函数基本性质专题

合集下载

专题01 函数的基本性质学霸必刷100题(解析版)

  专题01  函数的基本性质学霸必刷100题(解析版)

专题01 函数的基本性质100题1.已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-, 即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+,所以函数21x y x +=也关于点(0,2)对称, 所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422miim m i mx y xx x y y y m =+=+++++++=+⨯=∑. 故选:C.2.已知函数2(2)2()log xf x ax +=+,若对任意(1,3]t ∈-,任意x ∈R ,不等式()()1f x f x kt +-≥+恒成立,则k 的最大值为 A .1- B .1C .13-D .13【答案】D 【解析】因为()()22log 2f x x ax =++,所以()()()222log 22f x f x x +-=+≥,则不等式()()1f x f x kt +-≥+恒成立等价于12kt +≤,设()1g t kt =+,则()()1123312g k g k ⎧-=-+≤⎪⎨=+≤⎪⎩,解得113k -≤≤.答案选D.3.已知函数()()f x g x ,的图象分别如图1,2所示,方程()()()()1f g x g f x =,=-1,1(())2g g x =-的实根个数分别为a 、b 、c ,则( )A .a b c +=B .b c a +=C .b a c =D .ab c =【答案】A 【解析】由方程(())1f g x =,可得()(10)g x m m =-<<. 此方程有4个实根,所以方程(())1f g x =有4个实根,则4a =; 由方程(())1g f x =-,可得()1f x =或()1f x =-. 所以方程(())1g f x =-有2个实根,则2b =,由方程1(())2g g x =-,可得113()12g x x x ⎛⎫=-<<- ⎪⎝⎭或()22()10g x x x =-<<或33()(01)g x x x =<<或443()12g x x x ⎛⎫=<< ⎪⎝⎭,这4个方程的实根的个数分别为0,4,2,0. 则6c =.故a b c +=,故选:A4.已知函数()f x 是定义在R 上的增函数,且其图象关于点()2,0-对称,则关于x 的不等式()()23120f x f x -+-≥的解集为( )A .[)4,-+∞B .[]4,2-C .[]2,4-D .(],2-∞【答案】B 【解析】因为()f x 的图象关于点()2,0-对称,所以()()40f x f x +--=. 因为()()23120f xf x -+-≥,故()()()2312412f x f x f x -≥--=---⎡⎤⎣⎦,所以()()2325f xf x -≥-.因为()f x 是定义在R 上的增函数,故2325x x -≥-即2280x x +-≤, 解得42x -≤≤,故原不等式的解集为[]4,2-, 故选:B.5.已知定义域为()0,∞+的函数()f x 满足:(1)对任意()0,x ∈+∞,恒有()()22f x f x =成立;(2)当(]1,2x ∈时,()2f x x =-.给出如下结论: ①对任意m Z ∈,有()20mf =;②函数()f x 的值域为[)0,+∞;③若函数()f x 在区间(),a b 上单调递减,则存在k Z ∈,使得()()1,2,2kk a b +⊆.其中所正确结论的序号是( ) A .①② B .①③C .②③D .①②③【答案】D 【解析】()2220f =-= ()()()()122122222220m m m m f f f f ---∴===⋅⋅⋅==,①正确;取(12,2m m x +⎤∈⎦,则(]1,22m x ∈ 222mm xx f ⎛⎫∴=- ⎪⎝⎭()12482202482m m m x x x x f x f ff f x +⎛⎫⎛⎫⎛⎫⎛⎫====⋅⋅⋅==-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()f x ∴的值域为[)0,+∞,②正确;由②知:(12,2k k x +⎤∈⎦时,()12k f x x +=-,此时()f x 单调递减 由此可知,存在()()1,2,2kk a b +⊆,使得()f x 在(),a b 上单调递减,③正确.故选:D6.已知定义域为R 的函数()f x 满足(1)(1)f x f x -=-+,且函数()f x 在区间()1,+∞上单调递增,如果121x x ,且122x x +>,则()()12f x f x +的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负函数【答案】B 【解析】因为(1)(1)f x f x -=-+,所以()()110f x f x -++=,所以()f x 关于点()1,0成中心对称,且()10f = 又因为()f x 在()1,+∞上单调递增,所以()f x 在(),1-∞上也单调递增,所以()f x 是R 上的增函数, 因为122x x +>,所以122x x >-,所以()()122f x f x >-, 又因为()()22110f x f x -++=,所以()()2220f x f x -+=, 所以()()12f x f x >-,所以()()120f x f x +>. 故选:B.7.已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D8.已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则2a b -的取值范围是( ) A .(0,)+∞ B .[1,)-+∞C .(,1)-∞-D .(,0)-∞【答案】C 【解析】lg ,1()lg lg ,01x x f x x x x ≥⎧==⎨-<<⎩,画出函数图像,如图所示:()()f a f b =,则lg lg a b -=,故1ab =,且01a <<,故22a b a a-=-.设函数()2f x x x =-,则函数在()0,1上单调递增,故()22,1a b a a-=-∈-∞-. 故选:C .9.设函数()f x 是定义在R 上的偶函数,()()4f x f x =-,当02x ≤≤时,52x f x,函数112g xx ,则()()()F x f x g x =-零点个数为( ) A .7B .6C .5D .4【答案】B 【解析】因为函数()f x 是定义在R 上的偶函数,当02x ≤≤时,52x f x ,所以令20x -≤≤,52x f x f x,即当20x -≤≤时,52x f x,因为()()4f x f x =-,所以函数()f x 的周期4T =,综上所述,可以绘出函数()f x 以及函数112g xx 的图像,结合图像可知,函数()()()F x f x g x =-的零点个数为6个 综上所述,故选B 。

函数的基本性质及常用结论

函数的基本性质及常用结论

函数的基本性质及常用结论一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。

定义:(略)定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; []1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数. 定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。

3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)当()f x 和()g x 具有相同的增减性时,①1()()()F x f x g x =+的增减性与()f x 相同,②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么:①1()()()F x f x g x =+、②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠的增减性不能确定;③3()()()F x f x g x =-为增函数。

函数的性质专题讲义

函数的性质专题讲义

函数四大性质综合讲义1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值3.(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。

2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

专题09 函数的基本性质(单调性、奇偶性、对称性、周期性等)QG

专题09  函数的基本性质(单调性、奇偶性、对称性、周期性等)QG

专题09 函数的基本性质(单调性、奇偶性、对称性、周期性等)【重温课标】1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.2.结合具体函数,了解奇偶性的概念和几何意义.3.结合三角函数,了解周期性的概念和几何意义.【解读考情】1.函数的单调性与最值在高考中常以选择、填空题形式出现,但近几年高考常以导数为工具,研究函数的单调性,因此本部分内容在高考中占有十分重要的地位.2.函数的奇偶性常与函数的单调性、对称性、最值等结合考查,综合考查知识的灵活应用能力,是高考考查的热点.3.函数的奇偶性,以选择、填空题居多,且是高考考查的热点.【知识点归纳】一、增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有:(1) f (x )在区间D 上是增函数⇔ f (x 1)<f (x 2);(2) f (x )在区间D 上是减函数⇔ f (x 1)>f (x 2).【温馨提示】(1) 单调区间是定义域的子集,故求单调区间应树立“定义域优先”的原则.(2) 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.即使在两个区间上的单调性相同,也不能用并集表示.(3) 两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),g (x )f (x )等的单调性与其正负有关,切不可盲目类比. 二、单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.三、函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足:条件 (1) 对于任意x ∈I ,都有f (x )≤M ; (2) 存在x 0∈I ,使得f (x 0)=M(1) 对于任意x ∈I ,都有f (x )≥M ;(2) 存在x 0∈I ,使得 f (x 0)=M 结论 M 为最大值M 为最小值四、判断或证明函数单调性的方法(1) (图象法)根据图象判断:函数的单调性在几何上表现为在某区间上函数图象从左到右是一致上升还是一致下降,因此可以根据图象的特点来判断.如:根据右图,指出函数y =f (x )的单调增区间与减区间.从图上可以看出函数y =f (x )在区间(-∞,-5]和(12,+∞)内递增,在区间(-5,12]内递减. (2) (定义法)根据定义来判断或证明:这是最基本的方法,其步骤如下:第一步:取值,即设x 1,x 2是该区间内的任意两点,且x 1<x 2.第二步:变形,变形有两种途径.一般采用作差法,即f (x 1)-f (x 2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形;如果是指数型一般采用作商比较法.第三步:定号,确定差f (x 1)-f (x 2)的符号,当符号不确定时,可以进行分区间讨论.如果是作商比较,则需比较变形结果与1的大小关系.第四步:判断,根据定义作出结论.(3) (导数法)用导函数方法去判断函数单调性.这种方法我们将在(高二)学习.(4) (结论法)判断函数单调性的常用结论① 在两个函数的公共定义域内,两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;② 奇函数在对称的两个区间上有相同的单调性;偶函数在对称的两个区间上有相反的单调性;③ 互为反函数的两个函数有相同的单调性;④ 如果f (x )在区间D 上是增(减)函数,那么f (x )在D 的任一子区间上也是增(减)函数; ⑤ 如果y =f (u )和u =g (x )单调性相同,那么y =f [g (x )]是增函数;如果y =f (u )和u =g (x )单调性相反,那么y =f [g (x )]是减函数.简称为:同增异减.注:在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的单调性,因此掌握并熟记一次函数、二次函数、幂函数、指数函数、对数函数的单调性,将大大简化我们的判断过程.五、函数单调性的应用单调性是函数的重要性质,它在研究函数时具有很重要的作用,具体体现在:(1) 利用单调性比较大小利用函数的增减性,可以把比较函数值的大小问题转化为自变量的大小比较问题. 如:已知函数y =0.8x 在R 上是减函数,因为-3.2<-0.2,则0.8-3.2>0.8-0.2.(2) 确定函数的值域或求函数的最值.如:函数f (x )在区间[a ,b ]上单调递增.则可以判定它的值域为[f (a ),f (b )],若在[a ,b ]上递减,则函数值域为[f (b ),f (a )]且当f (x )在[a ,b ]上递增时,f (a )与f (b )分别为[a ,b ]上的最小值与最大值,当f (x )在[a ,b ]上递减时,f (a )与f (b )分别为[a ,b ]上的最大值与最小值.函数最值存在的两条定论:(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时,最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.*常用结论:设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么:(1)f (x 1)-f (x 2)x 1-x 2>0 ⇔ f (x 1)-f (x 2)(x 1-x 2)>0 ⇔ f (x )在[a ,b ]上是增函数; (2) f (x 1)-f (x 2)x 1-x 20 ⇔ f (x 1)-f (x 2)(x 1-x 2)<0 ⇔ f (x )在[a ,b ]上是减函数. 【例题示范】例1.(2017·全国Ⅱ卷)函数f (x )=ln(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)【解析】由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.因为函数t =x 2-2x -8的单调递增区间为(4,+∞),所以函数f (x )的单调递增区间为(4,+∞).故选D .例2.(2020·海南卷)已知函数f (x )=log 2(x 2-4x -5)在(a ,+∞)单调递增,则a 的取值范围是( )A .(-∞,-1]B .(-∞,2]C .[2,+∞)D .[5,+∞)【解析】令t =x 2-4x -5,由t >0,得x <-1或x >5,又f (x )=log 2t 在定义域内单调递增,且t =x 2-4x -5在(5,+∞)也单调递增,由复合函数的性质得a ≥5,故选D .例3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0成立. (1) 判断f (x )在[-1,1]上的单调性,并证明它;(2) 若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.【解析】(1) 任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],因为f (x )为奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2), 由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )在[-1,1]上单调递增.(2) 因为f (1)=1,f (x )在[-1,1]上单调递增.所以在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立.下面来求m 的取值范围.设g (a )=-2ma +m 2≥0.①若m =0,则g (a )=0≥0,自然对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1) ≥0,所以m ≤-2,或m ≥2.所以m 的取值范围是m =0或|m |≥2.【分段函数的单调性问题的解决策略】(1) 抓住对变量所在区间的讨论;(2) 保证各段上同增(减)时,要注意上、下段端点值间的大小关系;(3) 弄清最终结果取并集还是交集.例4.若f (x )=⎩⎪⎨⎪⎧a x (x >1)(4-a 2)x +2(x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)【解析】函数f (x )在(-∞,1]和(1,+∞)上都为增函数,且f (x )在(-∞,1]上的最高点不高于其在(1,+∞)上的最低点,即⎩⎪⎨⎪⎧a >14-a 2>0a ≥4-a 2+2,解得a ∈[4,8).选B .例5.已知函数f (x )=⎩⎪⎨⎪⎧ (a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .⎝⎛⎦⎤-∞,138C .(-∞,2]D .⎣⎡⎭⎫138,2 【解析】由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧ a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138.选B . 六、奇(偶)函数的定义及图象特征奇偶性定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数 关于原点对称【温馨提示】(1) 所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.函数的定义域关于原点对称是函数成为奇(偶)函数的必要条件.例如,y =x 2当定义域为区间(-∞,+∞)时是偶函数,但当定义域为区间[-1,2]时却不具有奇偶性.(2) f (0)=0是f (x )为奇函数的既不充分也不必要条件.例如,f (x )=1xf (0)无意义;又如f (x )=2x -1满足f (0)=0,但不是奇函数.但奇函数f (x )在x =0处有意义,必有f (0)=0.(3) 奇函数在关于原点对称的两个区间上有相同的单调性;偶函数在关于原点对称的两个区间上有相反的单调性.(4) 定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.例如:y =f (x )的定义域关于原点对称,则g (x )=()()2f x f x +-为偶函数,h (x )=()()2f x f x --为奇函数,且f (x )=g (x )+h (x ). (5) 复合函数的奇偶性特点是:“内偶则偶,内奇同外”.(6) 既奇又偶的函数有无穷多个(如f (x )=0,定义域是关于原点对称的任意一个数集).(7) 奇函数在定义域内满足()()f x f x =--,该式常用来求函数解析;偶函数在定义域内满足()()f x f x =-,该式也常用来求函数解析.【常用结论】①函数奇偶性满足下列性质:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.②奇函数与奇函数复合还是奇函数,奇函数与偶函数复合是偶函数,偶函数与偶函数复合还是偶函数.【温馨提示】(这点非常注重要)f (x )为偶函数,则f (-x )=f (x )=f (|x|),该式把偶函数的负变量转化为正变量研究.【例题示范】例.y =f (x )是定义在R 上的偶函数且在[0,+∞)上递增,不等式f (x x +1)<f (-12)的解集为________.【解析】因为y =f (x )是定义在R 上的偶函数且在[0,+∞)上递增,所以f (x x +1)<f (-12)等价为f (|x x +1|)<f (|-12|)=f (12),所以|x x +1|<12,即2|x |<|x +1|,平方得4x 2<x 2+2x +1,所以3x 2-2x -1<0,解得-13<x <1,即不等式的解集为(-13,1). 七、函数奇偶性的判断与证明(1) 根据图象的对称性判断:奇函数的图象关于原点成中心对称图形,偶函数图象关于y 轴成轴对称图形.反之,逆命题也都为真.(2) 根据定义判断或证明:其步骤为:第一步:考查定义域是否关于原点对称.若定义域不关于原点对称,则可断言函数y =f (x )不具有奇偶性,若定义域关于原点对称,则进行下面步骤.第二步:判断f (-x )=f (x )或f (-x )=-f (x )是否成立.既可采用定义直接推理,也可以利用转化的方法,先判断f (x )+f (-x )=0或f (x )-f (-x )=0,究竟采用何种途径要具体问题具体分析.第三步:作出结论.若f (-x )=f (x )则f (x )为偶函数,若f (-x )=-f (x )则为奇函数,若f (-x )=f (x )且f (-x )=-f (x ),则f (x )既是奇函数又是偶函数;若f (-x )≠f (x ),且f (-x )≠-f (x ),则f (x )为非奇非偶函数.(3) 根据规律判断(详见前面的常用结论):判断一个函数既不是奇函数也不是偶函数,取特殊值举反例即可!!..............................(4) 函数奇偶性的变形应用:对于高考中出现的要求证明函数奇偶性的试题,一般应该运用定义去证明,要注意灵活运用定义:当直接推证f (-x )=f (x ),或f (-x )=-f (x )遇到困难时,可以考虑证明等式f (-x )-f (x )=0,或f (-x )+f (x )=0恒成立,或者证明f (-x )f (x )=±1(f (x )≠0)恒成立,前一个技巧常用于含对数运算的函数,后一技巧常用于含指数运算的函数.【温馨提示】判断函数的奇偶性,首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断,对于分段函数,应分情况判断.【常见的奇偶函数】(1) 奇函数:()ny x n =为奇数, y kx =,k y x =,tan y x =,sin y x =,x x y a a -=-,11x x a y a -=+,11x x a y a +=-, x xx x a a y a a ---=+,x xx x a a y a a --+=-,log )a y mx =,log )a y x =,log x nx n a y +-=,log x n x n a y -+=.(2) 偶函数:()y a a =为常数,n y ax =(n 为偶数),||y k x =,cos y x =,+x x y a a -=,(||)y f x =;如果()y f x =为奇函数,那么()y f x =一定为偶函数.七、周期性与对称性1.周期函数:T 为函数f (x )的一个周期,则需满足的条件:(1) T ≠0;(2) f (x +T )=f (x )对定义域内的任意x 都成立.2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做它的最小正周期.【温馨提示(1) 定义应对定义域中的每一个x 值来说,若个别的x 值满足f (x +T )=f (x )不能说T 是f (x )的周期.(2) 在等式f (x +T )=f (x )中,应强调加在自变量x 本身的常数才是周期,如f (x 2T )=f (x 2,T 不是周期,而应写成f (x 2+T )=f [12(x +2T )]=f (x 2),2T 才是f (x )的周期. (3) 若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.【必记结论】周期性常用的结论:对f (x )定义域内任一自变量的值x :(1) 设a 为非零常数,若对于f (x )定义域内的任意x ,恒有下列条件之一成立:则函数y=f (x )是周期函数,T =2|a |是它的一个周期.①f (x +a )=-f (x );②f (x +a )=1f (x );③f (x +a )=-1f (x );④f (x +a )=k f (x )(k ≠0); ⑤f (x +a )=f (x -a );⑥(x +a )=f (x )+1f (x )-1,⑦f (x +a )=1-f (x )1+f (x ). (2) 若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =|a -b |.(3) 若对于R 上的任意x 都有f (2a -x )=f (x ),且f (2b -x )=f (x )(其中a <b ),则y =f (x )是以2(b -a )为周期的周期函数;(4) f (x )的图象既关于直线x =a 对称(即函数f (x )满足f (2a -x )=f (x ))又关于直线x =b 对称(即函数f (x )满足f (2b -x )=f (x )),则函数f (x )的周期T =2|a -b |(a ≠b ).(规律:和定对称 ,差定周期)(5) 设a 为非零常数,若对于f (x )定义域内的任意x ,① f (x )为奇函数且其图象关于直线x =a 对称,则T =4|a |;② f (x )为奇函数且其图象对称中心为(a ,0),则T =2|a |;③ f (x )为偶函数且关于直线x =a 对称,则T =2|a |;④ f (x )为偶函数其图象对称中心为(a ,0)则T =4|a |.【识记规律】① 奇偶函数如果另外具有中心对称性或者轴对称性,则一定具有周期性,且周期是相邻对称中心之间距离的2倍,是相邻对称轴之间距离的2倍,是相邻对称轴与对称中心之间距离的4倍.② 如果一个函数图象既有中心对称性,又有轴对称性,则该函数一定具有周期性,且周期是相邻对称轴与对称中心之间距离的4倍.③ 如果一个函数图象有多个中心对称或对称轴,则一定具有周期性,且周期是相邻对称中心(对称轴)之间距离的2倍.轴对称性常用的结论(6) 若f (a -x )=f (b +x ),那么函数f (x )图象的对称轴为x =a+b 2; (7) y =f (x )符合f (2a -x )=f (x )等价于其图象的对称轴为x =a ,等价于f (a -x )=f (a +x );中心对称性常用的结论(8) 设a ,b ,c 为常数,若对于f (x )定义域内的任意x ,① 当f (a +x )+f (b -x )=2c ,则y =f (x )的图象的对称中心为(a+b 2,c ); ② 当f (2a -x )+f (x )=2c ,则y =f (x )的图象的对称中心为(a ,c ).其他结论若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称;若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b ,0)中心对称;若函数f (x )既是周期函数,则其导函数y =f ′(x )是周期函数;若函数f (x )是奇函数,则其导函数y =f ′(x )是偶函数;若函数f (x )是偶函数,则其导函数y =f ′(x )是奇函数;若函数g (x )是奇函数,f (x )=g (x )+k ,则f (a )+ f (-a )=2k ﹒【例题示范】例1.已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的解析式为________.【解析】设x <0,则-x >0,所以f (-x )=(-x )2-2(-x )=x 2+2x .又y =f (x )是定义在R 上的偶函数,所以f (-x )=f (x ),所以f (x )=x 2+2x (x <0).所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+2x ,x <0. 例2.已知定义在R 上的奇函数满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a ),则实数a 的取值范围是_______.【解析】当x ≥0时,f (x )=x 2+2x =(x +1)2-1所以函数f (x )在[0,+∞)上为增函数.又函数f (x )是定义在R 上的奇函数,所以函数f (x )在R 上是增函数.由f (3-a 2)>f (2a )得3-a 2>2a .解得-3<a <1.例3.(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.例4.(多选)已知f (x )是定义域为R 的奇函数,且函数f (x +2)为偶函数,则下列结论正确的是( )A .函数y =f (x )的图象关于直线x =1对称B .f (4)=0C .f (x +8)=f (x )D .若f (-5)=-1,则f (2019)=-1【解析】根据题意,f (x )是定义域为R 的奇函数,则f (-x )=-f (x ),又由函数f (x +2)为偶函数,则函数f (x )的图象关于直线x =2对称,则有f (-x )=f (4+x ),则有f (x +4)=-f (x ),即f (x +8)=-f (x +4)=f (x ),则函数f (x )是周期为8的周期函数;据此分析选项:对于A ,函数f (x )的图象关于直线x =2对称,A 错误;对于B ,f (x )是定义域为R 的奇函数,则f (0)=0,又由函数f (x )的图象关于直线x =2对称则f (4)=0,B 正确;对于C ,函数f (x )是周期为8的周期函数,即f (x +8)=f (x ),C 正确;对于D ,若f (-5)=-1,则f (2019)=f (-5+2024)=f (-5)=-1,D 正确.故选BCD .例5.(多选)已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x【解析】由奇函数的定义f (-x )=-f (x )验证,对于A ,f (|-x |)=f (|x |),为偶函数;对于B ,f [-(-x )]=f (x )=-f (-x ),为奇函数;对于C ,-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数;对于D ,f (-x )+(-x )=-[f (x )+x ],为奇函数.可知BD 正确,故选BD.例6.(2019·新课标Ⅱ卷)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】因为()f x 是奇函数,且当0x <时,()e ax f x -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即 3a =-.。

