g 水 油 习题 3-2 在海中一艘满载货物的船,其形态如图 3-10 所示。船底长度 12m,舱体宽度(垂直 于纸面)上下均为 6m,船长两端梯度均为 45 ,并近似取海水的密度为 1000 kg m3 。求船加 上货物的总质量。
参考答案 3
∂v ∂v y ∂vx ∂vz ∂v y ∂vx − − Ω = ∇×v = z − i + j+ ∂y ∂z ∂z ∂x ∂x ∂y ∂v ∂v cz cy j− k = x j+ x k = ∂z ∂y y2 + z2 y2 + z2

流体力学1

流体力学1
-40C
水 0.294 106 m 2 /s
1000C
空气 1.49 105 Pa s
空气 2.18 105 Pa s
空气 0.98 105 m 2 /s
空气 2.31 105 m 2 /s
空气的动力粘性系数比水小2个数量级,但空气的 运动粘性系数比水大。 空气的粘性系数随温度升高而增大,而水的粘性系 数随温度升高而减小。
微观(分子自由程的尺度)上看,流体质点是一个足够大的
分子团,包含了足够多的流体分子,以致于对这些分子行为 的统计平均值将是稳定的,作为表征流体物理特性和运动要 素的物理量定义在流体质点上。
2.7 1016 个分子
1mm3空气 ( 1个大气压,00C)
• 连续介质假设
连 续 介 质 假 设 将 流 体 区 域 看 成 由 流 体 质 点 连 续 组 成 , 占
力)予以抵抗,并在撤除外力后恢复原形,流体的这种性质称 为压缩性。
p V
p+Δp V-ΔV

d V / V d/ dV 将相对压缩值 与压强增量 d p之比值 称 dp dp V 1 dp 为压缩系数,其倒数 K 称为体积 K 随温度和压强而变,随温度变化不显著。液体的 K
值很大,除非压强变化很剧烈、很迅速,一般可不考虑压缩 性,作不可压缩流体假设,即认为液体的 K 值为无穷大,密 度为常数。但若考虑水下爆炸、水击问题时,则必须考虑压 缩性。
§1—3 作用在流体上的力
流体不能承受集中力,只能承受分布力。分布力按表现形式 又分为:质量力、表面力。
,指向表 面力受体外侧,所受表面力为 ΔP ,则应力
P p n lim A0 A
n

工程流体力学课后习题1莫乃榕版

工程流体力学课后习题1莫乃榕版
最后,通过求解积分方程,可以得到平板的运动规律。
详细解答
解:首先计算平板受到的压力F。根据已知条件,平板受到的压力可以表 示为F=积分(kx)dxdy,其中积分范围是x从-无穷大到a,y从0到W。 积分结果为F=k*积分(x)dxdy=k*(a*W/2)=k*a*W/2。
然后根据牛顿第二定律,平板的运动规律可以表示为ma=F。将F的表达 式代入牛顿第二定律中,得到ma=k*a*W/2。
课程目标
通过本课程的学习,学生应掌握流 体力学的基本原理和方法,能够分 析和解决实际工程中的流体问题。
02
习题解析
问题描述
01 02
题目
一无限长的矩形区域内有均匀分布的压力场,压力场强度为 p=kx,其中k为常数。在该区域内,有一矩形平板,长为L, 宽为W,质量为m,放置在x轴上,离坐标原点O的距离为a。 平板受到的压力作用,其方向与x轴平行。平板在压力作用 下沿x轴方向运动,求平板的运动规律。Fra bibliotek定性。
航空航天领域的流体动力学
总结词
航空航天领域中流体动力学应用广泛,涉及飞行器设计、推进系统、航天器热控制等。
详细描述
在航空航天领域,流体动力学是至关重要的学科。飞行器的设计需要充分考虑空气动力学原理,如机翼设计 和尾翼布局,以实现升力、阻力和操纵力的最佳平衡。推进系统中的发动机燃烧室和喷管设计也需要精确计
拓展题目
寻找与原题目相关的其他题目,可以 是同一章节或不同章节的题目,进行 综合练习,提高自己的知识应用能力 。
对未来学习的建议与思考
深入理解概念
在解题过程中,要深入理解工程流体 力学的概念和原理,掌握其本质,以 便更好地应对各种题目。
注重实践应用
持续学习与反思

