第六章 定积分的应用

合集下载

1.定积分的应用(面积)

1.定积分的应用(面积)

y = x2
A = ∫0 ( x − x 2 )dx
2 3 x 1 = x2 − = . 3 0 3 3
3 1
1
x
x+dx
求面积的一般步骤: 求面积的一般步骤: 1.作图(如果需要求出交点). 作图(如果需要求出交点) 作图 微元法 2.用定积分表示面积 用定积分表示面积. 用定积分表示面积 公式法
2)求出一个元素(如 f ( x )dx 称为量U 的元素 )求出一个元素( 且记作 dU ,即 dU = f ( x )dx );
3)化 为 定 积 分 U =

b
a
du
定积分在几何 几何上的应用 第二节 定积分在几何上的应用
一、平面图形的面积 1.直角坐标系情形 直角坐标系情形
y
y = f ( x)
π
π
3
o π
6
x
3 0
6 0
= − ∫ π sin xdx + ∫ 6 sin xdx
− 3 0
π
= cos x − π + ( − cos x ) 06
3
0
π
3− 3 = 2
说明:注意各积分区间上被积函数的形式. 说明:注意各积分区间上被积函数的形式. 问题: 问题:积分变量只能选 x 吗?
例 3
相当于定积分的换元) 连续. y = ψ (t )连续 (相当于定积分的换元)
x2 y2 的面积. 例 5 求椭圆 2 + 2 = 1的面积 a b x = a cos t 解 椭圆的参数方程 y = b sin t
由对称性知总面积等于4倍第一象限部分面积. 由对称性知总面积等于 倍第一象限部分面积. 倍第一象限部分面积

第六章习题 定积分应用(2014)

第六章习题 定积分应用(2014)

第六章 定积分应用(基础篇)一、求由曲线x y sin =与x y 2sin =)0(π≤≤x 所围成的平面图形的面积。

二、求对数螺线θρa e =相应于ϕθ≤≤0的一段弧长。

三、设曲线y x =,22y x -=及0=y 围成一平面图形,求 1)平面图形的面积; 2) 此平面图形绕x 轴旋转一周而形成的立体体积。

四、曲线x y sin =(π≤≤x 0)和x 轴围成一平面图形,求1) 平面图形的面积;2) 此平面图形分别绕x 轴、y 轴旋转一周而形成的立体体积;五、摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t , 1)求摆线一拱的弧长;2)求摆线一拱与x 轴所围图形的面积;3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积。

六、a 为何值时,抛物线2x y =与三直线a x =,1+=a x ,0=y 所围成的图形面积何时最小?七、求心形线)cos 1(2θρ+=的全长和所围图形的面积。

八、直线b ax y +=与直线1,0==x x 及0=y 所围图形面积为A ,求b a ,使这块图形绕x轴旋转一周所得体积最小。

(其中0,0≥≥b a )九、设电流i 可以表示为时间的函数22)(t t t i +=,求从0=t 秒到6=t 秒流过的电量是多少。

十、半径为R 的半球形水池已经装满水,要将水全部从水池吸出,水密度为1,求所作的功。

十一、 质点以速度 2sin )(t t t v =(米/秒)作直线运动,求质点从时间11=t 秒到时间π=2t 秒内所经过的路程。

十二、一根金属棒的线密度为2()26x x x ρ=++(kg/m ),求该金属棒的从0到6m 的质量。

一、从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积.二、求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长。

