对数与对数运算PPT课件
合集下载
对数的概念PPT课件
1 024个?
多少次分裂可以得到个细胞呢?8=2x 1 024=2x
x=
例3.计算:(1)lo g 9 2 7
(2)log 4 3 81
思考: a 0且a 1
a loga n ?
a loga n n
loga an ? loga an n
loga 1 ? loga 1 0 loga a ? loga a 1
课后作业:
1.(1)若 log(x1)(3 x)有意义,则x的取值
范围 _____________
(2)若(lg x)2 2 lg x 3 0,则x _____
(3)若
log2
log 1
(log2
x)
0, 求x
____
2
2.计算
1
(1) 3log3 5 3 log3 5
a (2)
loga b•logb c•log c N
1.关系:
底数对底数
指数对以a为底N的对数
指数式
a x= N
x = log a N
对数式
幂值对真数
2.特殊对数:1)常用对数 — 以10为底的对数;lg N
2)自然对数— 以 e 为底的对数;ln N
3.重要结论:
loga a 1 loga 1 0
aloga n n loga an n
a 0,且a 1时
对数的文化意义
恩格斯说,对数的发明与解析几何的创立、 微积分的建立是17世纪数学史上的3大成 就。
伽利略说,给我空间、时间及对数, 我可以创造一个宇宙。
布里格斯(常用对数表的发明者)说,对数 的发明,延长了天文学家的寿命。
对数的概念
一般地,如果 a x N (a 0, 且a 1), 那么数x叫做以a为底N的对数, 记作 x loga N , 其中a叫做对数的底数, N叫做真数
对数与对数运算PPT
思考:
在指数式 ax N和对数式 x= loga N中, a,x ,N 各自的地位有什么不同?
指数式 ax N 对数式 x= loga N
a Nx
指数的底 幂 幂指数 数
对数的底 真 对数 数数
对数式与指数式的互换
42 16 化为对数式 log4 16 2
102 100 化为指数式 log10 100 2
1
4 2 2 化为对数式
102 0.01 化为指数式
1 log 4 2 2
log10 0.01 2
对数的运算
对数运算的三条基本性质
(1)loga M loga N loga (M N)
(2)loga
M
loga
N
loga
M N
(3)loga M n n loga M
对数运算的三个常用结论
ax N x= loga N
介绍两种特殊的对数:
1.常用对数:以10作底 log10 N写成 lg N
例如:log10 3简记作lg 3,log10 2.3简记作lg 2.3 ;
2.自然对数:以无理数e = 2.71828…作
底 log e N 写成 ln N
例如:loge 3 简记作 ln 3,loge 7.1简记作ln 7.1 ;
(1)loga a 1; (2) loga 1 0;
(3) aloga N N.
课堂练习
试用 loga x,loga y ,loga z表示下式:
(1) loga
x2 y
(2)loga yz2
小结:
1°对数的定义
2°互换(对数与指数会互化)
3 °对数的运算性质
课后延续
1、认真复习;
对数与对数运算 课件
398倍。
可以看到,虽然7.6 级地震和5级地震仅相差2.6级,但 7.6级地震的最大振幅却是5级地震最大振幅的 398倍 .所 以,7.6 级地震的破坏性远远大于5级地震的破坏性.
例5.生物机体内碳14的“半衰期”为5 730年. 湖南长沙马王堆汉墓女尸出土时碳14的残 余量约占原始含量的76.7%,试推算马王 堆古墓的年代.
2
5
【总结提升】 对于底数相同的对数式的化简,常用的方法是: (1)“收”:将同底的两对数的和(差)收成积(商)的 对数. (2)“拆”:将积(商)的对数拆成对数的和(差).
例3 log5 2log2 5 的值为( C ).