函数的基本性质ppt课件

函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.

函数的基本性质ppt课件

函数的基本性质ppt课件


1
即函数f(x)=x+ 为奇函数.

函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+


解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).

1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),

高中函数题型汇总及典型例题

高中函数题型汇总及典型例题

高中函数专题
基础知识
1. 函数的基本性质: (1)函数的单调性:① f ' ( x) 0 (或 0 ) f ( x) 单调递增(或单调递减) ; ② f ( x) 单调递增(或单调递减) f ' ( x) 0 (或 0 ) 。 (2)函数的周期性: f ( x T ) f ( x ) ,则称 T 为 f ( x) 的一个为期;若 T0 是所有 周期中一个最小的正周期,则称 f ( x) 的周期是 T0 。 (3)函数的奇偶性:① f ( x) f ( x) f ( x) 是偶函数; ② f ( x ) f ( x) f ( x) 是奇函数。 (注:定义域需关于原点对称) 。 (4)函数的连续性: f ( x) 在 x x0 处连续 lim f ( x) f ( x0 ) (常数) 。
15 函数 y f ( x ) 在区间 (0, ) 内可导,导函数 f ' ( x) 是减函数,且 f ' ( x) 0 。 设 x0 (0, ) , y kx m 是曲线 y f ( x ) 在点 ( x0 , f ( x0 )) 处的切线方程,并设函数
g ( , f ( x0 ) , f ( x0 ) 表示 m ;
(II)证明:当 x (0, ) 时, g ( x ) f ( x ) ;
16 已知 a,b 是实数,函数 f(x)=x3+ax,g(x)=x2+bx,f'(x)和 g'(x)是 f(x),g(x)的导函数,若 f'(x)g'(x)≥0 在区间 I 上恒成 立,则称 f(x)和 g(x)在区间 I 上单调性一致 (1)设 a>0,若函数 f(x)和 g(x)在区间[-1,+∞)上单调性一致,求实数 b 的取值范围; (2)设 a<0,且 a≠b,若函数 f(x)和 g(x)在以 a,b 为端点的开区间上单调性一致,求|a-b|的最大值.

函数性质专题(含详细答案)

函数性质专题(含详细答案)

,故其周期为 ,
对称.
.所以做示意图
第 10页(共 18 页)
17. D 【解析】由
函数,且
,所以
知, ,
的周期 ,
,又 ,故
是定义在 上的奇
18. B 【解析】对于选项 A,
为增函数,
为减函数,故
对于选项 B,
,故
为增函数,
对于选项 C,函数的定义域为
,不为 ,
对于选项 D,函数
为偶函数,在
上单调递减,在
时,都有
,设
,则
,故函数

上是增函数,根据对称性,易知函数

上是减函数,根据周期性,函数
A.
B.
18. 下列函数中,定义域是 且为增函数的是
A.
B.
19. 对于函数 ,所得出的正确结果可能是
A. 和
B. 和
C.
D.
C.
D.
,选取 , , 的一组值计算

C. 和
D. 和
20. 设函数
的最小值为 ,则实数 的取值范围是
A.
B.
C.
D.
21. 已知函数
,给出下列命题:①
必是偶函数;②当
时,
的图象必关于直线
对称;③若
,则
在区间
上是增函数;④
有最大值
,其中正确命题是
A. ①②
B. ②③
C. ①③
D. ③
22. 定 义 在
上的函数
满足
,当
时,
;当
时,
,则
A.
B.
23. 已知定义在 上的奇函数
满足
C.
D.
,且在区间

高考数学专题复习-2.2函数的基本性质-高考真题练习(附答案)

高考数学专题复习-2.2函数的基本性质-高考真题练习(附答案)