工程流体力学课件1-机电解析

工程流体力学课件1-机电解析

4)质点的形状可任意划定,以做到质点之间
无缝隙。
2.7 1016
个分子
1mm3空气 ( 1个大气压,00C)
二. 流体的特征
2.连续介质假设
➢ 连续介质的内涵:
1)流体介质是由连续的流体质点所组成,流体 质点占满空间而没有间隙。
2)流体质点的运动过程是连续的;表征流体的一 切特性可看成是时间和空间连续分布的函数。
毛细血管流动
赵州桥(公元591年至599年)
——拱背的4个小拱, 既减压主拱的负载, 又可宣泄洪水
南北大运河(隋朝公元587年至610年)
大部分竞技体育项 目与流体力学有关
30
流体力学的研究方法和使用领域
一.流体力学的研究方法
理论分析 基本假设
数学模型
解析表达
实验研究 模型试验
量测数据
换算到原型
杨浦大桥
21世纪人类面临许多重大问题的解决,需要流 体力学的进一步发展,它们涉及人类的生存和 生活质量的提高。
•全球气象预报; (卫星云图)
• 环境与生态控制;
• 灾害预报与控制;
• 火山与地震预报;
发展更快更安全更舒适的交通工具;
各种工业装置的优化设计,降低能耗,减少污 染等等。
流体力学需要与其他学科交叉,如工程学,地学,天 文学,物理学,材料科学,生命科学等,在学科交叉 中开拓新领域,建立新理论,创造新方法。
二. 流体的特征
• 液体、气体与固体的区别
呈现流动性?
流体
固体
流体
气体 液体
有无固定的 体积? 无

能否形成 自由表面?


是否容易 被压缩?

不易
二. 流体的特征

工程流体力学复习题(1)

工程流体力学复习题(1)

第一章1. 动力粘性系数与运动粘性系数的关系为____ 。

(A) (B) (C) (D)2. ____的流体称为理想流体。

(A) 速度很小(B) 速度很大(C) 忽略粘性切力(D) 密度不变3. 连续介质假设意味着________ 。

(A)流体分子互相紧连(B) 流体的物理量是连续函数(C) 流体分子间有空隙(D) 流体不可压缩4. 流体的体积压缩系数k 是在____条件下单位压强变化引起的体积变化率。

(A) 等压(B) 等温(C) 等密度5. 空气的体积弹性模数E=____ 。

(A) (B) (C) (D)6.静止流体____剪切应力。

(A)不能承受(B) 可以承受(C) 能承受很小的(D) 具有粘性时可承受7.对于不可压缩流体,可认为其密度在流场中()A.随压强增加而增加B.随压强减小而增加C.随体积增加而减小D.与压强变化无关第二章1. 压力体内____ 。

(A) 必定充满液体(B)肯定不会有液体(C)至少部分有液体(D)可能有液体,也可能无液体2. 用一块平板挡水,平板形心的淹深为,压力中心的淹深为,当增大时,。

(A)增大(B)不变(C)减小3. 液体随容器作等角速度旋转时,重力和惯性力的合力总是与液体自由面____ 。

(A) 正交(B) 斜交(C) 相切4.流体静力学基本方程式zgp+ρ=Const适用于( )。

A.只在重力作用下的平衡流体B.只在重力作用下的均质不可压缩液体C.均质不可压缩流体D.均质可压缩和不可压缩流体5.图示1-1,2-2,3-3三个水平面哪是等压面( )。

A. 1-1是B. 2-2是C. 3-3是D. 都不是第三章1.欧拉法研究____的变化情况。

(A) 每个质点的速度(B) 每个质点的轨迹(C) 每个空间点的流速(D) 每个空间点的质点轨迹2.定常流动中,____ 。

(A) 加速度为零(B) 流动参数不随时间而变(C) 流动参数随时间变化(D) 速度为常数3.流管是在流场里取作管状假想表面,流体流动应是()A.流体能穿过管侧壁由管内向管外流动B.流体能穿过管侧壁由管外向管内流动C.不能穿过侧壁流动D.不确定4.在同一瞬时,位于流线上各个流体质点的速度方向总是在该点与此流线()A.相切B.重合C.平行D.相交5.在____流动中,流线和迹线重合。