A.-5
B.5
C.1
D.2
例4.20世纪30年代,里克特(C.F.Richter)制订了 一种表明地震能量大小的尺度,就是使用测震仪衡量 地震能量的等级,地震能量越大,测震仪记录的地震 曲线的振幅就越大.这就是我们常说的 里氏震级M . 其计算公式为
2 log a
x
1 2
loga
y
1 3 loga
z
对数运算性质 的应用
例2 求下列各式的值:
(1)log2 (47 25) (2)lg 5 100
解:(1) log2 (47 25) log2 47 log2 25
7 log2 4 5log2 2 7 2 51 19
2
(2) lg 5 100 lg105
对数的运算
例1.用loga x,loga y,loga z表示下列各式
1 log a
xy z
;
x2 y (2) loga 3 z
解 : 1loga
xy z
loga
xy loga
第6讲 对数与对数函数 课件(共82张PPT)
解析 由 alog34=2 可得 log34a=2,所以 4a=9,所以 4-a=19,故选 B.
解析 答案
2.已知 a>0,a≠1,函数 y=ax 与 y=loga(-x)的图象可能是( )
解析 若 a>1,则 y=ax 是增函数,y=loga(-x)是减函数;若 0<a<1, 则 y=ax 是减函数,y=loga(-x)是增函数,故选 B.
且 a≠1)互为反函数,它们的图象关于直线 10 ___y_=__x___对称.
1.对数的性质(a>0 且 a≠1) (1)loga1=0;(2)logaa=1;(3)alogaN=N. 2.换底公式及其推论 (1)logab=llooggccba(a,c 均大于 0 且不等于 1,b>0); (2)logab·logba=1,即 logab=log1ba(a,b 均大于 0 且不等于 1); (3)logambn=mn logab; (4)logab·logbc·logcd=logad.
增区间.
∵当 x∈(4,+∞)时,函数 t=x2-2x-8 为增函数,
∴函数 f(x)的单调递增区间为(4,+∞).故选 D.
解析 答案
6.计算:log23×log34+( 3)log34=________. 答案 4 解析 log23×log34+( 3)log34 =llgg 32×2llgg32+3 log34=2+3log32=2+2=4.
8 5
<lg152·lg
3+lg 2
82=
lg
3+lg 2lg 5
82=llgg
22452<1,∴a<b.由
b=log85,得
8b=5,由
55<84,得
85b
<84,∴5b<4,可得 b<45.由 c=log138,得 13c=8,由 134<85,得 134<135c,
对数与对数运算 课件
问题2:你能推出loga (M·N )(M>0,N>0)的表达式吗? 提示:能. 令am=M,an=N,∴MN=am+n. 由对数的定义知 logaM=m,logaN=n,logaMN=m+n, ∴logaMN=logaM+logaN.
1.对数的运算性质
若 a>0,且 a≠1,M>0,N>0,那么: (1)loga(M·N)= logaM+logaN , (2)logaMN= logaM-logaN , (3)logaMn= nlogaM (n∈R).
(6 分)
(2)1z-1x=log16k-log13k=logk6-logk3=logk2 =12logk4=21y,
∴1z-1x=21y.
(12 分)
[一点通] 对数式的证明和对数式的化简的基本 思路是一致的,就是根据对数的运算性质和换底公式 对对数式化简.
1.换底公式可完成不同底数的对数式之间的转化. 该公式既可正用,又可逆用.使用时,关键是选择底数. 换底的目的是利用对数的运算性质对对数式进行化简.
问题1:若2x=8,(13)x=27,x的值分别为多少? 提示:3 -3
问题2:若2x=0,(13)x=-1,这样的x存在吗? 提示:不存在. 问题3:若2x=3,(13)x=4,如何求指数x?
提示:利用对数求解.
1.对数的概念 (1)定义: 如果ax=N(a>0,且a≠1),那么数 x叫做以 a为 底 N 的对数,记作 x=logaN .其中, a 叫做对数 的底数, N 叫做真数.
法二:原式=lg472-lg 4+lg 7
5=lg4
2×7 7×4
5
=lg( 2· 5)=lg 10=12. (3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2
PPT教学课件对数与对数的运算
logcb logab=_lo_g_c_a___ (a>0,b>0,c>0,a≠1,c≠1).