2.2函数的基本性质考点一函数的单调性及最值1.(2016北京文,4,5分)下列函数中,在区间(-1,1)上为减函数的是()A.y=11−B.y=cosxC.y=ln(x+1)D.y=2-x答案D选项A中,y=11−=1-(t1)的图象是将y=-1的图象向右平移1个单位得到的,故y=11−在(-1,1)上为增函数,不符合题意;选项B中,y=cosx在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;选项C 中,y=ln(x+1)的图象是将y=lnx的图象向左平移1个单位得到的,故y=ln(x+1)在(-1,1)上为增函数,不符合题意;选项D符合题意.评析本题考查了基本函数的图象和性质以及图象的变换,属中档题.2.(2015课标Ⅱ文,12,5分)设函数f(x)=ln(1+|x|)-11+2,则使得f(x)>f(2x-1)成立的x的取值范围是(),1 B.-∞C.-13D.-∞∞答案A当x>0时,f(x)=ln(1+x)-11+2,∴f'(x)=11++2(1+2)2>0,∴f(x)在(0,+∞)上为增函数,∵f(-x)=f(x),∴f(x)为偶函数,由f(x)>f(2x-1)得f(|x|)>f(|2x-1|),∴|x|>|2x-1|,即3x2-4x+1<0,解得13<x<1,故选A.3.(2016浙江,7,5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b答案B依题意得f(a)≥2a,若f(a)≤2b,则2a≤f(a)≤2b,∴2a≤2b,又y=2x是R上的增函数,∴a≤b.故选B.4.(2020课标Ⅲ文,12,5分)已知函数f(x)=sinx+1sin,则()A.f(x)的最小值为2B.f(x)的图象关于y轴对称C.f(x)的图象关于直线x=π对称D.f(x)的图象关于直线x=π2对称答案D对于A,令sinx=t,t∈[-1,0)∪(0,1],则g(t)=t+1,当t∈(0,1]时,g(t)=t+1≥2,当且仅当t=1时,取“=”,故g(t)∈[2,+∞),又∵g(t)=-g(-t),∴g(t)为奇函数,∴g(t)的值域为(-∞,-2]∪[2,+∞),故A错误;对于B,由f(x)≠f(-x),知f(x)不是偶函数,故B错误;对于C,f(2π-x)=sin(2π-x)+1sin(2π-p=-sinx-1sin≠f(x),故C错误;对于D,f(π-x)=sin(π-x)+1sin(π-p=sinx+1sin=f(x),故f(x)的图象关于直线x=π2对称,故D正确.故选D.5.(2021全国甲文,4,5分)下列函数中是增函数的为()A.f(x)=-xB.f(x)3C.f(x)=x2D.f(x)=3答案D解题指导:排除法,利用基本初等函数的性质逐一判断四个选项.解析对于f(x)=-x,由正比例函数的性质可知,f(x)是减函数,故A不符合题意;对于f(x),由指数函数的单调性可知,f(x)是减函数,故B不符合题意;对于f(x)=x2,由二次函数的图象可知,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,故C不符合题意;对于f(x)=3=13,由幂函数的性质可知,f(x)在(-∞,+∞)上单调递增,故选D.方法总结:一次函数y=kx+b(k≠0)单调性的判断:若k>0,则函数在R上单调递增;若k<0,则函数在R上单调递减.指数函数y=a x(a>0且a≠1)单调性的判断:若a>1,则函数在R上单调递增;若0<a<1,则函数在R上单调递减.幂函数y=xα单调性的判断:若α>0,则函数在(0,+∞)上单调递增;若α<0,则函数在(0,+∞)上单调递减.6.(2021全国乙文,8,5分)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin xC.y=2x+22-xD.y=ln x+4ln答案C解题指导:对于A,利用配方法或二次函数的单调性求最值,对于B,C,D,利用换元法转化为对勾函数进行判断.解析对于A,y=x2+2x+4=(x+1)2+3≥3,所以它的最小值为3,所以A不符合题意;对于B,设|sin x|=t,则0<t≤1,y=|sin x=+4,t∈(0,1],易知y=t+4在(0,1]上单调递减,故t=1时,y min=1+41=5,所以B不符合题意;对于C,令2x=t(t>0),则y=2x+22-x=t+4,t>0,易知y=t+4在(0,2)上单调递减,在(2,+∞)上单调递增,所以当t=2时,y取最小值,y min=2+42=4,故C符合题意;对于D,令ln x=t,t∈R且t≠0,则y=ln x+4ln=+4,显然t<0时,函数值小于0,不符合题意.故选C.7.(2020新高考Ⅰ,8,5分)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是() A.[-1,1]∪[3,+∞) B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]答案D∵f(x)是定义在R上的奇函数,∴f(x-1)的图象关于点(1,0)中心对称,又∵f(x)在(-∞,0)上单调递减,∴f(x-1)在(-∞,1)上单调递减,在(1,+∞)上也单调递减,且过(-1,0)和(3,0),f(x-1)的大致图象如图:当-1≤x≤0时,f(x-1)≤0,∴xf(x-1)≥0;当1≤x≤3时,f(x-1)≥0,∴xf(x-1)≥0.综上,满足xf(x-1)≥0的x的取值范围是[-1,0]∪[1,3].故选D.8.(2016北京文,10,5分)函数f(x)=t1(x≥2)的最大值为.答案2解析解法一:∵f'(x)=-1(t1)2,∴x≥2时,f'(x)<0恒成立,∴f(x)在[2,+∞)上单调递减,∴f(x)在[2,+∞)上的最大值为f(2)=2.解法二:∵f(x)=t1=t1+1t1=1+1t1,∴f(x)的图象是将y=1的图象向右平移1个单位,再向上平移1个单位得到的.∵y=1在[2,+∞)上单调递减,∴f(x)在[2,+∞)上单调递减,故f(x)在[2,+∞)上的最大值为f(2)=2.解法三:由题意可得f(x)=1+1t1.∵x≥2,∴x-1≥1,∴0<1t1≤1,∴1<1+1t1≤2,即1<t1≤2.故f(x)在[2,+∞)上的最大值为2.评析本题考查函数的最值,有多种解法,属中档题.9.(2015浙江文,12,6分)已知函数f(x)=2,x≤1,+6-6,x>1,则f(f(-2))=,f(x)的最小值是.答案-12;26-6解析f(-2)=(-2)2=4,f(f(-2))=f(4)=4+64-6=-12.当x≤1时,f(x)=x2≥0,当x>1时,f(x)=x+6-6≥26-6,当且仅当x=6时,等号成立,又26-6<0,所以f(x)min=26-6.考点二函数的奇偶性1.(2015北京文,3,5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2-x答案B A中函数为奇函数,B中函数为偶函数,C与D中函数均为非奇非偶函数,故选B.2.(2014课标Ⅰ,理3,文5,5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案C由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B 项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.评析本题考查函数奇偶性的定义及其应用,考查学生的知识应用能力及逻辑推理论证能力,准确理解函数奇偶性的定义是解决本题的关键.3.(2011课标,理2,文3,5分)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|答案B y=x3是奇函数,y=-x2+1和y=2-|x|在(0,+∞)上都是减函数,故选B.评析本题考查函数的奇偶性和单调性的判定,属容易题.4.(2021全国乙理,4,5分)设函数f(x)=1−1+,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1答案B解题指导:思路一:将函数f(x)的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f(x)的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解析解法一:f(x)=-1+2r1,其图象的对称中心为(-1,-1),将y=f(x)的图象沿x轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f(x-1)+1的图象,关于(0,0)对称,所以函数f(x-1)+1是奇函数,故选B.解法二:选项A,f(x-1)-1=2-2,此函数为非奇非偶函数;选项B,f(x-1)+1=2,此函数为奇函数;选项C,f(x+1)-1=−2K2r2,此函数为非奇非偶函数;选项D,f(x+1)+1=2r2,此函数为非奇非偶函数,故选B.5.(2021全国甲理,12,5分)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则() A.-94 B.−32 C.74 D.52答案D解题指导:利用奇偶性得到f(x+2)=-f(x),将出现的自变量0,3,92对应的函数值转化为[1,2]内自变量对应的函数值,进而得到a,b以及.解析由题知o−+1)=−o+1),o−p=o+4),从而f(x+4)=-f(x+2),即f(x+2)=-f(x), o−+2)=o+2),即o−p=−o+2),所以6=f(0)+f(3)=-f(2)+[-f(1)]=-(4a+b)-(a+b)=-5a-2b,即5a+2b=-6.①又由题知f(x+1)为奇函数,x∈R,所以f(1)=0,即a+b=0.②由①②得=−2,从而f(x)=-2x2+2,x∈[1,2].所以=2=−==−=−(−2)×+2=52.故选D.一题多解因为f(x+1)与f(x+2)分别为奇函数和偶函数,所以函数f(x)的图象关于点(1,0)和直线x=2对称,且f(x)为周期函数,周期T=4,从而f(0)=-f(2),①f(3)=f(1)=0,②==−由①②结合f(0)+f(3)=6,知a=-2,b=2,所以=−(−2)×+2=52.6.(多选)(2022新高考Ⅰ,12,5分)已知函数f(x)及其导函数f'(x)的定义域均为R,记g(x)=f'(x).若2,g(2+x)均为偶函数,则() A.f(0)=0 B.g−C.f(-1)=f(4)D.g(-1)=g(2)答案BC解法一:若设f(x)=1,则g(x)=0,易知所设f(x)符合题意,此时f(0)=1,故选项A错误.设f(x)=sin(πx),则g(x)=f'(x)=πcos(πx),由于2=sin22π=-cos(2πx),g(2+x)=πcos[π(2+x)]=πcos(2π+πx)=πcos(πx),所以2,g(2+x)均为偶函数,则所设f(x)符合题意.于是g(-1)=πcos(-π)=-π≠g(2),故选项D错误.由于22是奇函数,即2是奇函数,则,注意到g(2+x)是偶函数,于是g−=2=−2=-g−32+22=2=2=2=,故选项B正确.由2=2,取x=54,则f(-1)=f(4),故选项C正确.故选BC.解法二:由题意知2=2⇔=⇔f(-x)=f(3+x)①,取x=1,知f(-1)=f(4),C正确.对①两边求导知-f'(-x)=f'(3+x)⇔f'(-x)=-f'(3+x),即g(-x)=-g(3+x)②,取x=-32,知.g(2+x)=g(2-x)⇔g(-x)=g(x+4)③,由②③知g(x+4)=-g(x+3),即g(x+1)=-g(x),所以g(x+2)=-g(x+1)=g(x).从而g−=2=,B正确.同解法一可判断A,D错误.故选BC.7.(2018课标Ⅲ文,16,5分)已知函数f(x)=ln(1+2-x)+1,f(a)=4,则f(-a)=.答案-2解析本题考查函数的奇偶性.易知f(x)的定义域为R,令g(x)=ln(1+2-x),则g(x)+g(-x)=0,∴g(x)为奇函数,∴f(a)+f(-a)=2,又f(a)=4,∴f(-a)=-2.解题关键观察出函数g(x)=ln(1+2-x)为奇函数.8.(2017课标Ⅱ文,14,5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.答案12解析本题主要考查运用函数的奇偶性求函数值.由题意可知f(2)=-f(-2),∵x∈(-∞,0)时,f(x)=2x3+x2,∴f(2)=-f(-2)=-[2×(-8)+4]=-(-12)=12.9.(2016天津,13,5分)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是.答案解析由题意知函数f(x)在(0,+∞)上单调递减.因为f(2|a-1|)>f(-2),f(-2)=f(2),所以f(2|a-1|)>f(2),所以2|a-1|<212,解之得12<a<32.10.(2014课标Ⅱ文,15,5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=.答案3解析∵函数y=f(x)的图象关于直线x=2对称,∴f(2+x)=f(2-x)对任意x恒成立,令x=1,得f(1)=f(3)=3,∴f(-1)=f(1)=3.11.(2012课标文,16,5分)设函数f(x)=(r1)2+sin2+1的最大值为M,最小值为m,则M+m=.答案2解析f(x)=2+1+2x+sin2+1=1+2rsin2+1,令g(x)=2rsin2+1,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.12.(2021新高考Ⅰ,13,5分)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=.答案1解题指导:利用偶函数的定义,取定义域内的特殊值即可求出a的值.解析∵f(x)=x3(a·2x-2-x)为偶函数,∴f(1)=f(-1),∴2a-12=−−2,∴a=1.当a=1时,f(x)=x3(2x-2-x),定义域为R,且满足f(-x)=f(x),即f(x)为偶函数.一题多解y=x3和y=2x-2-x为奇函数,利用结论:奇函数×奇函数=偶函数,可快速判断出a=1.13.(2022全国乙文,16,5分)若f(x)=ln b是奇函数,则a=,b=.答案-12;ln2解析∵f(x)是奇函数,∴f(x)的定义域关于原点对称.由已知得x ≠1,∴x ≠-1,即当x =-1时,,∴a +12=0,∴a =-12,此时f (x )b ,∵f (x )为奇函数且在x =0处有意义,∴f (0)=0,即+=ln 12+b =0,∴b =-ln 12=ln 2.综上可知,a =-12,b =ln 2.考点三函数的周期性1.(2016山东,9,5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x 3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,ft 则f(6)=()A.-2B.-1C.0D.2答案D 当x>12时,由ft f(x)=f(x+1),所以f(6)=f(1),而f(1)=-f(-1),f(-1)=(-1)3-1=-2,所以f(6)=f(1)=2,故选D.2.(2021全国甲文,12,5分)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f −=13,则()A.-53B.−13C.13D.53答案C 解题指导:求出函数f (x )的周期再进行转化,即可求解.解析由f (1+x )=f (-x ),且f (x )是定义在R 上的奇函数,可得f (1+x )=f (-x )=-f (x ),所以f (2+x )=-f (1+x )=f (x ),所以f (x )的周期为2,则=2=−=13,故选C .知识延伸:若函数f (x )为奇函数,且满足f (a +x )=f (-x ),则f (x )图象的对称轴为直线x =2,周期为2a ;若函数f (x )为偶函数,且满足f (a +x )=f (-x ),则f (x )图象的对称轴为直线x =2,周期为a.3.(2022新高考Ⅱ,8,5分)已知函数f (x )的定义域为R,且f (x +y )+f (x -y )=f (x )f (y ),f (1)=1,则∑=221i f (k )=()A.-3B.-2C.0D.1答案A 令y =1,得f (x +1)+f (x -1)=f (x )①,故f (x +2)+f (x )=f (x +1)②.由①②得f (x +2)+f (x -1)=0,故f (x +2)=-f (x -1),所以f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),所以函数f (x )的周期为6.令x =1,y =0,得f (1)+f (1)=f (1)·f (0),故f (0)=2,同理,令x =1,y =1,得f (2)=-1;令x =2,y =1,得f (3)=-2;令x =3,y =1,得f (4)=-1;令x =4,y =1,得f (5)=1;令x =5,y =1,得f (6)=2.故f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0,所以∑=221i f (k )=f (1)+f (2)+f (3)+f (4)=-3.故选A .4.(2022全国乙理,12,5分)已知函数f (x ),g (x )的定义域均为R,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图象关于直线x =2对称,g (2)=4,则∑=221i f (k )=()A.-21B.-22C.-23D.-24答案D 由y =g (x )的图象关于直线x =2对称,得g (2+x )=g (2-x ),故g (x )=g (4-x ),由g (x )-f (x -4)=7,得g (2+x )-f (x -2)=7①,又f (x )+g (2-x )=5②,所以由②-①,得f (x )+f (x -2)=-2③,则f (x +2)+f (x )=-2④,所以由④-③,得f (x +2)=f (x -2),即f (x +4)=f (x ),所以函数f (x )是以4为周期的周期函数.对于④,分别令x =1,2,得f (1)+f (3)=-2,f (2)+f (4)=-2,则f (1)+f (2)+f (3)+f (4)=-4.对于①,令x =-1,得g (1)-f (-3)=7,则g (1)-f (1)=7⑦,对于②,令x =1,得f (1)+g (1)=5⑧,由⑦⑧,得f (1)=-1.对于②,令x =0,得f (0)+g (2)=5,又g (2)=4,所以f (0)=1.对于③,令x =2,得f (2)+f (0)=-2,所以f (2)=-3.则∑=221i op =5×(-4)+f (1)+f (2)=-20+(-1)+(-3)=-24.故选D .5.(2016四川,14,5分)已知函数f(x)是定义在R 上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f +f(1)=.答案-2解析∵f(x)是定义在R 上的奇函数,∴f(x)=-f(-x),又∵f(x)的周期为2,∴f(x+2)=f(x),∴f(x+2)=-f(-x),即f(x+2)+f(-x)=0,令x=-1,得f(1)+f(1)=0,∴f(1)=0.又∵f-412=-2.∴f-6.(2017山东文,14,5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=.答案6解析本题考查函数的奇偶性与周期性.由f(x+4)=f(x-2)得f(x+6)=f(x),故f(x)是周期为6的函数.所以f(919)=f(6×153+1)=f(1).因为f(x)为R上的偶函数,所以f(1)=f(-1).又x∈[-3,0]时,f(x)=6-x,所以f(-1)=6-(-1)=6.从而f(1)=6,故f(919)=6.方法小结函数周期性的判断:一般地,若f(x+T)=f(x),则T为函数的一个周期;若f(x+T)=-f(x),则2T为函数的一个周期;若f(x+T)=1op(f(x)≠0),则2T为函数的一个周期.7.(2014安徽文,14,5分)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=o1-p,0≤x≤1,sinπs1<≤2,则.答案516解析依题意得8=f=-34×14=-316,f8=-sin7π6=sinπ6=12,因此=-316+12=516.。

《函数的基本性质》专题复习

《函数的基本性质》专题复习

必修1 《函数的基本性质》专题复习(一)函数的单调性与最值★知识梳理1.函数的单调性定义:设函数)(x f y =的定义域为A ,区间A I ⊆如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间2.函数的最大(小)值设函数)(x f y =的定义域为A如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的最大值;如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的最小值。

★热点考点题型探析考点1 函数的单调性 【例】试用函数单调性的定义判断函数2()1f x x =-在区间(1,+∞)上的单调性.【巩固练习】证明:函数2()1x f x x =-在区间(0,1)上的单调递减.考点2 函数的单调区间1.指出下列函数的单调区间:(1)|1|y x =-; (2)22||3y x x =-++.2. 已知二次函数2()22f x x ax =++在区间(-∞,4)上是减函数,求a 的取值范围.【巩固练习】1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3. 已知函数f (x )在-1∞(,)上单调递减,在[1+∞,)单调递增,那么f (1),f (-1),f 之间的大小关系为 .4.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围.5. 已知二次函数2()22f x ax x =++在区间(-∞,2)上具有单调性,求a 的取值范围.考点3 函数的最值 【例】求函数25332,[,]22y x x x =--∈-的最大值和最小值:【巩固练习】1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是___________. 2. 23()1,[0,]2f x x x x =++∈已知函数的最大(小)值情况为( ). A. 有最大值34,但无最小值 B. 有最小值34,有最大值1 C. 有最小值1,有最大值194D. 无最大值,也无最小值 3. 某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.4. 已知函数322+-=x x y 在区间],0[m 上有最大值3,最小值2,求m 的取值范围.(二)函数的奇偶性★知识梳理1.函数的奇偶性的定义:①对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-〔或0)()(=+-x f x f 〕,则称)(x f 为奇函数. 奇函数的图象关于原点对称。

专题3.2 函数基本性质(解析版)

专题3.2 函数基本性质(解析版)

专题3.2函数的基本性质知识点一:函数的单调性1.增函数、减函数的概念一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说()f x 在区间D 上是减函数.知识点诠释:(1)属于定义域A 内某个区间上;(2)任意两个自变量12,x x 且12x x <;(3)都有1212()()(()())f x f x f x f x <>或;(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.2.单调性与单调区间(1)单调区间的定义如果函数f (x )在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数f (x )的单调区间.函数的单调性是函数在某个区间上的性质.知识点诠释:①单调区间与定义域的关系:单调区间可以是整个定义域,也可以是定义域的真子集;②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;③不能随意合并两个单调区间;④有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性?3.证明函数单调性的步骤(1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x <;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.4.函数单调性的判断方法(1)定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断。

(2)图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性。

专题11一次函数的基本性质(原卷版)

专题11一次函数的基本性质(原卷版)

专题11 一次函数的基本性质考点一函数的定义及其性质【方法点拨】理解函数的概念:对于x的每一个值,y都有唯一的值与它对应。

注意自变量的取值范围:①整式:自变量取一切实数;②分式:分母不为零;③偶次方根:被开方数为非负数;④零指数幂与非负指数幂:底数不为零;⑤在实际问题中,自变量的取值范围必须保证每个量都有意义1.在下列图象中,不能表示y是x的函数是()A.B.C.D.2.下列各图象中,不能表示y是x的函数的是()A.B.C.D.3.下列图象中,不能表示y是x的函数的是()A.B.C.D.4.下列各图象中,不能表示y是x的函数的是()A.B.C.D.5.下列图象中,不能表示y是x的函数的是()A.B.C.D.6.函数y=√x−2中,自变量x的取值范围是()A.x≠2B.x≥2C.x>2D.x≥﹣2 7.在函数y=√x−2中,自变量x的取值范围是()A.x>2B.x≥2C.x<2D.x≤28.在函数y=1x−2中,自变量x的取值范围是()A.x≠2B.x>2C.x≥2D.x≠09.函数y=√x+2x−2中自变量x的取值范围是()A .x ≥﹣2B .x ≤﹣2C .x ≠﹣2D .x ≥﹣2且x ≠210.下列说法正确的是 .(填序号)①正比例函数一定是一次函数;②一次函数一定是正比例函数;③若y ﹣1与x 成正比例,则y 是x 的一次函数;④若y =kx +b ,则y 是x 的一次函数.考点二 一次函数和正比例函数的定义【方法点拨】若两个变量x ,y 之间的关系式可以表示成b kx y +=(b k ,为常数,k ≠0)的形式,则称y 是x 的一次函数(x 是自变量,y 是因变量).特别地,当b =0时,称y 是x 的正比例函数。