第六章 定积分的应用

第六章 定积分的应用

第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。

教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。

教学难点:1、截面面积为已知的立体体积。

2、引力。

§6. 1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a,b]为积分区间的定积分:⎰=b adx xfA)(.一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得⎰=b adx xfU)(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为dx x f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=d c dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1].(3)确定上下曲线: 2)( ,)(x x f x x f ==下上.(4)计算积分 31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积.解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4].(3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ. (4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+by a x所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ⎰=aydx S 04. 椭圆的参数方程为:x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为 θθϕd dS 2)]([21=. 曲边扇形的面积为⎰=βαθθϕd S 2)]([21. 例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==. 例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d a πθθθπ20223]2s i n 41s i n 223[a a =++=.二、体 积1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为dV = π[f (x )]2dx ,旋转体的体积为dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积.解: 直角三角形斜边的直线方程为x hr y =. 所求圆锥体的体积为dx x h r V h20)(π⎰=h x h r 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+by a x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积. 解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -= 及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=a a dx x a a bV )(2222πa a x x a ab --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为⎰=a x dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a=5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=a a y dy y x dy y x V 20212022)()(ππ ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为dx x A V b a )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为 dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=.于是所求正劈锥体的体积为⎰--=R R dx x R h V 22h R d h R 2202221c o s 2πθθπ==⎰ . 三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的.1.直角坐标情形设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=. 以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21. 在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此 例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度. 解: 21x y =', 从而弧长元素 dx x dx y ds +='+=112.因此, 所求弧长为b a b a x dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. 例2. 计算悬链线cx c y ch =上介于x =-b 与x =b 之间一段弧的长度. 解: cx y sh =', 从而弧长元素为 dx cx dx c x ds ch sh 12=+=. 因此, 所求弧长为⎰⎰==-b b b dx cx dx c x s 0ch 2ch c b c dx c x c b sh 2]sh [20==. 2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数.因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=. 所求弧长为⎰'+'=βαψϕdt t t s )()(22. 例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin 2=. 所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a .3.极坐标情形设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长.解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a . §6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r q k F = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功. 例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功.提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r q k F = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r q k2, 即功元素为dr r q kdW 2=. 于是所求的功为dr rkq W b a 2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =. 解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=. 当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk , 即功元素为dx xk dW =. 于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =. 例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ , 计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x R R ---=⎰γ R x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知, 引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(llx y a dy am G F ρ22412l a a l Gm +⋅-=ρ.。

第六章 定积分(2)

第六章 定积分(2)

若 f ( x ) g( x ) ,
y
y f ( x)
y g( x )
a o
x x dx
b
x
面积元素: dA [ f ( x ) g( x )] dx ,
A [ f ( x ) g( x )] dx
a
b
3
一般地,
y
y f ( x)
y g( x )
a o
b
围成的平面图形的面积. 解 交点 x 1 , 由对称性,
x2 y 2
2
y
1 y 1 x2
3Βιβλιοθήκη 1 213o
2
1
3
x
x 1 1 x ) dx S 2 ( ) dx 2 ( 2 2 1 0 1 x 2 1 x 2 2 3 . 3 3
16
二、平行截面面积为已知的立体的体积 一个立体, 夹在平面 x a 和 x b 之间, 被垂直于 x 轴的平面所截的截面积为A( x ) ,则该立体的体积为
a
27
b
y
y f ( x)
V y 2 x f ( x ) dx
a
b
o a
b
x
y
上例:
2
1 2 0
y 2x2
Vy 2 x 2 x dx .
o
1
x
28
例13 求由曲线 y ( x 1)( x 2) 和 x 轴所围平面图 形绕 y 轴旋转一周而成的旋转体体积. 2 解 V y 2 x( x 1)( x 2) dx . 1 2 y y
y
a x
利 用 圆 面 积
9

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

定积分及其应用

定积分及其应用

①.若a=b, 则
b
f (x)dx 0.
a
②.若a>b, 则
b
a
f(x)dx f(x)dx.
a
b
从而可消除对定积分上下限的大小限制.
四.定积分的几何意义
由定义1知, 当连续函数
f (x) 0 且a<b时, 定积分
b f ( x ) d x 表示一个在 x 轴上方的曲边梯形的面积; a
当 f (x) 0, 且 a < b时,
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0,
故可将此区间的高近似看为一个常量,
从而此区间对应的小窄曲边梯形CEFH
y
y=ƒ(x)
A
C
B
Δy {
DH
的面积近似等于小窄矩形DEFH的面积.
oa
EF
x x+Δx b x
因而, 如果把区间[a, b]任意地划分为n个小区间, 并在每一
就有定积分的定义:
定义1.设ƒ(x)在[a, b]上有定义, 点 a x 0 x 1 x 2 x n 1 x n b
将区间[a, b]任意地划分为n个小区间; 每个小区间
[ xi1 , xi ]
的长度为 xi xi xi1(i1,2, ,n),在每个小区间 [ xi1 , xi ]
n
个区间上任取一点, 再以该点的高来近似代替该小区间上窄曲边 梯形的高, 从而每个窄曲边梯形就可近似地
视为一个小窄矩形, 而且全部窄矩形的面积之和也可作为曲边 梯形面积的近似值.
要想得精确值, 只需区间[a, b]的分法无限细密(即每个小区 间的长度Δ x →0)时, 全部窄矩形的面积之和的极限一定是曲边