问题探究
1 . 若 M 、 N 同 号 , 则 式 子 loga(M·N) = logaM + logaN成立吗? 提 示 : 不 一 定 . 当 M>0 , N>0 时 成 立 ; 当 M<0 , N<0时不成立. 2.对数式logapNq如何化简?(a>0,a≠1,N>0) 提示:可用换底公式化简: logapNq=llooggaaNapq=qlopgaN=qplogaN.
即2x+1y=1.
【名师点拨】 法一,通过指数式化对数式求出 x,y,再代入所求式子中进行对数运算,注意 化同底. 法二,对等式两边取对数,是一种常用的技巧.
自我挑战 2 已知 x、y、z 为正数,3x=4y=6z=k,
求证:1z-1x=21y. 证明:1z-1x=lo1g6k-log13k=logk6-logk3=logk2 =12logk4=21y,
• ②发展方向:研制
的
新型农药。
• 二、化学是社会可持续发展的基础
• 1.现代科学技术的发展离不开化学
• (1)化学与人类的密切关系
• ①化学与人们的生活有着密切的联系。 • ②化学与信息、生命材、料 、环境、能、源 地 球 、
空间和核科学等新兴学科密切联系。 • ③化学 合成和分离 技术为其他技术的发明
失误防范
1.应用对数运算性质时应注意保证每个对数 都有意义.
要注意底数和真数的取值范围.例如,
log5[(-5)×(-5)]是有意义的,但是不能用公 式 计 算 , 否 则 会 得 到 如 下 结 果 : log5[( - 5)×(-5)]=log5(-5)+log5(-5),即无意义 了.
问题探究
1 . 若 M 、 N 同 号 , 则 式 子 loga(M·N) = logaM + logaN成立吗? 提 示 : 不 一 定 . 当 M>0 , N>0 时 成 立 ; 当 M<0 , N<0时不成立. 2.对数式logapNq如何化简?(a>0,a≠1,N>0) 提示:可用换底公式化简: logapNq=llooggaaNapq=qlopgaN=qplogaN.
即2x+1y=1.
【名师点拨】 法一,通过指数式化对数式求出 x,y,再代入所求式子中进行对数运算,注意 化同底. 法二,对等式两边取对数,是一种常用的技巧.
自我挑战 2 已知 x、y、z 为正数,3x=4y=6z=k,
求证:1z-1x=21y. 证明:1z-1x=lo1g6k-log13k=logk6-logk3=logk2 =12logk4=21y,
• ②发展方向:研制
的
新型农药。
• 二、化学是社会可持续发展的基础
• 1.现代科学技术的发展离不开化学
• (1)化学与人类的密切关系
• ①化学与人们的生活有着密切的联系。 • ②化学与信息、生命材、料 、环境、能、源 地 球 、
空间和核科学等新兴学科密切联系。 • ③化学 合成和分离 技术为其他技术的发明
失误防范
1.应用对数运算性质时应注意保证每个对数 都有意义.
要注意底数和真数的取值范围.例如,
log5[(-5)×(-5)]是有意义的,但是不能用公 式 计 算 , 否 则 会 得 到 如 下 结 果 : log5[( - 5)×(-5)]=log5(-5)+log5(-5),即无意义 了.
对数与对数运算(共22张PPT)
练习
(1) log15 15 (2) 2log2 5
(3) 10lg3 10 ln1 log 2
提高训练
1.求下列各式中 x 的值
(1) log2(log5 x) 0
(2) log3(lg x) 1
提高训练
(1)已知 loga 2 m, loga 3 n 求下列各式的值
(1) a 2m , (2) a 3n , (3) a 2m3n
对数与对数运算
创设情景,引入新课
情景1:
情景2: 设2014年我国的国民生产总值为 亿元, 如果每年平均增长8%,那么经过多少年国 民生产总值是2014年的2倍?
解:设经过x年国民生产总值是2014年的 2倍,则有
x?