即一次函数成立需要具备三个条件:①有两个变量之间的关系;②有一个自变量和一个因变量;③因变量随着自变量的变化而变化1.y =2x |m |+3表示一次函数,则m 等于( )A .1B .﹣1C .0或﹣1D .1或﹣12.y =(m ﹣1)x |m |+3m 表示一次函数,则m 等于( )A .1B .﹣1C .0或﹣1D .1或﹣13.下列函数关系中表示一次函数的有( )①y =2x +1 ②y =1x ③y =x+12−x④s =60t ⑤y =100﹣25x .A .1个B .2个C .3个D .4个 4.下列函数关系中表示一次函数的有( )①y =2x ﹣1;②y =12x ;③y =100﹣3x ;④s =pr 2. A .1个 B .2个 C .3个 D .4个5.下列说法正确的是( )A .y =kx +b (k 、b 为任意常数)一定是一次函数B .y =x k (常数k ≠0)不是正比例函数C .正比例函数一定是一次函数D .一次函数一定是正比例函数6.已知y =(m +3)xm 2−8+3是一次函数,则m = . 7.已知y =2x m ﹣2+3是一次函数,则m = .8.已知y =(m ﹣3)x m 2−9+m +1是一次函数,则m = .考点三 一次函数的图象和性质【方法点拨】①一次函数的图像:一次函数b kx y +=的图象是经过点(0,b )和点⎪⎭⎫ ⎝⎛-0,k b 的一条直线,正比例函数kx y =的图象是经过原点(0,0)和(1,k )的一条直线;②一次函数的性质:b kx y +=(b k ,为常数,k ≠0),当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小1.对于一次函数y =x +6,下列说法错误的是( )A .y 的值随着x 值的增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)2.平面直角坐标系中,将三角形各点的纵坐标都减去﹣3,横坐标保持不变,所得图形与原图形相比() A .向上平移了3个单位 B .向下平移了3个单位C .向右平移了3个单位D .向左平移了3个单位3.对于函数y =﹣3x +1,下列结论正确的是( )A .它的图象必经过点(﹣1,3)B .它的图象经过第一、二、三象限C .y 的值随x 的增大而增大D .当x =13时,y =04.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )A .B .C.D.4.如图所示,点A(﹣1,m),B(3,n)在一次函数y=kx+b的图象上,则()A.m=n B.m>nC.m<n D.m、n的大小关系不确定5.一次函数y=x﹣3的图象大致是()A.B.C.D.6.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限7.下列关于函数y=﹣2x+3的说法正确的是()A.函数图象经过一、二、三象限B.函数图象与y轴的交点坐标为(0,3)C.y的值随着x值得增大而增大D.点(1,2)在函数图象上8.对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴交点坐标是(0,6)C.函数图象不经过第四象限D.函数图象与x轴正方向形成的锐角是45°角9.一次函数y=kx+b(k、b是常数,k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>0B.x<0C.x>2D.x<210.下列一次函数中,y的值随着x值的增大而减小的是()A.y=(√2−√3)x−2B.y=√5x−1C.y=35x−1D.y=8x+511.已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+3的图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定12.如图,一次函数y=2x﹣3的图象大致是()A.B.C.D.13.关于x的一次函数y=12x+2,下列说法正确的是()A.图象与坐标轴围成的三角形的面积是4 B.图象与x轴的交点坐标是(0,2)C.当x>﹣4时,y<0D.y随x的增大而减小14.一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为.15.若一次函数y=2x+6与y=kx图象的交点纵坐标为4,则k的值为.16.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是.17.若点P(﹣3,a),Q(2,b)在直线y=﹣3x+c的图象上,则a与b的大小关系是。

专题12(5.2 函数的基本性质)(有答案)

专题12(5.2 函数的基本性质)(有答案)