第六章 定积分及其应用

第六章 定积分及其应用
β α
称为定积分的换元公式. 称为定积分的换元公式
定理2.4 设u(x),v(x)在区间 在区间[a,b]上有连续导数,则 上有连续导数, 定理 在区间 上有连续导数
∫ u( x) v′( x) dx = u( x)v( x)
a
b
b a
− ∫ u ′( x ) v ( x ) dx.
a
b
称为定积分的分部积分公式. 称为定积分的分部积分公式 例2 计算下列定积分
注: (1)定积分仅与被积函数及积分区间有关 , 而与积分变量 定积分仅与被积函数及积分区间有关 用什么字母表示无关.即 用什么字母表示无关 即

b
a
f ( x ) d x = ∫ f (t ) d t = ∫ f (u ) d u.
a a
b
b
(2)定积分的几何意义 定积分的几何意义: 定积分的几何意义
A=∫
b
1
1 1 dx = − 2 x x

1
1 = 1− . b
b
性质2 被积函数中的常数因子可以提到积分号的前面,即 性质 被积函数中的常数因子可以提到积分号的前面,

b
a
k f ( x ) dx = k ∫ f ( x ) dx
a
b
性质3 如果积分区间[a,b]被分点 分成区间 被分点c分成区间 性质 如果积分区间 被分点 分成区间[a,c]和[c,b],则 和 则
s ≈ ∑ v(ξ i ) ∆ t , (λ = max ∆ t i ).
i =1 1≤ i ≤ n n
(2)近似求和: )近似求和: (3)取极限: )取极限:
s = lim ∑ v (ξ i ) ∆ t i

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

一、微分元素法)( 或称为积分元素法法数学建模中的微分元素 ,当把非均匀变化的问题实际中在物理、几何以及工程 , ,则通积达形式能表示为某两个量的乘看作是均匀变化时. 分问题来处理常可将问题归结为定积 . 具有对区间的可加性要求量运用定积分处理问题时A取极限”—求和—近似“分划—,局利用整体上变化的量在局部问题的步骤将整体问题化成 , ,替“变”在局部上以“不变”代关系部上近似于不变的辩证,采用按照定积分的概念]. ,[ )( 111i i i ni i i ni i x x x f A A −==∈∆≈∆=∑∑ξξ便有关系式, ,个将具有代表性的第略去下标为简便和醒目起见i i, , ]d ,[ ] ,[ 1且取称之为典型小区间表示为小区间x x x x x i i +−, 则有为区间的左端点x i ξ. d )(x x f A ≈∆, )( d )( 记为或积分元素的微分元素为量通常称A x x f. d )(d x x f A =( 0d , 相当于取极限过程对区间的可加性由量→x A ] ,[ d , 0)||||上“无限累加”起来在区间将微分元素b a A x →∆] ,[ )(上的值:在区间就得到量即作定积分b a A. d )(d ∫∫==babax x f A A. ,加解为微分元素的无限累我们在这里将定积分理简言之一、平面图形的面积1解解解解y2解3解二、旋转体的体积一轴旋转一周所生成的将平面图形绕平面上某 . ,该轴称为旋转轴几何体称为旋转体 . , 间的可加性旋转体的体积具有对区上在区间I:旋转体的特点 ,截旋转体所得的的平面任何一个垂直于旋转轴. 图形均为圆截口1 y1 y2解Oaa b解解2πy三、平行截面面积为已知的几何体的体积解解。