问题1:2 = 26
问题2:
=? =?
共同特征:
已知底数和幂的值,求指数的问题。
对数的起源
——(Napier,1550-1617)
恩格斯把对数的发明称为17世纪数学的三大成就 之一。今天,随着计算机的迅猛发展,对数表就 像过时的法律一样被废弃了,但对数已成为数学 的精髓部分,是每一个中学生必学的内容。
例1:将下列指数式化为对数式, 对数式化为指数式。
两种特殊的对数: ①常用对数:以10为底的对数
作业
课本:P74 1,2
当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来的,习惯是养成的,我的 成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
脚踏实地过好每一天,最简单的恰恰是最难的。拿梦想去拼,我怎么能输。只要学不死,就往死里学。我会努力站在万人中央成为别人的光。行为决定性格, 性格决定命运。不曾扬帆,何以至远方。人生充满苦痛,我们有幸来过。如果骄傲没有被现实的大海冷冷拍下,又怎么会明白要多努力才能走到远方。所有的 豪言都收起来,所有的呐喊都咽下去。十年后所有难过都是下酒菜。人生如逆旅,我亦是行人。驾驭命运的舵是奋斗,不抱有一丝幻想,不放弃一点机会,不 停止一日努力。失败时郁郁寡欢,这是懦夫的表现。所有偷过的懒都会变成打脸的巴掌。越努力,越幸运。每一个不起舞的早晨,都是对生命的辜负。死鱼随 波逐流,活鱼逆流而上。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的既然选择远方,就注定风雨兼程。漫漫长路,荆棘丛生,待我用双手踏 平。不要忘记最初那颗不倒的心。胸有凌云志,无高不可攀。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海绵才能吸收新的 源泉。感恩生命,感谢她给予我们一个聪明的大脑。思考疑难的问题,生命的意义;赞颂真善美,批判假恶丑。记住精彩的瞬间,激动的时刻,温馨的情景, 甜蜜的镜头。感恩生命赋予我们特有的灵性。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。一切伟大的行动和思想,都有一个微不足道 的开始。在你发怒的时候,要紧闭你的嘴,免得增加你的怒气。获致幸福的不二法门是珍视你所拥有的、遗忘你所没有的。骄傲是胜利下的蛋,孵出来的却是 失败。没有一个朋友比得上健康,没有一个敌人比得上病魔,与其为病痛暗自流泪,不如运动健身为生命添彩。有什么别有病,没什么别没钱,缺什么也别缺 健康,健康不是一切,但是没有健康就没有一切。什么都可以不好,心情不能不好;什么都可以缺乏,自信不能缺乏;什么都可以不要,快乐不能不要;什么 都可以忘掉,健身不能忘掉。选对事业可以成就一生,选对朋友可以智能一生,选对环境可以快乐一生,选对伴侣可以幸福一生,选对生活方式可以健康一生。 含泪播种的人一定能含笑收获一个有信念者所开发出的力量,大于个只有兴趣者。忍耐力较诸脑力,尤胜一筹。影响我们人生的绝不仅仅是环境,其实是心态 在控制个人的行动和思想。同时,心态也决定了一个人的视野、事业和成就,甚至一生。每一发奋努力的背后,必有加倍的赏赐。懒惰像生锈一样,比操劳更 消耗身体。所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道挫折其实就是迈向成功所应缴的学 费。在这个尘世上,虽然有不少寒冷,不少黑暗,但只要人与人之间多些信任,多些关爱,那么,就会增加许多阳光。一个能从别人的观念来看事情,能了解 别人心灵活动的人,永远不必为自己的前途担心。当一个人先从自己的内心开始奋斗,他就是个有价值的人。没有人富有得可以不要别人的帮助,也没有人穷 得不能在某方面给他人帮助。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。今天做别人不 愿做的事,明天就能做别人做不到的事。到了一定年龄,便要学会寡言,每一句话都要有用,有重量。喜怒不形于色,大事淡然,有自己的底线。趁着年轻, 不怕多吃一些苦。这些逆境与磨练,才会让你真正学会谦恭。不然,你那自以为是的聪明和藐视一切的优越感,迟早会毁了你。无论现在的你处于什么状态, 是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。世界上那些最容易的事情中,拖延时间最不费力。崇高的理想就像生长在高山上的鲜 花。如果要搞下它,勤奋才能是攀登的绳索。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。海浪的品格,就是无数次被礁石击碎又无数闪地扑向礁 石。人都是矛盾的,渴望被理解,又害怕被看穿。经过大海的一番磨砺,卵石才变得更加美丽光滑。生活可以是甜的,也可以是苦的,但不能是没味的。你可
4.3.1对数的概念与对数运算(两课时)课件(人教版)
当a>0,a≠1时,ax=N
x=㏒aN
※性质
0和负数没有对数,即N > 0;
1的对数等于0,即loga1=0;
底数的对数等于1,即logaa=1;
④对数恒等式 a
log a N
N.