专题12(5.2 函数的基本性质)一、单选题1.(2020·上海高一课时练习)对于定义域是R 的任意奇函数()f x ,都有( ) A .()()0f x f x --> B .()()0f x f x --≤ C .()()0f x f x ⋅-≤ D .()()0f x f x ⋅->【答案】C【分析】根据()f x 为奇函数,可得()()f x f x -=-,再对四个选项逐一判断即可得正确答案.【详解】∵()f x 为奇函数, ∴()()f x f x -=-,∴()()()()()2=0f x f x f x f x f x ⎡⎤⎡⎤⋅-⋅-=-≤⎣⎦⎣⎦, 又()0=0f ,∴()20f x -≤⎡⎤⎣⎦, 故选:C【点睛】本题主要考查了奇函数的定义和性质,属于基础题.2.(2020·上海高一课时练习)下列函数中在区间(1,)+∞单调递增的是( )A .2(2)y x =-B .13y x=- C .|4|y x =+ D .y =【答案】C【分析】结合基本初等函数的图象与性质,逐项判定,即可求解.【详解】根据二次函数的图象与性质,可得函数2(2)y x =-在(2,)+∞单调递增,不符合题意; 由函数1133y x x ==---,可得函数在(,3),(3,)-∞+∞上单调递增,不符合题意; 由函数4,444,4x x y x x x +≥-⎧=+=⎨--<-⎩,可得函数在[4,)-+∞上单调递增,所以在区间(1,)+∞单调递增,符合题意;由函数y =10x -≥,解得1≥x ,即函数的定义域为[1,)+∞,结合幂函数的性质,可得函数y =[1,)+∞上单调递减,不符合题意. 故选:C.【点睛】本题主要考查了函数的单调性的判定,其中解答中熟记基本初等函数的图象与性质是解答的关键,着重考查推理与运算能力.3.(2017·上海徐汇·南洋中学高一月考)已知定义在R 上的偶函数()f x ,对任意不相等的(]120x x ∈-∞,,,有()()()21210x x f x f x -->⎡⎤⎣⎦,当*n N ∈时,有( )A .()()()11f n f n f n -<-<+B .()()()11f n f n f n -<-<+ C .()()()11f n f n f n +<-<- D .()()()11f n f n f n +<-<- 【答案】C【分析】由已知不等式得函数在(,0]-∞上的单调性,再由偶函数性质得在[0,)+∞上的单调性,结合偶函数性质得距离y 轴越远的自变量的函数值越小,从而可得结论.【详解】由题意,函数在区间(]0-∞,上单调递增,函数图象关于y 轴对称,所以函数在()0+∞,上单调递减;又*n N ∈,11n n n +>->-,距离y 轴越远的自变量的函数值越小,则()()()11f n f n f n +<-<-, 故选:C.【点睛】本题考查的奇偶性与单调性,利用奇偶性性质得函数在关于y 轴对称区间上的单调性,从而可比较函数值大小.4.(2019·宝山·上海交大附中高一期中)已知函数(1)y f x =+为偶函数,则下列关系一定成立的是( ) A .()()f x f x =- B .(1)(1)f x f x +=-+ C .(1)(1)f x f x +=-- D .(1)()f x f x -+=【答案】B【分析】函数(1)y f x =+为偶函数,可得函数()y f x =的图像关于1x =对称,在四个选项中选择能表示函数()y f x =的图像关于1x =对称的,得到答案. 【详解】函数(1)y f x =+为偶函数,可得()y f x =的图像向左平移1个单位后关于y 轴对称, 所以()y f x =的图像关于1x =对称,在所给四个选项中,只有选项B. (1)(1)f x f x +=-+也表示()y f x =的图像关于1x =对称, 故选B.【点睛】本题考查函数的奇偶性和对称性,属于简单题.5.(2018·上海杨浦·复旦附中高一期末)函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值为2, m 的取值范围是 A .(,2]-∞ B .[0,2] C .[1,2] D .[1,)+∞【答案】C【分析】本题利用数形结合法解决,作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,欲使函数2()23=-+f x x x 在闭区间[0,]m 上的上有最大值3,最小值2,则实数m 的取值范围要大于等于1而小于等于2即可.【详解】解:作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,函数2()23=-+f x x x 在闭区间[0,]m 上上有最大值3,最小值2, 则实数m 的取值范围是[1,2]. 故选:C .【点睛】本题考查二次函数的值域问题,其中要特别注意它的对称性及图象的应用,属于中档题.6.(2018·上海市敬业中学高一期末)关于函数()232f x x =-的下列判断,其中正确的是( )A .函数的图像是轴对称图形B .函数的图像是中心对称图形C .函数有最大值D .当0x >时,()y f x =是减函数【答案】A【分析】判断函数为偶函数得到A 正确,B 错误 ,取特殊值,排除C 和D 得到答案.【详解】()232f x x =-定义域为:{x x ≠ ,()23()2f x f x x -==-函数为偶函数,故A 正确,B 错误当x →且x >时,()f x →+∞ ,C 错误3(1)3,(2)2f f =-=,不满足()y f x =是减函数,D 错误 故选A【点睛】本题考查了函数的性质,意在考查学生对于函数性质的灵活运用. 7.(2019·上海宝山·高一期末)设函数()f x 是定义在R 上的奇函数,当0x <时,2()5f x x x =--,则不等式()(1)0f x f x --<的解集为( )A .(1,2)-B .(1,3)-C .(2,3)-D .(2,4)-【答案】C【分析】根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案. 【详解】根据题意,设0x >,则0x -<,所以2()5f x x x -=-+,因为()f x 是定义在R 上的奇函数,所以2()5()f x x x f x -=-+=-,所以2()5f x x x =-,即0x ≥时,当0x <时,2()5f x x x =--,则()f x 的图象如图:在区间55(,)22-上为减函数,若()(1)0f x f x --<,即(1)()f x f x ->,又由1x x -<,且(3)(2),(2)(3)f f f f -=-=,必有133x x ->-⎧⎨<⎩时,()(1)0f x f x --<,解得23x -<<,因此不等式的解集是(2,3)-,故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.8.(2019·上海虹口·高一期末)一次函数()()f x 3a 2x 1a =-+-,在[﹣2,3]上的最大值是()f 2-,则实数a 的取值范围是( )A .2a 3≥B .2a 3>C .2a 3≤D .2a 3<【答案】D【分析】根据函数的最值和函数单调性的关系即可求出a 的范围.【详解】因为一次函数()()f x 3a 2x 1a =-+-,在[﹣2,3]上的最大值是()f 2-,则函数f (x )在[﹣2,3]上为减函数,则3a ﹣2<0,解得2a 3<, 故选D .【点睛】本题考查了一次函数的单调性和最值的关系,考查了转化与化归思想,属于基础题. 9.(2019·上海外国语大学附属大境中学高一期末)下列函数在(0,)+∞上是增函数的是( )A .12()f x x =- B .1()()2xf x =C .1()1f x x x =++ D .21()f x x=【答案】C【分析】根据已知的函数模型,得到AB 的正误,再由,当x 值变大时,y 值变小,得到D 的单调性;C 选项通过换元得到熟悉的对勾函数的模型,根据内外层函数的单调性得到结果.【详解】函数()12f x x =-=()0,+∞上是减函数,()12xf x ⎛⎫= ⎪⎝⎭在()0,+∞上是减函数,()11f x x x =++,设t=x+1,故得到11y t t=+-在()1,+∞上单调增,内层也是增函数,故函数在()0,+∞上是增函数;()21f x x=在()0,+∞上是减函数. 故答案为C.【点睛】这个题目考查了函数单调性的判断,判断函数的单调性,方法一:可以由定义证明单调性,方法二,可根据熟悉的函数模型得到函数的单调性;方法三,可根据函数的性质,例如增函数加增函数还是增函数,减函数加减函数还是减函数来判断.二、填空题10.(2020·上海高一课时练习)如图所示,已知奇函数()y f x =在y 轴右边部分的图像,则()0f x >的解集为_________.【答案】[)()5,30,3--【分析】根据奇函数的图象关于原点对称,画出()y f x =在y 轴左边部分的图像,即得()0f x >的解集.【详解】由()y f x =是奇函数,其图象关于原点对称,根据()y f x =在y 轴右边部分的图像, 画出()y f x =在y 轴左边部分的图像,如图所示则()0f x >的解集为[)()5,30,3--.故答案为:[)()5,30,3--.【点睛】本题考查函数的奇偶性,属于基础题.11.(2020·上海高一课时练习)已知下列各命题:①若在定义域内存在12x x <使得()()12f x f x <成立,则函数()f x 是增函数;②函数3y x =-在其定义域内是减函数;③函数1y x=在其定义域内是增函数.其中是真命题的是___________(填写序号).【答案】②【分析】由函数单调性的定义可判断①,由一次函数的单调性可判断②,由反比例函数的性质可判断③,即可得解.【详解】对于①,由函数单调性的定义可知,若在定义域内任意的12x x <,均有()()12f x f x <成立,则函数()f x 是增函数,故①错误;对于②,由一次函数的单调性可知函数3y x =-在其定义域内是减函数,故②正确; 对于③,函数1y x=的单调递减区间为(),0-∞,()0,∞+,故③错误.故答案为:②.【点睛】本题考查了函数单调性定义的应用,考查了常见函数单调性的判断,属于基础题. 12.(2020·上海市大同中学)已知函数()f x 的定义域为R ,则下列命题中: ①若()2f x -是偶函数,则函数()f x 的图象关于直线2x =对称; ②若()()22f x f x +=--,则函数()f x 的图象关于原点对称; ③函数()2y f x =+与函数()2y f x =-的图象关于直线2x =对称; ④函数()2f x -与函数()2y f x =-的图象关于直线2x =对称. 其中正确的命题序号是________. 【答案】④【分析】结合函数图象的平移变换规律,及函数图象的对称性,对四个命题逐个分析,可得出答案.【详解】对于①,函数()2f x -的图象向左平移2个单位,得到函数()f x 的图象, 因为()2f x -是偶函数,其图象关于0x =对称, 所以()f x 的图象关于2x =-对称,故①错误;对于②,由()()22f x f x +=--,可得()()62f x f x +=-+,则()()()622f x f x f x +=-+=-,所以()()8f x f x +=, 即函数()f x 是周期函数,周期为8,不能得出()f x 的图象关于原点对称,故②错误;对于③,()f x 的图象向左平移2个单位,得到()2y f x =+的图象,()f x -的图象向右平移2个单位,得到()2y f x =-的图象.因为函数()y f x =和()y f x =-的图象关于0x =对称,所以函数()2y f x =+与函数()2y f x =-的图象关于0x =对称,故③错误; 对于④,()f x 的图象向右平移2个单位,得到()2y f x =-的图象,()f x -的图象向右平移2个单位,得到()2y f x =-的图象.因为函数()y f x =和()y f x =-的图象关于0x =对称,所以函数()2y f x =-与函数()2y f x =-的图象关于2x =对称,故④正确. 故答案为:④.【点睛】本题考查函数图象的平移变换规律,及函数图象的对称性,考查学生的推理能力,属于中档题.13.(2020·上海市大同中学)已知2()y f x x =+是奇函数,且()11f =,若()()2g x f x =+,则(1)g -=___.【答案】-1【分析】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案【详解】由题意,2()y f x x =+是奇函数,且f (1)1=,所以f (1)21(1)(1)0f ++-+-=解得(1)3f -=- 所以(1)(1)2321g f -=-+=-+=- 故答案为:1-.【点睛】本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.14.(2019·上海浦东新·华师大二附中高一月考)已知()f x x x =,若对任意[]2,2x a a ∈-+,()()2f x a f x +<恒成立,则实数a 的取值范围是______.【答案】a <【分析】通过分类讨论分析得到1)a x <恒成立,再求函数()1)g x x =,[]2,2x a a ∈-+的最值得解.【详解】(1)当0x ≥时,2()f x x =,222()2))f x x f ===;当0x <时,222(),2()2))f x x f x x f =-=-=-=,所以在R 上,2()),())f x f f x a f =∴+<,因为在R 上,函数()f x 单调递增,,1)x a a x ∴+<∴<恒成立,(2)记()1)g x x =,[]2,2x a a ∈-+,min ()(2)1)(2),1)(2),g x g a a a a a ∴=-=-∴<-∴<.故答案为a <【点睛】本题主要考查函数的单调性和应用,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.15.(2018·上海市第八中学高一月考)函数()f x =【答案】[)3,+∞【分析】求出函数()y f x =的定义域,然后利用复合函数法可求出函数()f x =.【详解】令2230x x --≥,解得1x ≤-或3x ≥,函数()f x =(][),13,-∞-+∞.内层函数223u x x =--的减区间为(],1-∞-,增区间为[)3,+∞.外层函数y =[)0,+∞上为增函数,由复合函数法可知,函数()f x =[)3,+∞.故答案为[)3,+∞.【点睛】本题考查函数单调区间的求解,常用的方法有复合函数法、图象法,另外在求单调区间时,首先应求函数的定义域,考查分析问题和解决问题的能力,属于中等题. 16.(2018·上海市七宝中学高一月考)若幂函数3(*)my x m N -=∈是奇函数,则实数m 的最小值是__________ 【答案】1【分析】由幂函数3(*)my x m N -=∈是奇函数,得到m 是奇数,再由*m N ∈,能求出实数m 的最小值.【详解】幂函数3(*)m y xm N -=∈是奇函数,m ∴是奇数,*m N ∈,∴实数m 的最小值是1.【点睛】本题考查幂函数的定义、奇偶性,考查运算求解能力,是基础题.17.(上海普陀·曹杨二中高一期中)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0xf x <的解集是______.【答案】()(),22,-∞-+∞【分析】解不等式组00()0()0x x f x f x ><⎧⎧⎨⎨<>⎩⎩或得解.【详解】因为函数f(x)是奇函数, 所以函数的图像为因为()0xf x <,所以函数的第二、四象限的图像满足题意,所以x >2或x <-2.所以不等式的解集为()(),22,-∞-+∞.故答案为()(),22,-∞-+∞【点睛】本题主要考查奇函数的图像和性质,意在考查学生对这些知识的理解掌握水平.18.(2020·徐汇·上海中学高一期末)已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________. 【答案】5,42⎡⎤⎢⎥⎣⎦【分析】对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,等价于min max ()()f x g x ≥在区间[1,2]上恒成立,对a 的取值进行分类讨论,利用单调性求出min ()f x 和min ()g x ,列出关于a 的不等式组求得答案.【详解】当0a <时,23()4f x ax =+在区间[1,2]上单调递减,min 3()(2)44f x f a ==+,()ag x x x=+在区间[1,2]上单调递增,min ()1g x a =+, 所以3414a a +≥+,解得112a ≥,因为0a <,所以无解; 当0a ≥时,可知min 3()(1)4f x f a ==+, 当01a ≤≤时,()ag x x x=+在区间[1,2]上单调递增,其最小值为(1)1g a =+, 所以有01314a a a ≤≤⎧⎪⎨+≥+⎪⎩,无解,当14a <<时,()ag x x x=+在区间上单调减,在4]上单调增,其最小值为g =所以有1434a a <≤⎧⎪⎨+≥⎪⎩,解得542a ≤≤, 所以a 的取值范围是5[,4]2,故答案为:5[,4]2.【点睛】该题考查的是有关根据恒成立求参数的取值范围的问题,涉及到的知识点有根据题意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.19.(2019·徐汇·上海中学高一期末)若函数()()2log 2a f x x ax =-+(0a >且1a ≠)满足:对任意1x ,2x ,当122ax x <≤时,()()120f x f x ->,则a 的取值范围为______.【答案】(【分析】确定函数为单调减函数,利用复合函数的单调性:知道1a >且真数恒大于0,求得a 的取值范围.【详解】解:令2222()224a a y x ax x =-+=-+-在对称轴左边递减,∴当122ax x <时,12y y > 对任意的1x ,2x 当122ax x <时,21()()0f x f x -<,即12()()f x f x > 故应有1a >又因为22y x ax =-+在真数位置上所以须有2204a ->∴a -<综上得1a <<故答案为(【点睛】本题考查了复合函数的单调性.复合函数的单调性的遵循原则是单调性相同复合函数为增函数,单调性相反复合函数为减函数.20.(2019·上海市高桥中学高一期末)设m R ∈,若函数()()2311f x m x mx =+++是偶函数,则()f x 的单调递增区间是_________. 【答案】[0,)+∞【分析】由()()f x f x -=,化简得所以()()22331111m x mx m x mx +-+=+++,即可求解,得到答案.【详解】由题意,函数()()2311f x m x mx =+++是偶函数,所以()()f x f x -=,即()()()22331()()111f x m x m x m x mx -=+-+-+=+-+, 所以()()22331111m x mx m x mx +-+=+++,可得0m =, 所以函数的解析式为()231f x x =+,根据幂函数的性质,可得函数()f x 的单调递增区间为[0,)+∞. 故答案为[0,)+∞.【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记函数的奇偶性的定义,根据多项式相等求得m 的值,再根据幂函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题21.(2019·上海市曹杨中学高一期末)已知函数()224422f x x ax a a =-+-+在区间[0,2]上的最小值为3,求a 的值.【答案】1a =5a =.【分析】将f (x )转化为顶点式,求得对称轴,讨论区间和对称轴的关系,结合函数单调性,得最小值所对应方程,解方程可得a 的值【详解】函数()f x 的表达式可化为()()24222a f x x a ⎛⎫=-+- ⎪⎝⎭.① 当022a<<,即04a <<时,()f x 有最小值22a -,依题意应有223a -=,解得12a =-,这个值与04a ≤≤相矛盾.②当2a 0≤,即a 0≤时,()2022f a a =-+是最小值,依题意应有2223a a -+=,解得1a =a 0≤,∴1a =③当2a 2≥ ,即a 4≥时,()2216822f a a a =-+-+是最小值,依题意应有2168223a a a -+-+=,解得5a =±,又∵a 4≥,∴5a =综上所述,1a =-5a =.【点睛】本题考查了二次函数求最值,解题中要注意对称轴和区间的关系,考查分类讨论的思想方法和运算能力.22.(2017·上海徐汇·南洋中学高一月考)已知函数()f x 对于任意的,x y 都有()()()f x y f x f y +=+,当0x >时,则()0f x <且(1)2f =-(1)判断()f x 的奇偶性;(2)求()f x 在[3,3]-上的最大值;(3)解关于x 的不等式2()2()()4f ax f x f ax -<+.【答案】(1) 函数f (x )为奇函数.(2)6.(3)见解析.分析:(1)取x=y=0可得f (0)=0;再取y=﹣x 代入即可; (2)先判断函数的单调性,再求函数的最值;(3)由于f (x )为奇函数,整理原式得 f (ax 2)+f (﹣2x )<f (ax )+f (﹣2);即f (ax 2﹣2x )<f (ax ﹣2);再由函数的单调性可得ax 2﹣2x >ax ﹣2,从而求解. 