工程流体力学1-5章习题解答

工程流体力学1-5章习题解答

第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。

试求m h 5.0=时渠底(y =0)处的切应力。

[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。

[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。

[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。

工程流体力学课件(孔珑第四版)

工程流体力学课件(孔珑第四版)

4℃ 水的密度 ρ= 1000kg/m3 0℃水银的密度 ρ= 13600kg/m3 0专℃业空基础气课 的密度 ρ= 1.29 kg/m3
43
2023/3/9
《工程流体力学》——第二章 流体及物理性质
五、流体的压缩性、膨胀性
可压缩性 在一定温度T下,单位压强升高引起的流体体积变化率。
- V / V P
其中,为压缩系数,(m2 / N)
或 者 用 压 缩 模 量K表 示 。
w —4o C时 水 的 密 度 。 2023/3/9
《工程流体力学》——第二章 流体及物理性质
四、流体的密度
混合物的密度:
11 22 ii nn 其中,i — 第i种物质的密度;i — 第i种物质的体积百分比;
或者,混合物的密度:
1
2
1
i
n
1 2
i
n
其 中 ,i — 第i种 物 质 的 密 度 ;i — 第i种 物 质 的质 量百 分 比 ;
➢建立边界层理论,解释了阻 力产生的机制 ➢针对紊流边界层,提出混合 长度理论
33
2023/3/9
《工程流体力学》——第一章 绪论——流体力学发展简史
专业基础课
儒科夫斯基 H. E. (1847-1921)
找到了翼型升力和绕翼型的环 流之间的关系,建立了二维升力理 论的数学基础,为近代高效能飞机 设计奠定了基础。
24
2023/3/9
《工程流体力学》——第一章 绪论——流体力学发展简史
B. PASCAL (1623-1662)
提出了密闭流体能传 递压强的原理——帕斯卡 原理。
专业基础课
25
2023/3/9
《工程流体力学》——第一章 绪论——流体力学发展简史

工程流体力学中的液体受力分析

工程流体力学中的液体受力分析

工程流体力学中的液体受力分析工程流体力学是研究流体在各种工程系统中的力学行为的学科。

液体是流体力学研究的主要对象之一,液体受力分析是工程流体力学中的重要内容。

液体受力分析通过研究液体的受力机制,可以帮助我们理解液体在不同工程系统中的行为,并为工程设计提供依据。

本文将深入探讨液体受力分析的相关内容。

首先,液体受力分析的基础是流体静力学。

在静力学中,我们研究不可压缩流体在静止状态下的力学行为。

液体受力分析的首要任务是确定液体所受的压力力和重力力。

液体受力分析通常涉及到用到的两个基本公式:静力平衡方程和亥姆霍兹自由能方程。

静力平衡方程描述了液体处于平衡状态时各个位置的受力平衡条件。

根据静力平衡方程,液体内部的压力在各个方向上都是均匀的,且沿任意曲线方向的压力的变化率与液体的密度以及加速度大小成正比。

这个方程对于液体的受力分析起到了重要的作用。

亥姆霍兹自由能方程是对液体受力分析的另一个重要工具。

亥姆霍兹自由能方程描述了液体在稳态条件下的能量守恒规律。

根据亥姆霍兹自由能方程,液体的总能量等于机械能、热能和化学能之和。

液体受力分析需要通过这个方程来分析液体在不同工程系统中的能量变化和能量转换过程。

液体受力分析在很多工程应用中都有广泛的应用。

例如,在水坝工程中,液体受力分析可以帮助工程师确定水坝的稳定性和抗风浪能力,为水坝的设计提供科学依据。

又如,在管道系统设计中,液体受力分析可以帮助工程师确定管道中液体的流动速度和压力分布,提高管道系统的运行效率和安全性。

液体受力分析还可以应用于水力发电站、河流和海洋结构工程、水泵和风扇系统等领域。

在这些工程中,液体受力分析可以帮助工程师确定液体的流动特性、阻力、压力分布和能量损失等,从而优化系统设计。

总而言之,液体受力分析是工程流体力学中的重要内容,通过研究液体的受力机制,可以帮助我们理解液体在不同工程系统中的行为,并为工程设计提供依据。

液体受力分析的基础是流体静力学,主要包括静力平衡方程和亥姆霍兹自由能方程。

工程流体力学试题及答案1.