探究角度1 对数式与指数式的互化
[例1] 将下列对(或指)数式化成指(或对)数式.
(1)lo
x=3;
(2)logx64=-6;
对数定律说明书》中阐明了对数原理,后人称为纳皮尔对数
.
对数的主要作用是简化运算
解下列方程
(1)2 8
x
(3)1.11 2
x
(2)2
x
2
(4)1.11 3
x
一般地,
对数概念
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N 的对数,记
作x=logaN,其中a叫做对数的底数,N 叫做真数
loga N
N (对数恒等式)
对数的运算性质
如果a>0,且a≠1,M>0,N>0,那么:
(1)logaM n = n logaM (n∈R)
(2)loga(MN)=logaM+logaN
M
(3) log a
log a M log a N
N
探究点一
对数运算法则
[例1] 计算:
(2)
+
+
解:(1)由log8[log7(log2x)]=0,得log7(log2x)=1,即log2x=7,所以x=27.
(2)log2[log3(log2x)]=1.
解:(2)由log2[log3(log2x)]=1,所以log3(log2x)=2,所以log2x=9,所以x=29.
x=㏒aN
※性质
0和负数没有对数,即N > 0;
1的对数等于0,即loga1=0;
底数的对数等于1,即logaa=1;
④对数恒等式 a
log a N
N.
探究角度1 对数式与指数式的互化
[例1] 将下列对(或指)数式化成指(或对)数式.
(1)lo
x=3;
(2)logx64=-6;
对数定律说明书》中阐明了对数原理,后人称为纳皮尔对数
.
对数的主要作用是简化运算
解下列方程
(1)2 8
x
(3)1.11 2
x
(2)2
x
2
(4)1.11 3
x
一般地,
对数概念
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N 的对数,记
作x=logaN,其中a叫做对数的底数,N 叫做真数
loga N
N (对数恒等式)
对数的运算性质
如果a>0,且a≠1,M>0,N>0,那么:
(1)logaM n = n logaM (n∈R)
(2)loga(MN)=logaM+logaN
M
(3) log a
log a M log a N
N
探究点一
对数运算法则
[例1] 计算:
(2)
+
+
解:(1)由log8[log7(log2x)]=0,得log7(log2x)=1,即log2x=7,所以x=27.
(2)log2[log3(log2x)]=1.
解:(2)由log2[log3(log2x)]=1,所以log3(log2x)=2,所以log2x=9,所以x=29.
高中数学对数及对数的运算优秀课件
添加幻灯片小标题
[尝试解答] (1)∵3-2=19,∴log319=-2.
(2)∵14-2=16,∴log
1 4
16=-2.
(3)∵log
1 3
27=-3,∴13-3=27.
(4)∵log 64=-6,∴( x)-6=64. x
2
3.指数与对数的互化 添加幻灯片小标题
当 a>0,a≠1 时,ax=N⇔x=
. 如:
∵23=8,∴log28= ;∵25=32,∴log232= .