高等数学第六章定积分的应用

高等数学第六章定积分的应用

3)以所求量U 的元素 f ( x)dx 为被积表达式,在
区间[a, b]上作定积分,得U
b
a
f
( x)dx

即为所求量U 的积分表达式.
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
第二节 平面图形的面积
一、直角坐标系情形
y y f (x)
弧长元素 ds 1 y2dx 弧长 s b 1 y2dx. a
例1
计算曲线 y
2
x
3 2
上相应于
x
从a
到b
的一段
3
弧的长度.

y
1
x2,
ds
1
(
x
1 2
)2
dx
1 xdx,
所求弧长为
a
b
s
b
2
3
3
1 xdx [(1 b)2 (1 a)2 ].
a
3
x
例 2 计算曲线 y n n sin d 的弧长(0 x n) . 0
a
提示 若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx ,
面 积 元 素
dA
y f (x)
于是A f ( x)dx
b
o a x x dxb x
A lim f ( x)dx a f ( x)dx.
当所求量U 符合下列条件:
(1)U 是与一个变量x 的变化区间a,b 有关
x y2 y x2
面积元素 dA ( x x2 )dx
A
1
0
(

第六章 定积分的应用(教学笔记)

第六章 定积分的应用(教学笔记)
例 计算抛物线 y 2 = 2 x 与直线 y = x − 4 所围成的图形面积。 解:1 、先画所围的图形简图, 交点: (2,−2) 和 (8,4) 。
2 .选择积分变量并定区间:选取 x 为积分变量,则 0 ≤ 3 .给出面积元素在 0 ≤ x ≤ 2 上, 在 2 ≤ x ≤ 8 上, 4 .列定积分表达式
4
−4
事实上, 也可以选择 x 为积分变量, 积 分 区 间 为 [0, 如图, 当小区间 8] . 面积微元为 [ x, x + dx] 取 在 [0, 2] 中 时 ,
dA = [ 2 x − (− 2 x )]dx , 而当小区间取
在 [2, 8] 中 时 , 面 积 微 元 为
4
y
y = 2x
(8,4)
dA = [ 2 x − ( x − 4)]dx , 因此, 积分区间
须分成 [0, 即所给图形由 2] 和 [2, 8] 两部分,
o
x=4 -y
y = − 2x
x
直线 x = 2 分成两部分, 分别计算两部分的面积再相加, 得所求面积, 即
A = ∫ [ 2 x − (− 2 x )]dx + ∫ [ 2 x − ( x − 4)]dx
解:
a 0 x = a cos t , (0 ≤ t ≤ 2π ) , S = 4 ∫ ydx = 4∫π b sin td (a cos t ) = π ab 0 2 y = b sin t ,
或S = 4

b
0
xdy = 4 ∫ 2 a cos td (b sin t ) = π ab
n
i
的极限
方才是精确值 A 。关键是确定 ∆ Ai ≈ f (ξ i ) ∆ x i ( ∆ Ai − f (ξ i ) ∆ xi = o ( ∆ xi ) )

定积分的应用

定积分的应用
2 θ = 1 a2[1θ3]0π
2
3
π
= 4 a2π3 . 3
例2 计算心形线ρ=a(1+cosθ)(a>0)所 + 所 围成的图形的面积. 围成的图形的面积. 解 S = 2∫π 1[a(1+cosθ]2dθ 0 2
=a2[3θ +2sinθ + 1 sin2 ]π = 3 a2π . θ0 2 4 2
a 2 a
计算由摆线x= − 的一拱, 例3 计算由摆线 =a(t−sint), y=a(1−cost)的一拱, 直线 =0 , = − 的一拱 直线y= 所围成的图形分别绕x轴 轴旋转而成的旋转体的体积 轴旋转而成的旋转体的体积. 所围成的图形分别绕 轴、y轴旋转而成的旋转体的体积. 所给图形绕x轴旋转而成的旋转体的体积为 解 所给图形绕 轴旋转而成的旋转体的体积为
b a2 −x2 x 解 旋转 椭球 体可以 看作是 由半个 椭圆 y= 及 a 轴围成的图形绕x轴旋转而成的立体 轴旋转而成的立体. 轴围成的图形绕 轴旋转而成的立体.
旋转椭球体的体积为
b2 (a2 − x2)dx V =∫−aπy dx =∫−aπ 2 dx a b2 [a2x− 1 x3]a =π 2 3 −a a = 4πab2 . 3
解 dV = A( x )dx = π R 2 ( x ) dx = π ( x − 0) dx 4 1 2 4 16π V = ∫ π x dx = π x = = 8π 0
2 0 2
绕固定轴旋转所成旋转体的体积
V = π ∫ [ R ( x) − r 2 ( x)]dx
2 a
b
绕y 轴 旋转生 成的立 体体积:
2
0
π