工程流体力学试题及答案1.

一\选择题部分(1在水力学中,单位质量力是指(答案:ca、单位面积液体受到的质量力;b、单位体积液体受到的质量力;c、单位质量液体受到的质量力;d、单位重量液体受到的质量力。

(2在平衡液体中,质量力与等压面(答案:da、重合;b、平行c、相交;d、正交。

(3液体中某点的绝对压强为100kN/m2,则该点的相对压强为a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2答案:b(4水力学中的一维流动是指(答案:da、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。

(5有压管道的管径d与管流水力半径的比值d /R=(答案:ba、8;b、4;c、2;d、1。

(6已知液体流动的沿程水力摩擦系数与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于答案:ca、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区(7突然完全关闭管道末端的阀门,产生直接水击。

已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为答案:ca、1.54m b 、2.0m c 、2.45m d、3.22m(8在明渠中不可以发生的流动是(答案:ca、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。

(9在缓坡明渠中不可以发生的流动是(答案:b。

a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。

(10底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为答案:ba、缓流;b、急流;c、临界流;(11闸孔出流的流量Q与闸前水头的H(答案:d 成正比。

a、1次方b、2次方c、3/2次方d、1/2次方(12渗流研究的对象是(答案:a 的运动规律。

a、重力水;b、毛细水;c、气态水;d、薄膜水。

(13测量水槽中某点水流流速的仪器有答案:ba、文丘里计b、毕托管c、测压管d、薄壁堰(14按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为答案:da、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ=100000。

《工程流体力学》1 (本科)

《工程流体力学》1 (本科)

《工程流体力学》1 (本科)一、选择题1 连续介质假设意味着( )。

A 流体分子相互紧连B 流体的物理量是连续函数C 流体分子间有空隙D 流体不可压缩2 水的体积弹性模量( )空气的体积弹性模量。

A 小于B 近似等于C 大于3 温度升高时,空气的粘性系数( )。

A 变小B 变大C 不变4 压力体内( )。

A 必定充满液体B 肯定不会有液体C 至少部分有液体D 可能有液体,也可能无液体5 层流中,沿程水头损失与速度的( )次方成正比。

A 1B 1.5C 1.75D 26 在管流中,如果两个截面的直径比为221=d d ,则这两个截面上的雷诺数之比为=21Re Re ()。

A 2B 4C 1/2D 1/47 管道截面突然扩大的局部水头损失=f h ( )。

A g V V 22221- B g V V 22221+C ()g V V 2221+ D ()g V V 2221-8 马赫数〈Ma ( )时, 可以忽略压缩性。

A 3B 1C 0.3D 309 当收缩喷管的质量流量达到极大值时,出口处Ma ( )。

A 1〉B =1C 1〈10 速度势只存在于( )。

A 不可压缩流体的流动中B 可压缩流体的定常流动中C 无旋流动中D 二维流动中二 、判断对错题1. 流体的压缩性系数越大,越不易被压缩。

( )2. 处于静止的流体其静压强的大小只与作用点的位置有关。

( )3. 不可压缩流体沿半径逐渐变大的水平管道流动时,压强越来越小。

( )4. 用皮托管测量流速时,需将总压孔的方向与流动方向相垂直。

( )5. 水力光滑管是指管道壁面相对粗糙度非常小的管子。

( )6. 对于不可压缩流体的一维定常管流,在完全阻力平方区中,沿程损失系数与雷诺数无关。

( )7. 气流在渐缩管中做超声速流动时,速度逐渐变小,密度逐渐变大。

( )8. 流体微团的运动可分解为线变形运动和角变形运动。

( )9. 只要流体质点绕着一定轴做旋转运动,则流动一定是有旋的。

工程流体力学课后习题答案1-3章

工程流体力学课后习题答案1-3章

第1章绪论【1—1】500cm3的某种液体,在天平上称得其质量为0.453kg,试求其密度和相对密度。

【解】液体的密度相对密度【1—2】体积为5m3的水,在温度不变的条件下,当压强从98000Pa增加到4.9×105Pa时,体积减少1L。

求水的压缩系数和弹性系数。

【解】由压缩系数公式【1—3】温度为20℃,流量为60m3/h的水流入加热器,如果水的体积膨胀系数βt=0。

00055K-1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数则【1-4】用200升汽油桶装相对密度0。