详解:(1)取x=y=0, 则f (0+0)=f (0)+f (0); 则f (0)=0;取y=﹣x ,则f (x ﹣x )=f (x )+f (﹣x ), ∴f (﹣x )=﹣f (x )对任意x ∈R 恒成立 ∴f (x )为奇函数;(2)任取x 1,x 2∈(﹣∞,+∞)且x 1<x 2,则x 2﹣x 1>0; ∴f (x 2)+f (﹣x 1)=f (x 2﹣x 1)<0; ∴f (x 2)<﹣f (﹣x 1), 又∵f (x )为奇函数 ∴f (x 1)>f (x 2);∴f (x )在(﹣∞,+∞)上是减函数;∴对任意x ∈[﹣3,3],恒有f (x )≤f (﹣3)而f (3)=f (2+1)=f (2)+f (1)=3f (1)=﹣2×3=﹣6; ∴f (﹣3)=﹣f (3)=6;∴f (x )在[﹣3,3]上的最大值为6; (3)∵f (x )为奇函数,∴整理原式得 f (ax 2)+f (﹣2x )<f (ax )+f (﹣2); 即f (ax 2﹣2x )<f (ax ﹣2); 而f (x )在(﹣∞,+∞)上是减函数, ∴ax 2﹣2x >ax ﹣2; ∴(ax ﹣2)(x ﹣1)>0. ∴当a=0时,x ∈(﹣∞,1); 当a=2时,x ∈{x|x≠1且x ∈R}; 当a <0时,2{|1}x x x a∈<<; 当0<a <2时,2{|1}x x x x a∈>或<当a >2时,2{|1}x x x x a∈<或>. 点睛:根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥ 后再利用单调性和定义域列不等式组.23.(2020·浦东新·上海师大附中高一期中)已知函数()1()||3,,0m f x x m R x x-=+-∈≠.(1)判断函数()y f x =的奇偶性,并说明理由;(2)若对于任意的[]()1,4,1x f x ∈≥-恒成立,求满足条件的实数m 的最小值M . (3)对于(2)中的M ,正数a ,b 满足22a b M +=,证明: 2a b ab +≥.【答案】(1) 当1m =时,()f x 为偶函数, 当1m ≠时,既不是奇函数也不是偶函数,理由见解析;(2)2;(3) 证明见解析.【分析】(1)对m 分类讨论,结合奇偶性的定义进行判断可得;(2)将不等式转化为212m x x -≥-+对任意的[1,4]x ∈都成立,再构造函数,利用单调性求出最大值即可得到答案;(3)由(2)知2M =,所以1ab ≤,2a b+≤变形可证. 【详解】(1)(i)当m=1时,()||3f x x =-,(,0)(0,)x ∈-∞⋃+∞, 因为()||3||3()f x x x f x -=--=-=, 所以()f x 为偶函数;(ii)当1m ≠时,(1)3f m =-,(1)1f m -=-,(1)(1)f f ≠-,(1)(1)f f ≠--, 所以既不是奇函数也不是偶函数. (2) 对于任意的[]()1,4,1x f x ∈≥-,即131m x x-+-≥-恒成立, 所以212m x x -≥-+对任意的[1,4]x ∈都成立, 设2()2,[1,4]g x x x x =-+∈, 则()g x 为[1,4]上的递减函数, 所以1x =时,()g x 取得最大值1, 所以11m -≥,即2m ≥.所以2M =.(3)证明: 由(2)知2M =,222a b ab +≥,所以22ab ≥,1ab ∴≤,1≤,当且仅当a b =时取等号,①又1,22a b ab +≤≤2ab a b ∴≤+,当且仅当a b =时取等号,② 由①②得,12ab a b ≤+, 所以2a b ab +≥,【点睛】本题考查了函数奇偶性的讨论,不等式恒成立问题,不等式的证明问题,属于中档题.24.(2017·上海市七宝中学高一期中)已知函数2()log (41)xf x ax =+-.(1)若函数()f x 是R 上的偶函数,求实数a 的值; (2)若4a =,求函数()f x 的零点.【答案】(1)1a =;(2)4log x =【分析】(1)由题意得()()f x f x -=,即()()0f x f x --=,根据函数解析式整理可得21log 22204xax x ax +=-+=,故得1a =.(2)当4a =时得到函数的解析式,然后根据指数与对数的关系可得4412x x +=,整理得()24410xx --=,求得142x +=,于是可得41log 2x +=. 【详解】(1)∵()f x 是R 上的偶函数, ∴()()f x f x -=,即()()0f x f x --=,∴()()][()22log 41log 410x xa x ax -⎡⎤+---+-=⎣⎦,整理得241log 2041x x ax -++=+,∴21log 22204xax x ax +=-+=, ∴1a =.(2)当4a =时,()()2log 414xf x x =+-令()0f x =,可得()2log 414xx +=,∴4412x x += 整理得()24410xx --=,解得4x =或4x =(舍去)∴4log x = 【点睛】本题考查函数的性质及函数与方程的关系,考查计算能力和转化能力,解题的关键是根据相关概念及所求将问题进行转化,逐步达到求解的目的.另外,由于题目中涉及到大量的计算,所以在求解过程中要注意运算的准确性,合理进行指数和对数间的转化. 25.(2019·上海市建平中学高一期末)已知()()x x mf x e m R e=-∈是定义在[]1,1-上的奇函数.(1)求实数m 的值;(2)求证:()f x 在[]1,1-上是单调递减函数;(3)若()()2120f a f a -+≤,求实数a 的取值范围.【答案】(1)1;(2)证明见解析;(3)122a ≤≤【分析】(1)根据奇函数性质得()00=f ,代入求实数m 的值; (2)根据单调性定义证明;(3)根据单调性与奇偶性化简不等式,再解一元二次不等式得结果. 【详解】(1)因为()()xx m f x e m R e=-∈是定义在[]1,1-上的奇函数, 所以()001011mf m =∴-=∴= 当1m =时()()111,(),x x xx x xf x e f x e e f x e e e --=-∴-=-=-=- 所以1m =;(2)设12,x x 为[]1,1-上任意两数,且12x x < 所以()()1212121212111()(1)x x x x x x x x f x f x e e e e e e e e -=-+-=-++ 因为12x x <,所以120x x e e <<∴()()12f x f x > 即()f x 在[]1,1-上是单调递减函数;(3)因为()f x 是定义在[]1,1-上的奇函数,且在[]1,1-上是单调递减函数;()()()()()()2221202121f a f a f a f a f a f a -+≤∴≤--∴≤-所以21211a a ≥≥-≥-,211122222a a a a a ⎧⎪≤⎪⎪∴≥≤-∴≤≤⎨⎪⎪-≤≤⎪⎩或 【点睛】本题考查奇偶性、单调性证明、利用单调性解不等式,考查综合分析求解能力,属中档题.26.(2019·上海市第八中学高一期末)已知函数f (x )=22x x ax++,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.【答案】(1)72;(2)(-3,+∞). 【分析】(1)1()22f x x x=++,利用作差法判断[1,+∞)上的单调性,即可求得;(2)f (x )>0恒成立,等价于f (x )的最小值大于零,令y =x 2+2x +a ,求y 的最小值即可.【详解】(1)当a =12时,1()22f x x x=++, 设1≤x 1<x 2,则122121212112(21)11()()2(2)()222x x f x f x x x x x x x x x --=++-++=-, ∵1≤x 1<x 2,∴2x 1x 2>2,2x 1x 2-1>0,21x x ->0, ∴21()()0f x f x ->,∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72, (2)在区间[1,+∞)上f (x )>0恒成立⇔x 2+2x +a >0恒成立,设y =x 2+2x +a ,x ∈[1,+∞),则函数y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上是增函数,∴当x =1时,y 取最小值,即y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立, 故a >-3,实数a 的取值范围为(-3,+∞).【点晴】(1)判断函数单调性的方法有:(1)定义法;(2)图像法;(3)四则运算法;(4)复合函数法;(5)导数法;此题也可以利用对勾函数的图像解决; (2)()f x a >恒成立等价于min ()f x a >.27.(2020·上海市控江中学高一期末)已知函数()f x ,()g x 的定义域分别为12,D D ,若存在常数C R +∈,满足:①对任意01x D ∈,恒有01x C D +∈,且()()00f x f x C ≤+.②对任意01x D ∈,关于x 的不等式组()()0f x g x ≤≤()()0g x C f x C +≤+恒有解,则称()g x 为()f x 的一个“C 型函数”.(1)设函数()1103113x f x x ⎧-≤≤⎪⎪=⎨⎪>⎪⎩和()1102102x g x x ⎧≤≤⎪⎪=⎨⎪>⎪⎩,求证:()g x 为()f x 的一个“12型函数”; (2)设常数a R ∈,函数()()31f x x ax a =+≥-,()()21g x x x =≥-.若()g x 为()f x 的一个“1型函数”,求a 的取值范围;(3)设函数()()240f x x x x =-≥.问:是否存在常数t R +∈,使得函数()()220t x x g x x=+>为()f x 的一个“t 型函数”?若存在,求t 的取值范围;若不存在,说明理由.【答案】(1)证明见解析;(2)7,4⎡⎫+∞⎪⎢⎣⎭;(3)[)7,+∞.【分析】(1)由()1103113x f x x ⎧-≤≤⎪⎪=⎨⎪>⎪⎩,()00112f x f x ⎛⎫+=≥ ⎪⎝⎭恒成立,①成立,根据()g x 解析式,0x =为不等式组()()0011()()22f xg x g x f x ≤≤+≤+的一个解,得②成立,即可证明结论;(2)()g x 为()f x 的一个“1型函数”,满足①对任意0001,()(1)x f x f x ≥-≤+,求出a 的范围,②对任意01x ≥-,关于x 的不等式组00()()(1)(1)f x g x g x f x ≤≤+≤+恒有解, 转化为求函数的最值,可求出a 的范围,即可求解;(3)由()()220t x x g x x=+>为()f x 的一个“t 型函数”,与(2)同理,将同时满足①②条件的参数t 求出,即可求解. 【详解】(1)①00000115[0,],()1,[,],()1()2211623x f x x f x f x ∈=-∈>++=, 当000015(,),(),()()1361122x x f x f x ∈+∞∈++∞+==, 任意0[0,)x ∈+∞,且()0012f x f x ⎛⎫≤+⎪⎝⎭, ②()1102102x g x x ⎧≤≤⎪⎪=⎨⎪>⎪⎩,1(0)()12f f ==,因为()()00110()()22f xg g f x ≤≤≤+,0x =为不等式()()0011()()22f xg x g x f x ≤≤+≤+的一个解,所以()g x 为()f x 的一个“12型函数”; (2)①对任意0001,()(1)x f x f x ≥-≤+,22000113313()024x x a x a +++=+++≥,20min 1111[3()]0,2444x a a a ∴+++=+≥≥-;②对任意01x ≥-,关于x 的不等式组00()()(1)(1)f x g x g x f x ≤≤+≤+恒有解,()()()()30030022122111x x ax x x x x a x ⎧≥+⎪⎪+≥⎨⎪+≤+++⎪⎩,即300320002231x x ax x x ax x a ⎧≥+⎨≤+++-⎩, 因为关于x 的不等式组恒有解,所以323000000331x ax x x a x ax ++++-≥+,22000173313()024x x a x a ∴++-=++-≥恒成立,74a ∴≥;综上,74a ∴≥; (3)①对任意对任意0000,()()x f x f x t ≥≤+,222000004()4(),420x x x t x t t t x t -≤+-+-+≥,00min ,420,(42)40,4t R t x t x t t +∈∴-+≥-+=-≥∴≥;②对任意00x ≥,关于x 的不等式组00()()()()f x g x g x t f x t ≤≤+≤+恒有解,()()220022222200242220224t x x x x t t x t x x tx t x t x t x t x t x t x t x t ⎧+≥-⎪⎪⎪++≥+⇒+-≥⇒≥⎨+⎪⎪++≤+-+⎪+⎩, 考虑22min 002()()4(),t x t x t x t x t x t++≤+-+≥+,令(2)x t m m t +=≥,则2222min 00022()23()4()(2)42t t m t t x t x t x t m t+=+=≤+-+=+--,由于204,(2)4t y x t ≥=+--在00x ≥时,单调递增,220min 3[(2)4](2)4,7t x t t t ≤+--=--∴≥或0t ≤(舍去),由()(2)3g t g t t ==,记方程()3f x t =的根为1x , 若010x x ≤≤,则00()3()(2)()f x t g t g t f x t ≤==≤+, 即x t =为不等式组的一个解, 若01x x >,取2x t >且0()()g x f x =,220022()()()()t t g x t x t x t g x t f x t f x t x t x+=++<++=+=+≤++,综上,7t ≥.【点睛】本题考查函数新定义问题,要充分理解题意,考查不等式恒成立和能成立问题,熟练利用二次函数求最值是解题的关键,着重考查了转化思想,以及分析问题和解决问题的能力,属于难题.28.(2019·上海宝山·高一期末)对于三个实数a 、b 、k ,若22(1)(1)1a b k a b ab ++≥⋅-⋅-成立,则称a 、b 具有“性质k ”.(1)试问:①()x x ∈R ,0是否具有“性质2”;②tan y (124y ππ<<),0是否具有“性质4”;(2)若存在03[,2]4x ππ∈及01[,2]2t ∈,使得00001sin 22sin 0x x t m t ----≤成立,且0sin x ,1具有“性质2”,求实数m 的取值范围;(3)设1x ,2x ,⋅⋅⋅,2019x 为2019个互不相同的实数,点(,)m n x x ({},1,2,,2019m n ∈⋅⋅⋅) 均不在函数1y x=的图象上,是否存在(),i j i j ≠,且{},1,2,,2019i j ∈⋅⋅⋅,使得i x 、j x具有“性质2018”,请说明理由.【答案】(1)①具有“性质2”,②不具有“性质4”;(2)52m ≥-;(3)存在.【分析】(1)①根据题意需要判断212||x x +≥的真假即可② 根据题意判断21tan 4|tan |y y +≥是否成立即可得出结论;(2)根据具有性质2可求出0x 的范围,由存在性问题成立转化为00max (sin 22sin )x x -≤ 0max 01()t m t ++,根据函数的性质求最值即可求解. 【详解】(1)①因为212x x +≥,212x x +≥-成立,所以212||x x +≥,故()x x ∈R ,0具有“性质2”②因为124y ππ<<,设tan t y =,则316t <<设2()41f t t t =-+,对称轴为2t =,所以函数2()41f t t t =-+在t ∈上单调递减,当1t →时,min ()20f t →-<, 所以当124y ππ<<时,21tan 4tan 0y y +-≥不恒成立,即21tan 4|tan |y y +≥不成立,故tan y (124y ππ<<),0不具有“性质4”.(2)因为0sin x ,1具有“性质2”所以22000(1sin )(1+12|sin 1||1sin |x x x +≥--)化简得2200(1sin )(1sin )x x +≥-解得034x ππ≤≤或02x π= . 因为存在03[,2]4x ππ∈及01[,2]2t ∈,使得00001sin 22sin 0x x t m t ----≤成立,所以存在03[,]4x ππ∈{2}π 及01[,2]2t ∈使00max (sin 22sin )x x -≤ 0max 01()t m t ++即可. 令00sin 22sin y x x =-,则200002cos 22cos 2(2cos cos 1)y x x x x '=-=--,当03[,]4x ππ∈时,0y '>, 所以00sin 22sin y x x =-在03[,]4x ππ∈上是增函数, 所以0x π=时,0max 00(sin 22si )n x x =-,当02x π=时,00sin 22sin =0x x -,故03[,]4x ππ∈{2}π时,0max 00(sin 22si )n x x =-因为1y x m x=++在1[,1]2上单调递减,在[1,2] 上单调递增,所以0max 015()=2t m m t +++, 故只需满足502m ≤+即可,解得52m -≤. (3)假设具有“性质2018”,则22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-, 即证明在任意2019个互不相同的实数中,一定存在两个实数,i j x x ,满足:22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-.证明:由()()()22111122222221111|111j j j j jj i i ji jijx x x x x x x x x x x x x x x x x x --+-⋅-==-++++++, 令tan i x α=,由万能公式知2111sin 2,1222i i x x α⎡⎤=∈-⎢⎥+⎣⎦, 将11,22⎡⎤-⎢⎥⎣⎦等分成2018个小区间,则1220191i ,,11s n 2sin 2,sin 2222a a a 这2019个数必然有两个数落在同一个区间,令其为:11sin 2,sin 222ϕγ,即111sin 2sin 2222018ϕγ-≤, 也就是说,在1x ,2x ,⋅⋅⋅,2019x 这2019个数中,一定有两个数满足221112018i i i i x x x x -≤++, 即一定存在两个实数,i j x x ,满足22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-, 从而得证.【点睛】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.29.(2018·上海嘉定·高一期末)已知x ∈R ,定义:()f x 表示不小于x 的最小整数,例如:2f =,(0.6)0f -=.(1)若()2018f x =,求实数x 的取值范围; (2)若0x >,且1(3())(6)31xf x f x f +=++,求实数x 的取值范围; (3)设()()2f x g x x a x =+⋅-,2242022()57x x h x x x -+-=-+,若对于任意的123(2,4]x x x ∈、、,都有123()()()g x h x h x >-,求实数a 的取值范围.【答案】(1)(2017,2018](2)45(,]33(3)(5,)+∞试题分析:⑴由()2018f x =及已知条件,可以得到20172018x <≤,即可得出答案;⑵先求出16731x f ⎛⎫+= ⎪+⎝⎭,得到()637x f x <+≤,然后分类讨论01x <≤、 12x <≤、2x >时的取值,从而得出结果;⑶对于任意的(]1224x x ∈,,,,都有()()()123g x h x h x >-,即有()()()max min g x h x h x ⎡⎤⎡⎤>-⎣⎦⎣⎦对任意的(]2,4x ∈恒成立.讨论(]23x ∈,,(]34x ∈,时,结合新定义和分离参数,由二次函数的最值的求法,即可解得实数a 的取值范围解析:(1)解:由()2018f x =及题意得20172018x <≤. 所以所求实数x 的取值范围是(]2017,2018. (2)解:因为()30,x∈+∞,则()311,x+∈+∞,()10,131x ∈+,()166,731x +∈+, 所以16731xf ⎛⎫+= ⎪+⎝⎭. 由题意得当0x >,且()()37f x f x +=,所以()637x f x <+≤.若()1f x =,即01x <≤时,6317x <+≤,解得523x <≤,所以x ∈∅; 若()2f x =,即12x <≤时,6327x <+≤.解得4533x <≤,所以45,33x ⎛⎤∈ ⎥⎝⎦; 若()3f x ≥,即2x >时,36x >,()39x f x +>,不符合题意.所以x ∈∅.综上,所求实数x 的取值范围是45,33⎛⎤⎥⎝⎦.(3)解:对于任意的(]123,,2,4x x x ∈,都有()()()123g x h x h x >-. 只需()()()max min g x h x h x ⎡⎤⎡⎤>-⎣⎦⎣⎦对任意的(]2,4x ∈恒成立.又()224202257x x h x x x -+-=-+ 2645324x =-+⎛⎫-+ ⎪⎝⎭. 因为(]2,4x ∈,所以当52x =时,()max 4h x ⎡⎤=⎣⎦;当4x =时,()min2h x ⎡⎤=-⎣⎦. 因此()6g x >对任意的(]2,4x ∈恒成立. ①当(]2,3x ∈时,()326ag x x x=+->恒成立. 即238a x x >-恒成立,所以()2max3815a x x>-=,解得5a >;②当(]3,4x ∈时,()426ag x x x=+->恒成立. 即248a x x >-恒成立,所以()2max4816a x x>-=,解得4a >.综上,所求实数a 的取值范围是()5,+∞.点睛:本题主要考查的是新定义的理解和应用,归纳推理,在解题过程中应当审清题意,然后按照题目要求进行解答,在解答不等式恒成立问题时注意方法,需要将其转化为最值问题,然后求解范围问题,本题难度较大.。