高数例题 第六章 定积分的应用

高数例题  第六章  定积分的应用

s

t t dt
例17. 计算摆线

x a sin y a 1 cos

一拱
(0 2 ) 的长度。
2、直角坐标情形 设曲线弧由直角坐标方程
y f x a x b 给出 f x 在a, b
球体体积的一半,试求该圆孔的直径.
(二)平行截面面积为已知的立体的体积
已知立体在过点 x a, x b且垂直于x 轴的两个平面之间,且垂直于轴的截面 面积为 A x , A x 为连续函数, 则
V A x dx
a
b
例14.一平面经过半径为R的圆柱体 的底圆中心,并与底面交成角

,计
算这平面截圆柱体所得立体的体积.
例15.求以半径为R的圆为底,平行 且等于底圆直径的线段为顶,高为h
的正劈锥体的体积。
例16. 证明由平面图形
0 a x b 0 y f ( x)

y
轴旋转所成的旋转体的体积
b

V 2 xf x dx
a
三、平面曲线的弧长 (一)平面曲线弧长的概念 1、定义:设A,B是曲线弧上的两个端 点,在弧 AB 上依次任取分点
把区间 a, b 分成许多部分区间,则所求 量相应地分成许多部分量 ui ,而所求 量等于所有部分量之和,这一性质称为 所求量对于区间 a, b 具有可加性。
三.用定积分来表达的量 u 应具备的条件 1. 是与一个变量 x 的变化区间 a, b 有关的量。 2.量 对于区间 a, b 具有数量的可 加性。 3.部分量 ui 的近似值可表示为
在 , 上 , 围成,

(完整版)§定积分的应用习题与答案

(完整版)§定积分的应用习题与答案

第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)xe y =,xe y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π 6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGmu F y 22t a a Gmu F x +-=λ(B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022cos sin sin cos πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫⎝⎛1,23,()2,3- ⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx xdx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx xx9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫ ⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()1231321134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22sin sin πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S3164200-+=x x 问题即求31642-+=xx S ()40≤≤x 的最小值 令022321=+=--xxS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小 即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。

微积分 第六章 第四节 定积分的应用

微积分 第六章 第四节 定积分的应用

4ab
1
ab .
0
22
2 0
sinn
xdx
n
n
n
n
1 1
n n n n
3 2 3 2
3 4 4 5
1 2 2 3
, n为正偶数
2
, n为大于1的奇数
19
例4 计算由曲线 y2 2x 和直线 y x 4所围成
的图形的面积. 解 两曲线的交点
y
y2 2x
(8, 4)
2
Vy 2
1 x 2x2dx .
0
o 1x
35
例12 求由曲线 y ( x 1)( x 2) 和 x 轴所围平面图
形绕 y 轴旋转一周而成的旋转体体积.

Vy 2
2
x( x 1)( x 2)dx
.
1
2
y
y
a
b
12
o
xo
x
y f (x)
“套筒法”推广:
由平面图形 0 a x b, f ( x) y 0 绕 y 轴
t (t 2 x2 )dx
1
(
x2
t
2
)
dx
0
t
y
1
y = x2
[t 2 x
x3 3
]
t 0
x3 [
3
t
2
x]
1 t
4t 3 t 2 1 , 0 t 1
3
3
t2
S2
S1
o
t1 x
S 4t 2 2t

2t(2t 1)
0 ,得驻点:
t
0, t
1,
2
经比较,当t 1 时两面积和最小.