70的汽油。

罐装时液面上压强为98000Pa.封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa。

若汽油的膨胀系数为0。

0006K-1,弹性系数为13。

72×106Pa,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由可得,由于压力改变而减少的体积为由于温度变化而增加的体积,可由得(2)因为,相比之下可以忽略由压力变化引起的体积改变,则由得【1-5】图中表示浮在油面上的平板,其水平Array运动速度为u=1m/s,δ=10mm,油品的粘度μ=0。

9807Pa·s,求作用在平板单位面积上的阻力。

【解】根据牛顿内摩擦定律则【1-6】已知半径为R圆管中的流速分布为式中c为常数。

试求管中的切应力τ与r的关系.【解】根据牛顿内摩擦定律则习题1-6图第2章 流体静力学【2—1】容器中装有水和空气,求A 、B 、C 和D 各点的表压力?【解】空气各点压力相同,与空气接触的液面压力即为空气的压力,另外相互连通的同种液体同一高度压力相同,即等压面【2—2】如图所示的U 形管中装有水银与水,试求: (1)A 、C 两点的绝对压力及表压力各为多少? (2)求A 、B 两点的高度差h ?【解】由,,得(1)(2)选取U得 【2-3及ρo ,油层高度为h 1数为R ,水银面与液面的高度差为h 2,的压力p与读数R 的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程流体力学主讲: 冯进长江大学机械工程学院§2流体静力学流体静止包括两种情况:一是流体对绝对坐标系(地球)整体是静止的;另一种情况是流体整体对绝对坐标系是运动的,但流体内部没有相对运动,称为相对静止。

研究绝对静止和相对静止液体的平衡状况,这是本章讨论的内容。

§2.1液体静压强及其特点一、压强在静止或相对静止的流体中,单位面积上沿内法线方向的表面力称为压强。

从静止液体中,取一微元体(如图),作用于上沿的内法线方向的作用力为,则根据定义二、静压强有两个特点1).静压强的方向永远沿着作用面的内法线方向,理由如下:(1)如果静压强不垂直于作用面,则可分解为正应力和切应力。

根据流体的特点,切应力存在必然引起相对运动,这与静止液体假设矛盾,故切应力必须为零。

压强垂直于作用面。

(2)正应力有拉应力和压应力之分,假如压强方向与作用面外法线方向一致,那么流体受到拉力,根据流体特性,流体不能承受拉应力,只能承受压应力,故压强方向与作用面内法线方向一致。

2).静止流体的某一点压强大小与作用面的方位无关,任意一点的静压强在各个方向上相等。

在静止流体中,任取一四面体,则各面受力情况如图示:斜面BCD的压力,如果质量力它在三个方向上的分量为 : ,。

根据立体几何知道,四面体的体积为: ,若流体的密度为ρ,根据理论力学可以写出四面体上诸力对各坐标轴的平衡方程式为:§2.2静止流体平衡微分方程一、平衡微分方程在静止流体中围绕某一点A取一六面体,A点的压强为p ,表面力中只有沿内法线方向作用在六个面上的压力,各个面上的压强如图示。

六面体的质量在坐标上的分量为:首先,沿X方向建立平衡方程,即:整理得:(4)同理在Y和Z方向上分别有:(5)(6)因此,用矢量表示:二、流体静止时质量力必须满足的条件静止流体的平衡微分方程可以写成:两边取旋度,有:三、质量力有势对于静止的不可压缩均值流体,其密度ρ等于常数,静止流体的平衡微分方程可写成:两边取旋度,有:上式说明对于静止的不可压缩均值流体,质量力有势。