专题10 函数的基本性质(单调性)(原卷版)

专题10 函数的基本性质(单调性)(原卷版)

专题10函数的基本性质(单调性)1.增函数和减函数增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)f (x 1)>f (x 2)那么就说函数f (x )在区间D 上是增函数.区间D 称为函数f (x )的单调递增区间那么就说函数f (x )在区间D 上是减函数.区间D 称为函数f (x )的单调递减区间图象 特征函数f (x )在区间D 上的图象是上升的函数f (x )在区间D 上的图象是下降的图示[121212(2)函数f (x )在区间D 上是减函数,x 1,x 2∈D ,则x 1<x 2⇔f (x 1)>f (x 2). 2.单调性(1)定义:如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在区间D 上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.(2)图象特征:函数y =f (x )在区间D 上具有单调性,则函数y =f (x )在区间D 上的图象是上升的或下降的. [归纳总结] 基本初等函数的单调区间如下表所示:函数 条件 单调递增区间单调递减区间正比例函数 (y =kx ,k ≠0) 与一次函数 (y =kx +b ,k ≠0) k >0R无 k <0无R反比例函数 (y =kx,k ≠0)k >0无 (-∞,0)和 (0,+∞)k <0 (-∞,0)和 (0,+∞) 无 二次函数a >0[-b2a,+∞) (-∞,-b2a](y=ax 2+bx +c ,a ≠0)a <0(-∞,-b2a][-b2a,+∞) 3. 最大值和最小值最大值最小值条件一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足;对于任意的x ∈I ,都有f (x )≤Mf (x )≥M存在x 0∈I ,使得f (x 0)=M结论 称M 是函数y =f (x )的最大值 称M 是函数y =f (x )的最小值 几何意义f (x )图象上最高点的纵坐标f (x )图象上最低点的纵坐标[知识拓展] 函数最大值和最小值定义中两个关键词: ①“存在”:M 首先是一个函数值,它是值域中的一个元素, 如函数y =x 2(x ∈R )的最小值是0,有f (0)=0.②“任意”:最大(小)值定义中的“任意”是说对于定义域内的每一个值都必须满足不等式,即对于定义域内的全部元素,都有f (x )≤M (f (x )≥M )成立,也就是说,函数y =f (x )的图象不能位于直线y =M 的上(下)方.典型题型与解题方法重要考点一:利用图象求函数的单调区间【典型例题】函数()y f x =在区间[22]-,上的图象如图所示,则此函数的增区间是( )A .[20]-,B .[0]1,C .[21]-,D .[11]-, 【题型强化】1.已知函数()([1,5])y f x x =∈-的图象如图所示,则()f x 的单调递减区间为( )A .[1,1]-B .[1,3]C .[3,5]D .[1,5]-2.关于函数()11f x x =--的下列结论,错误的是( ) A .图像关于1x =对称 B .最小值为1-C .图像关于点()1,1-对称D .在(],0-∞上单调递减 【名师点睛】函数单调区间的求法及表示方法(1)由函数图象确定函数的单调区间是一种直观简单的方法,对于较复杂的函数的单调区间,可利用一些基本函数的单调性或根据函数单调性的定义来求.(2)单调区间必须是一个区间,不能是两个区间的并,如不能写成函数y =1x 在(-∞,0)∪(0,+∞)上是减函数,而只能写成在(-∞,0)和(0,+∞)上是减函数.(3)区间端点的写法;对于单独的一点,由于它的函数值是唯一确定的常数,没有增减变化,所以不存在单调问题,因此写单调区间时,可以包括端点,也可以不包括端点,但对于某些点无意义时,单调区间就不包括这些点.重要考点二:用定义证明函数的单调性【典型例题】已知函数(),(1,)1xf x x x=∈-+∞+,试判断函数()f x 的单调性,并证明.【题型强化】1.试用函数单调性的定义证明:()2-1xf x x =在()1,+∞上是减函数.2.已知函数[]21(),3,51x f x x x -=∈+. (1)判断()f x 在区间[]3,5上的单调性并证明; (2)求()f x 的最大值和最小值.【名师点睛】1.函数单调性的证明方法——定义法 利用定义法证明或判断函数单调性的步骤是:2.用定义证明函数单调性时,作差f (x 1)-f (x 2)后,若f (x )为多项式函数,则“合并同类项”,再因式分解;若f (x )是分式函数,则“先通分”,再因式分解;若f (x )解析式是根式,则先“分子有理化”再分解因式.重要考点三:单调性的应用【典型例题】函数()y f x =在[2,)+∞上单调递增,且()(4)f x f x =-恒成立,则关于x 的不等式2(3)(22)f x f x +>+的解集为________【题型强化】1.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.2.已知()y f x =是定义在R 上的函数,对任意的x ∈R ,恒有2()()f x f x x +-=成立.,若()y f x =在(,0]-∞上单调递增,且(2)()22f a f a a --≥-,则a 的取值范围为__________.【名师点睛】利用函数的单调性解函数值的不等式就是利用函数在某个区间内的单调性,去掉对应关系“f ”,转化为自变量的不等式,此时一定要注意自变量的限制条件,以防出错.重要考点四:对单调区间和在区间上单调两个概念理解错误【典型例题】已知函数226y kx x =+-在区间(2,4)上单调递增,求实数k 的取值范围.【题型强化】1.二次函数()222f x x ax =++在区间[]1,2上单调,则实数a 的取值范围;2.()()()222f x x m x m m R =+--∈(1)已知()f x 在[]2,4上是单调函数,求m 的取值范围; (2)求()0f x <的解集.【名师点睛】若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子区间上也是单调的,因此f (x )在区间A 上单调增(或减)和f (x )的单调增(或减)区间为A 不等价.重要考点五:抽象函数单调性的判断与证明【典型例题】已知()f x 定义域为R ,对任意x ,y R ∈都有()()()1f x y f x f y +=+-,当0x >时, ()1f x <,(1)0f =.(1)求(1)f -;(2)试判断()f x 在R 上的单调性,并证明; (3)解不等式:2(232)2()4f x x f x --+>.【题型强化】1.设()f x 是定义在R 上的函数,对任意的,x y R ∈,恒有()()()f x y f x f y +=⋅,且当0x >时,()01f x << .(1)求()0f 的值;(2)求证:对任意x ∈R ,恒有()0f x >. (3)求证:()f x 在R 上是减函数.2.已知定义在R 上的恒不为0的函数()y f x =满足()()()1212f x x f x f x +=⋅,试证明: (1)()01f =及()()()1122f x f x x f x -=; (2)()()(),,2nf nx f x n N n +=∈≥⎡⎤⎣⎦;(3)当0x >时,()1f x >,则函数()f x 在R 上是增函数.【名师点睛】一般地,在高中数学中,主要有两种类型的抽象函数,一是“f (x +y )”型[即给出f (x +y )所具有的性质,如本例],二是“f (xy )”型.对于f (x +y )型的函数,只需构造f (x 2)=f [x 1+(x 2-x 1)],再利用题设条件将它用f (x 1)与f (x 2-x 1)表示出来,然后利用题设条件确定f (x 2-x 1)的范围(如符号、与“1”的大小关系),从而确定f (x 2)与f (x 1)的大小关系;对f (xy )型的函数,则只需构造f (x 2)=f (x 1·x 2x 1)即可.重要考点六:利用图象求函数的最值【典型例题】对于任意x ∈R ,函数()f x 表示3x -+,3122x +,243x x -+中的较小者,则函数()f x 的最大值是_________.【题型强化】1.函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .5222+C .32D .22.若函数2()f x x bx a =++在区间[0,1]上的最大值是(,)M a b ,最小值是(,)n a b ,则(,)(,)M a b n a b -( )A .与a 有关,且与b 有关B .与a 无关,但与b 有关C .与a 无关,且与b 无关D .与a 有关,但与b 无关【名师点睛】利用图象法求函数最值的一般步骤是:重要考点七:利用单调性求最值【典型例题】函数11y x =-+在区间[]1,2上的最大值为( ) A .13-B .12- C .1- D .不存在【题型强化】1.若正数x 、y 满足x y xy +=,则4x y +的最小值等于( ) A .4B .5C .9D .132.函数()1xf x x =-在区间[]2,5上的最大值与最小值的差记为max min f -,若 max min f --22a a ≥-恒成立,则a 的取值范围是( ) A .1322⎡⎤⎢⎥⎣⎦,B .[]1,2C .[]0,1D .[]1,3【名师点睛】1.利用函数单调性求最值的一般步骤:(1)判断函数的单调性.(2)利用单调性写出最值. 2.利用单调性求最值的三个常用结论(1)如果函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]的左、右端点处分别取得最小(大)值和最大(小)值.(2)如果函数f (x )在区间(a ,b ]上是增函数,在区间[b ,c )上是减函数,则函数f (x )在区间(a ,c )上有最大值f (b ). (3)如果函数f (x )在区间(a ,b ]上是减函数,在区间[b ,c )上是增函数,则函数f (x )在区间(a ,c )上有最小值f (b ).重要考点八:实际应用中的函数最值问题【典型例题】某建筑公司打算在一处工地修建一座简易储物间.该储物间室内地面呈矩形形状,面积为250m ,并且一面紧靠工地现有围墙,另三面用高度一定....的矩形彩钢板围成,顶部用防雨布遮盖,其平面图如图所示.已知该型号彩钢板价格为100元/米,整理地面及防雨布总费用为500元,不受地形限制,不考虑彩钢板的厚度,记与墙面平行的彩钢板的长度为x 米.(1)用x 表示修建储物间的总造价()f x (单位:元);(2)如何设计该储物间,可使总造价最低?最低总造价为多少元?【题型强化】1.某市由甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从两家中的一家租一张球台开展活动,活动时间不少于15小时,也不超过40小时,设在甲家租一张球台开展活动x 小时的收费为()f x 元,在乙家租一张球台开展活动x 小时的收费为()g x 元.(1)写出()f x 与()g x 的解析式; (2)选择哪家比较合算?请说明理由.2.某汽车公司购买了4辆大客车,每辆200万元,用于长途客运,预计每辆车每年收入约100万元,每辆车第一年各种费用约为16万元,且从第二年开始每年比上一年所需费用要增加16万元.()1写出4辆车运营的总利润y (万元)与运营年数()*x x N ∈的函数关系式. ()2这4辆车运营多少年,可使年平均运营利润最大?【名师点睛】(1)解实际应用题要弄清题意,从实际出发,引进数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题.要注意自变量的取值范围.(2)实际应用问题中,最大利润、用料最省等问题常转化为求函数的最值来解决,本题转化为二次函数求最值,利用配方法和分类讨论思想使问题得到解决.重要考点九:忽视端点值致误【典型例题】函数()()2,12f x x x =≥+的值域为__________. 【题型强化】1.函数11x y x +=-在区间()[),02,5-∞⋃上的值域为_____ 2.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是________________. 重要考点十:逻辑推理训练——抽象函数【典型例题】已知函数()f x 的定义域是()0+∞,,当1x >时, ()0f x >,且()()+()f x y f x f y ⋅= (1)求(1)f ;(2)证明()f x 在定义域上是增函数;(3)如果1()13f =-,求满足不等式()(2)2f x f x --≥的x 的取值范围.【题型强化】1.设()f x 是定义在R 上的函数,且对任意,x y R ∈,恒有()()()f x y f x f y +=+. (1)求(0)f 的值; (2)求证:()f x 为奇函数;(3)若函数()f x 是R 上的增函数,已知()11f =,且(2)(1)2f a f a >-+,求实数a 的取值范围.2.若定义在R 上的函数()f x 对任意的1x 、2x R ∈,都有()()()12121f x x f x f x +=+-成立,且当0x >时,()1f x >.(1)求证:()1f x -为奇函数; (2)求证:()f x 是R 上的增函数;(3)若()45f =,解不等式()2323f m m --<.【名师点睛】处理抽象函数问题的基本方法是赋值法.在本题的求解中,根据所给式子f (x ·y )=f (x )+f (y )进行适当的赋值或配凑.该式及由该式推出的f (1x)=-f (x )可作为推理依据.1.函数f (x )=|x |,g (x )=x (2-x )的递增区间依次是( ) A .(-∞,0],(-∞,1] B .(-∞,0],(1,+∞) C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)2.已知函数234()x x f x x ++=,对于任意12x ≥时下列说法正确的是( )A .函数最小值为7B .函数最小值为232C .函数最大值为7D .函数最大值为2323.下列结论正确的是( )A .4y x =在定义域内是单调递减函数B .若()f x 在区间[]0,2上满足()()02f f <,则()f x 在[]0,2上是单调递增的C .若()f x 在区间[]0,3上单调递减,则()f x 在()1,2上单调递减D .若()f x 在区间()1,2,[]2,3上分别单调递减,则()f x 在(]1,3上单调递减 4.在区间(),0-∞上为增函数的是( )A .y x =B .21xy x =+-C .222y x x =--- D.y =5.下列函数中,值域为R 且区间()0,∞+上单调递增的是( )A .3y x =-B .y x x =C .1y x -= D.y =6.若函数(1)2,2()log ,2a a x a x f x x x --<⎧=⎨≥⎩在R上单调递减,则实数a 的取值范围是()A .()0,1 B.2⎛ ⎝⎦ C.2⎫⎪⎪⎣⎭ D .()1,+∞7.若函数()211y x a x =++-在[]22-,上单调,则a 的范围是( )A .3a ≥B .5a ≤-C .3a ≥或5a ≤-D .3a >或5a <-8.函数221()(1)x f x x x -=-的单调增区间为___________.9.函数()f x =的单调递增区间为________.10.若()12ax f x x +=+在区间2(,)∞-+上是增函数,则a 的取值范围是_________11.已知函数25,1(),1x ax x f x ax x ⎧---≤⎪=⎨>⎪⎩在(,)-∞+∞上单调递増,则a 的取值范围是________.12.若()()112a x f x x --=+在区间()2,-+∞上是减函数,则23f ⎛⎫- ⎪⎝⎭的取值范围是______.13.已知函数()()1100f x a x a x =->,>.(1)求证:f (x )在(0,+∞)上是单调递增函数;(2)若f (x )在122⎡⎤⎢⎥⎣⎦,上的值域是122⎡⎤⎢⎥⎣⎦,,求a 的值.14.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围.15.已知函数()()()212f x x a x a a R =--+∈.(1)求函数()f x 在[]0,1上的最小值()g a 的表达式;(2)若函数()f x 在[]0,1上有且只有一个零点,求a 的取值范围.。

(完整版)高三一轮复习函数专题1---函数的基本性质

(完整版)高三一轮复习函数专题1---函数的基本性质

函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。

2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。

(常见方法有哪些)4、如何求函数的值域。

(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。

高考数学专题函数的基本性质

高考数学专题函数的基本性质

高考数学专题函数的基本性质1.已知函数$f(x)=\begin{cases}-x^2+2x。

& x\leq 1 \\\ln(x+1)。

& x>1\end{cases}$,若$|f(x)|\geq ax$,则$a$的取值范围是?2.设函数$f(x)$,$g(x)$的定义域都为$\mathbb{R}$,且$f(x)$是奇函数,$g(x)$是偶函数,则下列结论正确的是?3.函数$y=2x-e$在$[-2,2]$的图像大致为?4.函数$f(x)$在$(-\infty,+\infty)$单调递减,且为奇函数。

若$f(1)=-1$,则满足$-1\leq f(x-2)\leq 1$的$x$的取值范围是?5.函数$f(x)=\frac{e^x-e^{-x}}{2x}$的图像大致为?6.函数$y=-x^2+x+2$的图像大致为?7.函数$f(x)=\frac{\sin x+x}{2\cos x+x}$在$[-\pi,\pi]$的图像大致为?8.设$a=\log_3 6$,$b=\log_5 10$,$c=\log_7 14$,则?9.若$a>b>1$,$|c|<1$,则?10.设$x,y,z$为正数,且$2^x=3^y=5^z$,则?11.已知函数$f(x)=\begin{cases}e^x。

& x\leq 2 \\ \ln x。

& x>2\end{cases}$,$g(x)=f(x)+x+a$。

若$g(x)$存在$2$个零点,则$a$的取值范围是?12.已知$a=\log_2 0.2$,$b=20.2$,$c=0.20.3$,则?13.已知函数$f(x)=\frac{x+ax+bx+c}{x^2+1}$有两个极值点$x_1,x_2$,若$f(x_1)=x_1<x_2$,则?14.已知函数 $f(x)=\begin{cases} x^2+(4a-3)x+3a。

专题3.3 函数的基本性质-重难点题型精讲(学生版)

专题3.3 函数的基本性质-重难点题型精讲(学生版)