高等数学课件 第六章(6-1平面图形的面积)

高等数学课件 第六章(6-1平面图形的面积)
则窄曲边形的面积近似为
从而面积元素为
于是得面积
《高等数学》第六章第一节
1. 直角坐标系 例1 求由曲线 及 所围成平面图形的面积.
Байду номын сангаас
解 面积元素 (如图) , 在积分区间 [0, 2] 上作定积分, 即所求的面积是
《高等数学》第六章第一节
思考题: 求由星形线 所围成图形的面积.
《高等数学》第六章第一节
2.极坐标情形
线 所围成的曲边扇形,求其面积公式.
问题:设平面图形 是由曲线 ( )与射
, 且当x由0变到a时, 由
变到0, 则有
可得
一般地,当曲边梯形的曲边 y = f (x) ( f (x) 0 , x[a, b] )
由参数方程 给出时, 若
(1) 在 (或 )上具有连续导数,且
《高等数学》第六章第一节
(2) 连续,
则曲边梯形的面积为
《高等数学》第六章第一节
例4 求摆线第一拱 与
轴围成的面积.
解 上图为摆线形成的过程,所求面积为:
《高等数学》第六章第一节
应用定积分来计算平面图形面积, 对于 在不同坐标系下的情况我们分别加以介绍.
6.1.2 平面图形面积
《高等数学》第六章第一节
1.直角坐标情形
问题: 设曲边形由两条曲线 及直线
《高等数学》第六章第一节
思考题:求由 围成的面积.
如果平面区域是由曲线 , 及 直线 所围成 ,它的面积是定积分
解 由于椭圆关于两个坐标轴都对称 , 故椭圆面积为 A = 4A1, 其中A1为椭圆在第一象限的面积, 因此
利用椭圆的参数方程
, 0 2,
x
y
a

大学高数定积分应用1(6-1--6-5)课后参考答案及知识总结

大学高数定积分应用1(6-1--6-5)课后参考答案及知识总结

第六章定积分的应用内容概要课后习题全解习题6-2★ 1.求由曲线xy =与直线x y =所围图形的面积。

知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1∵所围区域D 表达为X-型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<y x y y 210)∴⎰-=10)(dx x x S D61)2132(1223=-=x x (⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解:见图6-2-2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(202-=+=-=⎰πππx x dx x S D( 12arcsin 1-==⎰πydy S D)★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2-3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y , ∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<y x y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X-型做,则第一象限内所围区域=1D b a D D Y ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1)]443D D x x S S x dx dx ==-+-=⎰⎰) ★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X-型做解:见图6-2-5∵两条曲线xy =和x y =的交点为(1,1)、(-1,-1),又这两条线和2=x 分别交于 21,2(、2) ,2( ∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342)342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型时,解法较简单,所以用X-型做 解:见图6-2-7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x e y e x 10,∴2)()(1101-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln 的定义域范围内所围区域D :⎩⎨⎧<<<<ye x by a 0ln ln , ∴a b edy e S b ay bayD-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y 轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩ ∴23223226)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型解:x e y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e ey x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D Y =,见图6-2-10X-型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xey ex x 1∴222)(12110e e e x eedx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。

第六章 定积分的应用

第六章    定积分的应用
为V. 解决该问题利用二重积分比利用一元定积分的元素法
方便.在区域 D 中取一小区域 d ,其面积记为 d , x, y为区
域 d 中的任意一点,则该小区域绕直线 L旋转一周所得环
形体(可以近似看成为横截面为 d ,长度为 2 r(x, y)的柱
体)的体积的近似值为 dV 2 r(x, y)d
其中r(x, y)为点 x, y到直线 L : ax by c 0 的距离,即
水的压强 P gh ,水的压力F =水的压强 P接触面积 S.
二、常考题型及解题方法
1.几何应用
【例1】设 D是由曲线 xy 1 0与直线 y x 0 及 y 2
围成的有界区域,求 D 的面积.
解:把区域 D看成Y-型区域,则 D的面积
2 1
y2 2 3
S
1
y
y
dy
ln
两条直线yd与yc所围成设平面图形的面积为
S
d
c
[右(
y)
左(
y)]dy
(2)极坐标情形
由曲线()及射线 , 围成的图形称为曲边 扇形. 曲边扇形的面积元素为
dS 1 [( )]2 d.
2
曲边扇形的面积为 S 1 [( )]2 d. 2 2.用定积分计算旋转体的体积
旋转体的体积的一般问题是平面区域 D 绕直线 L : ax by c 0 (该直线不穿过区域 D)旋转所得旋转体的体积,记该体积
【答案: 4 ;8 】
33
【例3】设星形线 (1) 它的周长;
x y
a a
cos3 sin3
t t
,
求:
(2)它绕 x 轴旋转而成旋转体的体积和侧面积.
解:(1)周长:L 4 2 x2 y2 dt 4 2 3a sin t costdt 6a sin2 t 2 6a.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。