四、等压面和等压面方程1.等压面定义若某连续曲面上各点的压强相等,则称为该曲面为等压面。

不同流体的分界面等皆为等压面,如自由界面、不同液体的分界面。

2.等压面方程按照多元函数全微分的定义,有:故:当某个面上压强等于常数时,dp=0。

这时可以得到等压面方程:上式表明质量力沿等压面移动,其做功为零,也说明质量力垂直于等压面,这是等压面重要的性质。

如果已知质量力方向,可求等压面的几何形状。

当质量力仅为重力时,等压面必定为水平面。

互不掺混的两种流体的分界面也是等压面。

§2.3绝对静止液流体的压强分布一、绝对静止流体的压强基本方程1.不可压缩均值流体绝对静止液体所受到的质量力只有重力,取坐标轴如下图所示,则单位质量流体的质量力为:根据平衡微分方程,有:解得:对于点1和2的关系,则有:若质量力仅为重力,根据等压面方程:则有:这说明绝对静止流体的等压面为水平面,自由界面上各点的压力相等,所以自由面为等压面。

2.可压缩流体可压缩流体的密度是随压强变化的,故不能象不可压缩流体那样进行简单积分,只有知道密度变化关系后才能积分。

假设可压缩流体为气体,对完全气体的等温过程,有:p0为等压面Z=Z0面上的压强。

二、测量标准压强的度量有两种标准,一是绝对压强标准,它以真空为起点,物理真空情况下压强为零。

另一个是表压强,它是以大气压强为起点,把压强等于一个大气压作为零。

正值叫表压强,负值叫真空度。

压强除了用pa的单位表示外,也常用液柱高度来表示,即:代表某点的压强所对应的液柱高度。

常见有水银柱压力表和酒精柱压力表。

三、液柱式测压仪器测量压强的仪表叫压力表,利用液柱高度测量压强称为液柱压力表。

之间的作用力在作用面上的表现。

1.气压计故,。

因此,2.测压管3.U 形管压力表建立等压面1-1,在等压面上建立平衡方程:4.U 形管差压计建立等压面1-1,在等压面上建立平衡方程:§2.4相对静止流体相对静止是指流体整体对绝对坐标系(地球)有相对运动,但液体内部各部分彼此间没有相对运动。

对于这样的相对静止流体,其压强和等压面又是怎样的呢?现在我们讨论这个问题。

一、等加速直线运动容器中的液体1.任意点的压强设盛有液体的容器沿水平面以加速度a 作等加速直线运动,除受到垂直向下的重力外,还受到惯性力的影响。

惯性力大小等于液体的质量乘以运动加速度,方向与运动方向相反。

即有:此时,压强增量的全微分方程为:积分得:积分常数C 这样选定,取坐标点(0,H),即:2.等压面方程根据等压面方程,积分得:由上式可见, C取不同的常数,代表不同的等压面。

等压面很多,但我们最关心的是自由面,即。

自由面方程为:二、等角速度旋转容器中的液体1.任意一点的压强设容器以等角速度绕Z轴旋转,此时流体相对于容器没有相对运动,同时流体之间也没有相对运动,因此,作用于流体上的力有重力和水平离心力。

2.等压面方程根据等压面方程,积分得:当r=0时,z=z0,p=p0,为自由界面,故:例:如图示,有一圆柱形敞口容器,半盛以水,若已知D=300mm,H=500mm, h=300mm。

当此容器绕其立轴等角速旋转时,问当转速n多大时,水面恰好达到容器的边缘? 作用在容器底面上的静水总压力与旋转前相比有什么不同?为什么?§2.5平面上的液体总压力工程上进行结构设计时,如果这些结构与液体相接触,常常需要计算作用在面上的总压力及其位置,总压力的作用点在流体力学中称为压力中心。