专题3.3 函数的基本性质-重难点题型精讲1.函数的单调性(1)单调递增、单调递减:(2)函数的单调性及单调区间:①当函数f(x)在它的定义域上单调递增(减)时,我们就称它是增(减)函数.②如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.(3)常见函数的单调性:(4)单调函数的运算性质:若函数f(x),g(x)在区间D上具有单调性,则在区间D上具有以下性质:①f(x)与f(x)+C(C为常数)具有相同的单调性.②若a为常数,则当a>0时,f(x)与a f(x)具有相同的单调性;当a<0时,f(x)与a f(x)具有相反的单调性.③若f(x)恒为正值或恒为负值,a为常数,则当a>0时,f(x)具有相反的单调性;当a<0时,f(x)与具有相同的单调性.④若f(x)≥0,则f(x)具有相同的单调性.⑤在f(x),g(x)的公共单调区间上,有如下结论:⑥当f(x),g(x)在区间D上都是单调递增(减)的,若两者都恒大于零,则f(x)g(x)在区间D上也是单调递增(减)的;若两者都恒小于零,则f(x)g(x)在区间D上单调递减(增).(5)复合函数的单调性判定:对于复合函数f(g(x)),设t=g(x)在(a,b)上单调,且y=f(t)在(g(a),g(b))或(g(b),g(a))上也单调.2.函数的最大(小)值(1)函数的最大(小)值:(2)利用函数单调性求最值的常用结论:①如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减,那么函数y=f(x),x[a,c]在x=b 处有最大值f(b),如图(1)所示;②如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增,那么函数y=f(x), x[a,c]在x=b 处有最小值f(b),如图(2)所示.3.函数的奇偶性(1)定义:(2)奇偶函数的图象特征(几何意义)①奇函数的图象特征:若一个函数是奇函数,则这个函数的图象是以原点为对称中心的中心对称图形;反之,若一个函数的图象是以原点为对称中心的中心对称图形,则这个函数是奇函数.②偶函数的图象特征:若一个函数是偶函数,则这个函数的图象是以y轴为对称轴的轴对称图形;反之,若一个函数的图象关于y轴对称,则这个函数是偶函数.③奇偶函数的结论:奇函数在关于原点对称的区间上有相同的单调性,偶函数在关于原点对称的区间上有相反的单调性;偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.(3)函数图象的对称性:①图象关于点成中心对称图形:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数g(x)=f(x+a)-b为奇函数.②图象关于直线成轴对称图形:函数y=f(x)的图象关于直线x=a成轴对称图形的充要条件是函数g(x)=f(x+a)为偶函数.【题型1 函数单调性的判断及单调区间的求解】【例1】(2021秋•邗江区期中)下列函数中,在(﹣∞,0)上为减函数的是()A.y=−1x B.y=2x+1C.y=x2D.y=x0【变式1-1】(2022春•天津期末)下列函数中,在(0,+∞)上为增函数的是()A.f(x)=3﹣x B.f(x)=x2﹣3x C.f(x)=−1x D.f(x)=﹣|x|【变式1-2】(2020秋•福田区校级期末)函数y=√x2+3x的单调递减区间为()A.(−∞,−32]B.[−32,+∞)C.[0,+∞)D.(﹣∞,﹣3]【变式1-3】(2021•白山开学)函数f(x)=x−1x的单调增区间为()A.(0,+∞)B.(﹣∞,0)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,0),(0,+∞)【题型2 利用函数的单调性求参数】【例2】(2021•河北区学业考试)已知函数f(x)=x2﹣kx﹣8在区间[5,20]上具有单调性,则实数k的取值范围是()A.(﹣∞,10]∪[40,+∞)B.(﹣∞,﹣40]∪[﹣10,+∞)C.[10,+∞)D.[40,+∞)【变式2-1】(2021秋•怀仁市校级月考)若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是()A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2]【变式2-2】(2021秋•河北期中)若函数f(x)=2x2+(x﹣a)|x﹣a|在区间[﹣3,0]上不是单调函数,则实数a的取值范围是()A.(﹣3,0)∪(0,9)B.(﹣9,0)∪(0,3)C.(﹣9,3)D.(﹣3,9)【变式2-3】(2022•湖南模拟)定义在R的函数f(x)=﹣x3+m与函数g(x)=f(x)+x3+x2﹣kx在[﹣1,1]上具有相同的单调性,则k的取值范围是()A.(﹣∞,﹣2]B.[2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【题型3 利用函数的单调性比较大小、解不等式】【例3】(2021秋•福田区校级期末)已知函数f(x)是定义在[2,+∞)的单调递增函数,若f(2a2﹣5a+4)<f(a2+a+4),则实数a的取值范围是()A .(−∞,12)∪(2,+∞) B .[2,6) C .(0,12]∪[2,6)D .(0,6)【变式3-1】(2020秋•泸县校级月考)已知定义在[0,+∞)上的单调减函数f (x ),若f (2a ﹣1)>f (13),则a 的取值范围是( ) A .(−∞,23)B .(12,23)C .(23,+∞)D .[12,23)【变式3-2】(2021秋•金凤区校级月考)已知函数f (x )是区间(0,+∞)内的减函数,则f (a 2﹣a +1)与f(34)的大小关系为( ) A .f(a 2−a +1)≥f(34) B .f(a 2−a +1)≤f(34) C .f(a 2−a +1)=f(34)D .不确定【变式3-3】(2021秋•滨海新区期中)定义在R 上函数y =f (x )满足以下条件:①函数y =f (x )图像关于x =1轴对称,②对任意x 1,x 2∈(﹣∞,1],当x 1≠x 2时都有f(x 1)−f(x 2)x 1−x 2<0,则f (0),f(32),f (3)的大小关系为( ) A .f(32)>f(0)>f(3) B .f(3)>f(0)>f(32)C .f(32)>f(3)>f(0)D .f(3)>f(32)>f(0)【题型4 求函数的最值】【例4】(2021•白山开学)函数f(x)=1x 2+1在区间[1,2]上的最大值与最小值分别是( ) A .12,15B .2,5C .1,2D .15,12【变式4-1】(2022春•铜鼓县校级期末)若函数f(x−1x )=1x 2−2x +1,则函数g (x )=f (x )﹣4x 的最小值为( ) A .﹣1B .﹣2C .﹣3D .﹣4【变式4-2】(2022春•阎良区期末)设函数f(x)=2xx−2在区间[3,4]上的最大值和最小值分别为M ,m ,则M +m =( ) A .4B .6C .10D .24【变式4-3】(2021秋•杭州期末)已知min{a ,b}={a ,a ≤bb ,a >b ,设f (x )=min {x ﹣2,﹣x 2+4x ﹣2},则函数f (x )的最大值是( ) A .﹣2B .1C .2D .3【题型5 由函数的最值求参数】【例5】(2022春•爱民区校级期末)若函数f(x)=2x+mx+1在区间[0,1]上的最大值为52,则实数m =( )A .3B .52C .2D .52或3【变式5-1】(2021秋•香坊区校级期中)已知函数f (x )=|x 2﹣2x +a |+a 在区间[0,2]上的最大值是1,则a 的取值范围是( ) A .[0,12] B .(−∞,12]C .[12,+∞)D .(0,12)∪(12,+∞)【变式5-2】(2021秋•浉河区校级期末)函数f (x )=x (|x |﹣1)在[m ,n ]上的最小值为−14,最大值为2,则n ﹣m 的最大值为( ) A .52B .52+√22C .32D .2【变式5-3】(2021秋•松山区校级月考)若关于x 的函数f(x)=2021x 3+ax 2+x+a 2x 2+a的最大值为M ,最小值为N ,且M +N =4,则实数a 的值为( ) A .﹣4B .﹣2C .2D .1【题型6 函数奇偶性的判断】【例6】(2021秋•海安市校级月考)设函数f(x)=x−2x+2,则下列函数中为奇函数的是()A.f(x﹣2)﹣1B.f(x﹣2)+1C.f(x+2)﹣1D.f(x+2)+1【变式6-1】(2022春•杨陵区校级期末)若函数f(x)=ax2+bx+8(a≠0)是偶函数,则g(x)=2ax3+bx2+9x 是()A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【变式6-2】(2022春•祁东县期末)设函数f(x)=1x2−2x+3,则下列函数中为偶函数的是()A.f(x+1)B.f(x)+1C.f(x﹣1)D.f(x)﹣1【变式6-3】(2022春•云浮期末)已知f(x)为R上的奇函数,g(x)为R上的偶函数,且g(x)≠0,则下列说法正确的是()A.f(x)+g(x)为R上的奇函数B.f(x)﹣g(x)为R上的奇函数C.f(x)g(x)为R上的偶函数D.|f(x)g(x)|为R上的偶函数【题型7 函数奇偶性的应用】【例7】(2022春•北京期末)f(x)是定义域为R的奇函数,且f(1+x)﹣f(x)=0,若f(35)=−35,则f(75)=()A.−75B.−35C.35D.75【变式7-1】(2022•成都开学)若定义在R 上的偶函数f (x )满足f (2﹣x )=﹣f (x ),且当1≤x ≤2时,f (x )=x ﹣1,则f (72)的值等于( )A .52B .32C .12D .−12【变式7-2】(2022春•长春期末)设函数f (x )的定义域为R ,f (x ﹣1)为奇函数,f (x +2)为偶函数,当x ∈[﹣1,2]时,f (x )=ax 2+b .若f (1)=0,f (﹣4)+f (3)=﹣3,则f(152)=( ) A .−54B .54C .−34D .34【变式7-3】(2022春•辽宁期末)设f (x )的定义域为R ,f (x ﹣2)是奇函数,f (x ﹣1)是偶函数,则f (﹣4)+f (﹣3)+f (﹣2)+f (﹣1)+f (0)+f (1)+f (2)+f (3)+f (4)=( ) A .﹣4B .0C .4D .不确定【题型8 函数图象的识别、判断】【例8】下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A .B .C .D .【变式8-1】根据下列函数图象,既是奇函数又是增函数的是( )A .B .C .D .【变式8-2】已知f(x)={x+1,x∈[−1,0)x2+1,x∈[0,1]则关于图中的函数图象正确的是()A.是f(x﹣1)的图象B.是f(﹣x)的图象C.是f(|x|)或|f(x)|的图象D.以上答案都不对【变式8-3】反比例函数f(x)=kx的图象,如图,则()A.常数k<﹣1B.函数f(x)在定义域范围内,y随x的增大而减小C.若点A(﹣1,m),B(2,n)在f(x)上,则m<n D.函数f(x)图象对称轴的直线方程y=x。

(完整版)《函数的基本性质》练习题

(完整版)《函数的基本性质》练习题

(完整版)《函数的基本性质》练习题一、选择题1. 设函数 f(x) = 3x^2 + 2x + 1,在区间 [-2, 2] 上,f(x) 的最小值出现在区间的哪个点?A. x = -2B. x = -1C. x = 0D. x = 1E. x = 2答案:C. x = 02. 若函数 g(x) 的定义域为实数集,且对任意 x,g(x) = g(x + 1),则函数 g(x) 的图像具有什么样的性质?A. 对称性B. 周期性C. 单调性D. 渐近性E. 不对称性答案:B. 周期性二、填空题1. 设函数 h(x) = 2^(x - 1),则 h(0) = ____答案:12. 设函数i(x) = √(x^2 - 9),则定义域为 ____ 的实数集。

答案:[-∞, -3] 并[3, +∞]三、解答题1. 证明函数 f(x) = x^3 - 6x^2 + 9x + 2 在整个实数集上是递增的。

解答:首先,计算 f'(x) = 3x^2 - 12x + 9。

我们可以使用求函数的导数的方法证明 f(x) 的递增性。

根据二次函数的性质,当 3x^2 - 12x + 9 > 0 时,即 x^2 - 4x + 3 > 0 时,函数 f(x) 在该区间上是递增的。

化简方程得到 (x - 1)(x - 3) > 0,所以 f(x) 在 (-∞, 1)U(3, +∞) 上是递增的。

因此,函数 f(x) 在整个实数集上是递增的。

2. 设函数 g(x) = |x + 3| - 2x,求函数 g(x) 的定义域以及其在定义域上的单调区间。

解答:对于函数 g(x) 来说,|x + 3| 在定义域内的取值范围为 x+ 3 ≥ 0 和 x + 3 < 0 两种情况,即x ≥ -3 或 x < -3。

同时,2x 在定义域内的取值范围为 x 属于实数集。

综合两种情况,g(x) 的定义域为x 属于实数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数基本性质及解题技巧
一、函数解析式的求法:
1. 配凑法:把关系式配凑成含有括号里的形式; 例:已知22
1)1(x x x
x f +=+,求解析式; 解:因为221)1(x x x x f +=+=2)1(2-+x
x ,所以2)(2-=x x f , ),2[]2,(+∞⋃--∞∈x 。

2. 换元法:令括号里的部分等于t ,然后解出x 在带进去,得出关于t 的解析式,最后在换成x ; 例:已知x x x f 2)1(+=+,求)(x f 解析式; 解:令,1+=x t 则)1(,)1(2≥-=t t x ,
所以1)1(2)1()(22-=-+-=t t t t f
所以)1(,1)(2≥-=x x x f
3. 待定系数法:(已知函数类型)
告诉你什么函数,就设什么函数解析式,然后根据已知条件算出相应系数,
例:已知()f x 是二次函数,且(0)2,(1)()1f f x f x x =+-=-,求()f x
解:设2()(0)f x ax bx c a =++≠,由(0)2,f =得2c =
由(1)()1f x f x x +-=-,得恒等式2ax+a+b=x-1,得13,22
a b ==-,故所求函数的解析式为213()222
f x x x =-+. 4. 消元法(方程组法):
若函数方程中同时出现()f x 与1()f x 或者()f x 与)(x f -,则一般x 用1x
代之或x 用-x 代之,构造另一个方程.然后联立解方程组得到()f x
例:已知3()2()3f x f x x +-=+,求()f x
解:因为3()2()3f x f x x +-=+,① x 用x -代替得3()2()3f x f x x -+=-+,②
由①②消去()f x -,得3()5
f x x =+. 二、绝对值图像画法:
5. c x b ax y ++=||2的图像画法:
找三个点,x=0的点和两个对称轴的点;然后把三个点连起来,a >0,开口向上;a<0,开口向下,形状如“屁股”;
6. ||2c bx ax y ++=的图像画法:
先画出二次函数的图像,然后把x 轴下方的函数图像对折上去;
三、对勾函数性质
7. 对勾函数)0(>+=k x
k x y 的性质: 1).单调增区间),(),,(+∞--∞k k ,单调减区间),0(),0,(k k -
2).x>0时,有最小值,最小值为k 2,当x<0时,有最大值,最大值为k 2-;
四、单调性
8.分段函数的单调性问题:
首先保证每一段是增(减)函数,得到两个不等式,然后左边的最大值(左边的最小值)小于(大于)右边的最小值(右边的最大值)得到另一个不等式,然后解不等式组; 例: 已知1,2)2
4(1
,{)(≤+->=x x a x a x f x ,是R 上的单调递增函数,则实数a 的取值范围为_________; 解:因为f (x )是R 上的单调递增函数,
所以可得⎩⎪⎨⎪⎧ a >1,4-a 2
>0,a ≥4-a 2+2.解得4≤a <8,
9. 抽象函数的单调性证明:在高中数学中,主要有两种类型的抽象函数,一是“()f x y +=)()(y f x f +”型二是“()f xy =)()(y f x f +”型.对于()f x y +型的函数,只需构造2121()[()]f x f x x x =+-,再利用题设条件将它用1()f x 与21()f x x -表示出来,然后利用题设条件确定21()f x x -的范围,从而确定2()f x 与1()f x 的大小关系;对()f xy 型的函数,则只需构造2211
()()x f x f x x =⋅即可. 例:已知()f x 的定义域为(0,)+∞,且当1x >时()0f x >.若对于任意两个正数x 和y 都有()()()f xy f x f y =+,试判断()f x 的单调性.
解:设120x x >>则,11
2>x x .又因为当1x >时()0f x >, 0)()()()()()()()(121121112112>=-+=-∙
=-∴x x f x f x x f x f x f x x x f x f x f ∴()f x 在()0,+∞上单调递增.
10. 单调性性质:
增+增=增;减+减=减;增-减=增;减-增=减;增=增;减=减;增1=减;减1=增 -增=减;-减=增
11. 复合函数单调性:同增异减:先列出函数由哪两个函数复合而成,然后求出每一区间两个函数对应的单调性,然后同增异减写出对应区间
例:求函数y =x 2+x -6的单调区间
解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数. 由u =x 2+x -6≥0,得x ≤-3或x ≥2.
∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数.
∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).
13. 作差法证明单调性步骤:
1).取值,在定义域内取21x x <;
2)最差;
3)变形:变形到
()
()()()∙∙形式,每一个括号能判断出正负,变形方法有提公因式、通风、合并同类项;
4)得出结论,方向一致为增函数,方向相反为减函数;
五、奇偶性:
14. 判断奇偶性之前得保证定义域关于原点对称;反之,一个函数只要告诉你奇偶性,定义域一定关于原点对称,对应区间两个端点值相加为零
15. 对于奇函数,只要在0=x 处有意义,也就是定义域里包含0,则0)0(=f (做题易忽略点)
16. 对于d cx bx ax x f +++=23)(这种类型的函数,如果)(x f 是偶函数,则奇次项系数为零,如果)(x f 是奇函数,则偶次项系数为零;
例:已知函数)127()2()1()(2
2+-+-+-=m m x m x m x f 为偶函数,则m 的值是( B )
A. 1
B. 2
C. 3
D. 4
17.奇 + 奇 = 奇; 偶 + 偶 = 偶;奇⨯偶 = 奇; 奇⨯奇 = 偶;偶⨯偶 = 偶;(乘和除
一致)
|奇|=偶,复合函数奇偶性,一偶则偶:复合函数的两个分函数,只要一个为偶,整体就是偶函数;
例:若函数2()1
x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为 . 解:首先由结论15得,0)0(=f ,然后得到0=a ,然后因为分子是奇函数,整体也是奇函数,所以由结论17得分母是偶函数,然后再由结论16得0=b ,然后得到2()1
x f x x =+ 18. 告诉你分段函数)(x f 的奇偶性,给出一半的解析式,让你求另一半或整体的解析式的题型做法:
给出大于0的解析式,就设0<x ,给出小于0的解析式,就设0>x ,然后把x -带到给出的解析式里求出)(x f -,然后通过奇偶性得到)(x f ,然后写出解析式,记住不要漏掉0=x 的时候;
例: 已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.
【解析】()f x 是定义在R 上的奇函数,
()()f x f x ∴-=-,当0x <时,0x ->,
2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦
=2
31x x -++
又奇函数()f x 在原点有定义,(0)0f ∴=. 2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩
19. 遇到c x bg x af x H ++=)()((),其中)x f (、)(x g 为奇函数这种题型,构造奇
函数解决问题,令c x H x F -=)((),则)(x F 为奇函数;
例:已知f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2).
解:令g(x)=f(x)+8易证g(x)为奇函数
∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8
∴f(2)=-f(-2)-16=-10-16=-26.
六、周期性:
20.若)(x f T x f =+)(,周期为T ;
周期为2T 的有)()(T x f T x f -=+;)()(x f T x f -=+;)()(x f T x f -=+,且)(x f 为奇函数;)(1)(x f T x f =+;)
(1)(x f T x f -=+; 例: (1)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则 ( )
A .f (-25)<f (11)<f (80)
B .f (80)<f (11)<f (-25)
C .f (11)<f (80)<f (-25)
D .f (-25)<f (80)<f (11)
【答案】D
七、对称性:
21.若)()(x a f x a f +=-,则)(x f 关于a x =对称;
22.若)()(x b f x a f -=+,则)(x f 关于2
b a x +=对称; 23.若)(a x f +是偶函数,则)(x f 关于a x =对称;
24.若)(a x f +是奇函数,则)(x f 关于)(0,a 中心对称;。

相关文档
最新文档