教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。

教学难点:1、截面面积为已知的立体体积。

2、引力。

§6. 1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f(x)dx, f(x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a,b]为积分区间的定积分:⎰=b adx xfA)(.一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得⎰=ba dxx f U )(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为dxx f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=dc dyy y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上.(4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S .例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3求椭圆12222=+b y a x 所围成的图形的面积.解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以⎰=aydxS 04.椭圆的参数方程为: x =a cos t , y =b sin t ,于是 ⎰=aydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为 θθϕd dS 2)]([21=.曲边扇形的面积为⎰=βαθθϕd S 2)]([21.例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解:⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==.例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积. 解:⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d aπθθθπ20223]2sin 41sin 223[a a =++=.二、体 积1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴.常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为dV = π[f (x )]2dx , 旋转体的体积为dxx f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积. 解:直角三角形斜边的直线方程为xh r y =.所求圆锥体的体积为dx x h r V h20)(π⎰=h x h r 0322]31[π=231hr π=.例2. 计算由椭圆12222=+b y a x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积.解: 这个旋转椭球体也可以看作是由半个椭圆22x a a b y -=及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为 dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=aa dx x a ab V )(2222πa a x x a a b --=]31[3222π234ab π=.例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积. 解 所给图形绕x 轴旋转而成的旋转体的体积为⎰=ax dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dtt a t a⎰-+-=ππ20323)cos cos 3cos 31(dtt t t a=5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=aay dyy x dy y x V 20212022)()(ππ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdta t t a tdt a t t a⎰--=ππ2023sin )sin (tdtt t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为 dxx A V ba )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -.因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-.例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为 22)(x R h y h x A -=⋅=. 于是所求正劈锥体的体积为⎰--=RR dx x R h V 22hR d h R 2202221cos 2πθθπ==⎰ .三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1,M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的. 1.直角坐标情形设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=.以dx y 21'+为被积表达式,在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dxy s 21.在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度.解:21x y =', 从而弧长元素dx x dx y ds +='+=112.因此, 所求弧长为b a ba x dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=.例2. 计算悬链线c xc y ch =上介于x =-b 与x =b 之间一段弧的长度.解:c xy sh =', 从而弧长元素为 dxc x dx c x ds ch sh 12=+=.因此, 所求弧长为⎰⎰==-b b b dx c x dx c x s 0ch 2ch cb c dx c x c b sh 2]sh [20==.2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数.因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为dtt t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=.所求弧长为⎰'+'=βαψϕdtt t s )()(22.例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin 2=.所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a .3.极坐标情形设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长.解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a.§6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r q kF = (k 是常数).当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功.例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功.提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r q kF =(k 是常数).解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r q k2,即功元素为dr r q kdW 2=.于是所求的功为dr rkq W b a2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功.解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =.解: 在点x 处, 因为V =xS , 所以作在活塞上的力为x kS xS k S p F =⋅=⋅=.当活塞从x 移动到x +dx 时,变力所作的功近似为dxx k ,即功元素为dxx k dW =. 于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =.例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj).二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ ,计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图. 在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=Rdx x R x P 0222γ)()(2221220x R d x RR---=⎰γRx R 02322])(32[--=γ332R r =.三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m GF =,其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力. 例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知, 引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -.在]2 ,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m GdF x +-⋅+=ρ2/322)(y a dy am G +-=ρ.引力在水平方向的分量为⎰-+-=222/322)(ll x y a dy am G F ρ22412l a a l Gm +⋅-=ρ.【此课件下载可自行编辑修改,供参考,感谢你的支持!】。

相关文档
最新文档