现在通过下例来说明计算液体作用在平面上的总压力的一般原理。

如图,平面 AB 是一个垂直于纸面并与水平面成的斜面,其面积为S ,根据静压强的物理性质。

①某点的压强在各个方向上相等,②作用方向与作用面的内法线方向一致。

故作用在平面上各点的力的方向是相同的,属于平行力系。

因此,可根据力学原理来求液体的总压力的大小和作用点。

一、平面与液体接触侧的总压力及其作用点1.总压力的大小设液面上受到的大气压强为p a,平面的一侧与液体接触,另侧与大气接触或不接触。

当另侧与大气接触时也受到大气压强的作用。

现在讨论与液体接触侧斜面上的压力。

在点(0,y) 处,压强有:2.总压力的作用点(压力中心)总压力的作用点在流体力学上称为压力中心。

根据力学上平行力系的力矩原理,诸分力对某轴的力矩之和等于合力对该轴的力矩。

对X 轴求力矩有:二、平面与大气接触侧的总压及作用点当平面的另一侧与大气接触时,作用于该侧面的总压力为:对X 轴的力矩。

当平面的另一侧与大气不接,有:三、平面受到的总压力及其压力中心当平面另一侧未受到大气作用时,总压力P=P内,压力中心Y D=Y D内。

当平面外侧受到大气压作用时,总压力为:压力中心为:例1:如图示,一直径为1m的园形平板闸阀与水平面成夹角α=300,用铰链连于O点,H0=5m,闸门质量m1=1000kg。

背面暴露在大气中,求①闸阀受到的液体总压力和压力中心;②为保持闸门关闭,水平力 F 应为多大?解 1)求作用在闸门上的总压力液面上作用有大气压,闸门背面也作用有大气压,故在计算时可以不考虑大气压强的影响。

总压力为:2)求压力中心3)求F根据力矩平衡原理,作用在闸板的诸力对铰结点的力矩和为零。

故:对于圆来说形心必在圆心,y c=R ,S=πR2。

对通过形心的X轴的惯性矩。

例2:如图示,有一圆柱形容器,直径D=1.2m,顶盖上在r0=0.43m处开一小孔,安装敞口测压管。

完全充满水,当此容器绕其立轴旋转时测压管中的水位y=0.5m。

问多大转速n下使顶盖受到的静水总压力为零?§2.6曲面上的液体总压力在平面上由于各点的压强方向相互平行且成线性变化,因此,求解总压力是比较容易的。

而在曲面上,由于各点随深度的变化不是直线变化,且方向也不相同,这样就增加了分析问题的复杂性。

为了方便起见,以1/4园柱面为例来分析,所得结论将同样适合于空间曲面。

这里仅研究液体与曲面接触侧的压力。

例:贮水容器上有三个半球形的盖,设D=0.5m,h=1.5m ,H=2.5m。

试求作用在每个盖上的总压力的大小。

§2.7物体在绝对静止液体中的受力一、浮体和潜体在静止流体中的物体存在两种状态,一种情况是物体部分淹没在液体中,另一部分暴露在气体中,这时把物体称为浮体。

另一种情况是物体完全淹没在液体中,这时把物体称为潜体。

无论是浮体或潜体,要受到液体对它的作用力,其合力称之为浮力,方向与重力方向相反。

二、物体受到的浮力1.绝对静止液体中任意点的压强2.物体在绝对静止液体中受到的作用力上式表明物体在绝对静止液体中受到的浮力方向向上,其大小等于被物体排开的液体的重量。

三、物体在绝对静止液体中受到的浮力矩浮力对坐标原点的力矩可表示为:四、物体在绝对静止液体中的平衡及其稳定性1.物体在绝对静止液体中的平衡物体在绝对静止液体处于平衡位置时,必须满足:重力与浮力的平衡,重力对某点的力矩与浮力对同一点的力矩的平衡。

根据平衡条件,要求重力与浮力大小相等方向相反,且作用线重合。

设物体的质量为m,其质心坐标为( x C, y C,z C),则重力与浮力的平衡关系有:重力对坐标原点的力矩为:则重力与浮力的力矩平衡关系有:故:因此,重心C(质心)和浮力中心B必定在同一铅垂线上。

2.物体在绝对静止液体中的平衡稳定性在绝对静止液体中的物体,当受到较小的倾覆力矩作用且在倾覆力矩消失后能否恢复到平衡位置的问题称为浮体的稳定性问题。

平衡时,重心C(质心)和浮力中心B必定在同一铅垂线上,存在如下关系:必然存在三种情况:若,则平衡是稳定的。

因为物体受力稍倾时,F z和mg所构成的力偶力图恢复平衡位置。

若,则平衡是不稳定的。

因为F z 和mg构成的力偶将物体倾翻(参看图)。

相关文档
最新文档