4.对数的性质
(1)loga1= ;
(2)logaa= ;
(3)
和 没有对数.
5.对数恒等式
alogaN=N(a>0,且 a≠1,N>0).
[典例精析]
添加幻灯片小标题
求下列各式中 x 的值.
(1)logx27=32; (3)x=log2719;
2.2对数函数
对数与对数的运算
01 对数的概念
03 对数的运算性质
CATALOG
02 对数的性质及应用 04 换底公式
1
添加幻灯片小标题
ax b 已知a, x,求b 幂运算 已知b, x,求a 开方运算 已知a,b,求x ??运算
添加幻灯片小标题
1.定义
一般的,如果 aa 0, a 1
3
添加幻灯片小标题
6 .
[典例精析]
添加幻灯片小标题
求下列各式的值:
(1)log2(47×25);
5
(2)lg
100;
(3)lg 14-2 lg 73+lg 7-lg 18;
(4)lg 52+23 lg 8+lg 5·lg 20+(lg 2)2.
对数与对数运算PPT课件
loga a?1
(4) lne ___1
思考:你发现了什么?如何用对数式表示?
3、求下列各式的值:
2 (1) log23 _3__
a ? (2) 5log50.6 _0._6_
logaN
N
(3) 0.8log0.8100 1_0_0_
思考:你发现了什么?如何用式子表示?
对数恒等式
ax = N
x = loga N
一、对数的定义:
一般地,如果 axN ,(a0且 a1),那
么数 x 叫做以 a 为底 N的对数
记作: x loga N
其中 a 叫做对数的底数,N 叫做真数
二、两种特殊对数:
1.常用对数:我们将以10为底的对数 log10 N 叫 做常用对数,并记做 lg N .
2.自然对数:无理数e=2.71828…,以e为底的对
1
(4)(
)m =5.73
3
4=log5625 -6=log2(1/64)
a =log327 m=log(1/3) 5.73
2.将下列对数式写成指数式
(1)log1 16=4
16= ( 1 ) 4
2
2
(2)log2128=7
128=27
(3)log100.01= -2
0.01=10-2
(4)loge10=2.303
10=e 2.303
P84《课时跟踪十六》9 (利用对数式和指数式的互化)
理论迁移
例2.求下列各式中x 的值:
(1)log 64 x
2 3
(2)logx 8 4
(3)lg1000 x
(4) lne3 x
例3 计算下列各式:
(1) log 5 25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N a
2020年9月2这8日 个公式叫做换底公式
19
其他重要公式3:
loga
b
1 logb
a
a,b(0,1)(1, )
证明:由换底公式
loga
N
logc logc
N a
取以b为底的对数得:
loga
b
logb logb
b a
lobgb1,
loga b
1 logb a
还可以变形,得
loag b•lobga1
探究3:若ax=N,则x=logaN ,二者组 合可得什么等式?
alogaN N
2020年9月28日
7
练习:
1.将下列指数式写成对数式
(1)54=625
1
(2)2-6= 64 (3)3a =27 (4)( 1 )m =5.73
3
4=log5625 -6=log2(1/64)
a =log327 m=log(1/3) 5.73
2020年9月28日
20
例5用loagx,loagy,loagz表示下列各式:
xy (1)loagz
x2 y (2)loag3 z
例6计算下列各式:
(1 )lo2(4 g 725); (2)lg 5100
2020年9月28日
21
随堂练习
(1)log3(2792)
(3)
log5
3log5
1 3
(5)lg0.000001
2020年9月28日
3
两种特殊对数:
1.常用对数:我们将以10为底的对数 log10N 叫 做常用对数,并记做 lgN .
2.自然对数:无理数e=2.71828…,以e为底的对 数 logeN 称为自然对数,并记做 lnN
2020年9月28日
4
2、指数式与对数式可相互转化;
幂变真数
指数变对数
ax N
2. log5 1 __0_
2020年9月28日
10
例2 求下列各式中x的值: (1)log64x32 (2)loxg86 (3)lg100x (4)-lne2 x (5)loxg (322)2
(6)lo5(glo 2x)g0
2020年9月28日
11
例3 计算下列各式:
(1) log 5 25
(7)lg5lg2
(2)lg1002 (4)log2 6log2 3 (6)log3 5log315
… …
?
------ a(1+8%)x =2a
∴1.08x=2
怎样求出这个x?
定义:一般地,如果 axN(a0,且 a1)
那么数 x叫做以a为底 N的对数,记作 loga Nb 其中a叫做对数的底数,N叫做真数。 注意:(1)底数a的取值范围:(0,1)(1, )
(2) 真数N的取值范围 : (0,)
现在我们学习了对数,那么对于对数之间的运算, 又会有什么样的运算性质呢?
2020年9月28日
13
证明:①设 loagMp, loga Nq,
由对数的定义可以得:M ap, N aq ∴MN= a p a q apq loaM g N pq
即证得
log a (MN) log a M log a N ( 1 )
2.2.1对数与对数运 算
2020年9月28日
1
问题1:假设2012年我国国民生产总值为a亿 元,如果每年平均增长8%,那么,经过多 少年国民生产总值是2012年时的2倍?
析:
X 年
2012年生产总值 2013年生产总值 2014年生产总值 2015年生产总值
------a ------a(1+8%) -----a(1+8%)(1+8%)=a(1+8%)2 -----a(1+8%)2(1+8%)=a(1+8%)3
请问:
lo2[g (3)(5)]lo2(g3)lo2(g5)对吗?
2020年9月28日
17
其他重要公式1:
loagm
Nn
nl m
oagN
证明:设 loagm Nn p,
由对数的定义可以得: Nn (am)p,
∴
Nn am p
mp
N an
loga
Nmp n
即证得
loagm Nn m nloagN
2020年9月28日) 解: 52 25
log5 25 2
(2) 解: 2 4 1 16
log
1 2 16
4
(3) 解: log15151
(3) log1515
2020年9月28日
12
对于幂的运算我们有三条运算法则.
幂的运算的三条法则: (1)aras ars(a0,r,sR) (2)(ar)s ars(a0,r,sR) (3)(ab)r arbr(a0,b0,rR)
2020年9月28日
8
2.将下列对数式写成指数式
(1)log1 16=4
2
16= ( 1 ) 4
2
(2)log2128=7
128=27
(3)log100.01= -2
0.01=10-2
2(0240年)9月l2o8日ge10=2.303
10=e
2.303
9
练习1:计算下列各式的值
1. log 3 3 __1_
2020年9月28日
14
证明:②设 loagMp, loga Nq,
由对数的定义可以得:M ap, N aq
∴ M ap N aq
apq loga M Npq
即证得
M log a N
log aM
log a N
(2)
2020年9月28日
15
证明:③设 loagMp,
由对数的定义可以得:M ap, ∴ Mn anp loagMnnp
18
其他重要公式2:
loga
N
logc logc
N a
(a ,c (0 ,1 ) ( 1 ,)N , 0 )
证明:设 loga Np
由对数的定义可以得: N ap, locN gloca gp, locN gploca g,
p logc N即证得 logc a
loga
N
logc logc
即证得
log a M n nlog a M(n R) ( 3 )
2020年9月28日
16
对数运算的三条运算法则:
如果 a0,且 a1 , M 0,N0,那么
(1)loga(M N) loga Mloga N
(2)loga
M N
loga
M
loga
N
(3)loga Mn nloga M
对于上面的每一条运算法则,都要注意只有当式子 中所有的对数符号都有意义时,等式才成立.
xloga N
底数不变
2020年9月28日
5
探究1:当a>0且a≠1时,loga(-2), loga0存在吗?为什么?由此能得到 什么结论?
零和负数没有对数,真数必须大于0
2020年9月28日
6
探究2:根据对数定义,logal和logaa (a>0且a≠1)的值分别是多少?
loga1=0 logaa=1