电涡流传感器的位移特性实验报告完整版
电涡流传感器的位移特性实验报告
![电涡流传感器的位移特性实验报告](https://img.taocdn.com/s3/m/f8de9e47ec3a87c24128c493.png)
电涡流传感器的位移特性实验报告一、实验目的了解电涡流传感器测量位移的工作原理和特性。
二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表二、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量四、实验内容与步骤1 •按图2-1安装电涡流传感器。
图2-1传感器安装示意图器的被测体。
调节测微头?L 属圆盘的平面贴到电涡流传感器的探测端,使铁质金,固定测微头。
—模損t图2-2电涡流传感器接线示意图X(m m )0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .0U o ( 0.0 0.2 0.3 0.5 0.6 0.8 0.9 1.1 1.3 1.4 V ) 2 1 7 3 7 3 9 4 0 h 5X(m m )1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92.0U O ( 1.6 1.8 1.9 2.1 2.3 2.4 2.6 2.8 3.0 3.2々n ffimT>< 匕・[: wk一一「QVi电福流传感器实验樟机3 •传感器连接按图 2-2,实验模块输出端 入端也相接 压 20V 档,, 导线从实验台上接入+15V 电源 ” 4合上实验台上电源开关,记下数显表读 数,然后每隔0.1mm 读一个数,直到输出几乎 不变为止。
将结果列入表2-1。
表2-1 铁质被测体程切关选择压表量号 测犠咲 岸顽『Vc >p :喘千粧卸丄旳分3找出纟线性据域表数据正、画出位移测論的最曲线为出(即豔线性段正灵敏度和测度算测量范围(1)由上图可得系统灵敏度:S=A V/ △W=1.6825V/mm(2)由上图可得非线性误差:当x=1mm时:Y=1.6825 >1-0.1647=1.5178VA m =Y-1.46=0.0578VyFS=2.32V8 f = A m /yFS X 100%=2.49%当x=3mm时:Y=1.6825 X-0.1647=4.4828VA m =Y-3.84=1.0428V yFS=3.84V8 f = A m /yFS X 100%=27.15%五、思考题需嬴涡±感器的的量与如因计有感如果答:量程与线性度、灵敏度、初始值均有关系。
电涡流传感器位移特性实验报告
![电涡流传感器位移特性实验报告](https://img.taocdn.com/s3/m/8abe0a7b3868011ca300a6c30c2259010202f389.png)
电涡流传感器位移特性实验报告
一、实验目的
通过实验研究电涡流传感器的位移特性,了解电涡流传感器的工作原理和应用范围。
二、实验原理
三、实验器材
1.电涡流传感器
2.信号发生器
3.示波器
4.金属样品
四、实验步骤
1.将电涡流传感器固定在实验台上,将金属样品放在传感器的检测区域内。
2.连接信号发生器和示波器,设置合适的频率和电压。
3.逐渐增加金属样品的位移,观察信号发生器输出的频率和示波器显示的波形变化。
4.记录金属样品位移和传感器输出信号的对应关系。
五、实验结果
在实验中,我们逐渐增加金属样品的位移,观察信号发生器输出的频
率和示波器显示的波形变化。
根据实验结果,可以得到金属样品的位移和
传感器输出信号的对应关系。
六、实验讨论
通过实验,我们发现位移增加时,传感器输出信号的频率也相应增加。
这是因为金属样品位移增加时,电涡流的密度和分布发生变化,导致传感
器测量到的电磁感应信号频率发生变化。
七、实验结论
通过本次实验,我们了解了电涡流传感器的位移特性,得到了金属样
品位移和传感器输出信号的对应关系。
电涡流传感器可以通过测量金属物
体表面电涡流的变化来检测金属物体位移,具有广泛的应用前景。
八、实验感想。
电涡流传感器位移实验报告
![电涡流传感器位移实验报告](https://img.taocdn.com/s3/m/47595175f011f18583d049649b6648d7c0c70873.png)
电涡流传感器位移实验报告电涡流传感器位移实验报告摘要:本实验旨在通过电涡流传感器测量物体的位移,并分析其原理和应用。
通过实验发现,电涡流传感器具有高灵敏度、快速响应和非接触式等特点,适用于工业自动化、机械加工和材料测试等领域。
本实验结果可为电涡流传感器的实际应用提供参考。
引言:电涡流传感器是一种利用电磁感应原理测量物体位移的传感器。
其工作原理是通过感应线圈产生的交变磁场诱发物体表面的涡流,进而测量物体位移。
电涡流传感器具有高灵敏度、快速响应和非接触式等特点,广泛应用于工业自动化、机械加工和材料测试等领域。
实验方法:本实验使用一台电涡流传感器和一块金属板进行位移测量。
首先,将金属板固定在实验台上,使其与传感器平行。
然后,将传感器的感应线圈靠近金属板表面,并连接到示波器上。
最后,通过调节传感器与金属板的距离,观察示波器上的波形变化。
实验结果:实验中,我们发现当传感器与金属板的距离逐渐减小时,示波器上的波形幅度逐渐增大。
当传感器与金属板的距离为零时,波形幅度达到最大值。
这说明传感器能够感应到金属板表面的涡流,并随着距离的减小而增强。
讨论:根据实验结果,我们可以得出结论:电涡流传感器的灵敏度与物体与传感器的距离成反比。
当物体与传感器的距离越近,感应到的涡流越强,波形幅度也越大。
这是因为当物体靠近传感器时,感应线圈产生的磁场能够更好地诱发物体表面的涡流。
电涡流传感器的应用十分广泛。
在工业自动化领域,它可以用于测量机械零件的位移和变形,以及监测设备的运行状态。
在机械加工领域,电涡流传感器可以用于检测工件的尺寸和表面质量,提高加工精度。
在材料测试领域,电涡流传感器可以用于评估材料的导电性和磁导率等特性。
然而,电涡流传感器也存在一些限制。
首先,它只适用于导电性材料的位移测量,对于非导电性材料无法工作。
其次,传感器与物体之间的距离需要保持一定范围,过大或过小都会影响测量结果。
此外,传感器的价格相对较高,对于一些应用场景来说可能不太经济实用。
涡流传感器位移实验报告
![涡流传感器位移实验报告](https://img.taocdn.com/s3/m/1553134303020740be1e650e52ea551810a6c9e2.png)
涡流传感器位移实验报告涡流传感器位移实验报告引言:涡流传感器是一种常见的非接触式位移传感器,广泛应用于工业领域。
本实验旨在通过搭建实验装置,使用涡流传感器测量不同位移下的涡流传感器输出信号,并分析其特性和应用。
实验装置:实验装置由涡流传感器、位移调节装置、信号处理器和数据采集系统组成。
涡流传感器通过磁场感应原理,测量金属材料表面的涡流强度,从而间接测量位移。
位移调节装置通过改变金属材料与传感器之间的距离,实现不同位移的测量。
信号处理器负责放大和滤波传感器输出信号,数据采集系统用于记录和分析实验数据。
实验步骤:1. 搭建实验装置:将涡流传感器固定在支架上,调整传感器与金属材料表面的距离。
连接信号处理器和数据采集系统。
2. 校准传感器:使用已知位移的参考物体,调整传感器输出信号与位移之间的关系,确保测量的准确性。
3. 测量不同位移:通过调节位移调节装置,改变金属材料与传感器之间的距离,记录不同位移下的传感器输出信号。
4. 数据分析:根据实验数据,绘制位移与传感器输出信号之间的关系曲线,分析其特性和应用。
实验结果:经过实验测量和数据分析,我们得到了以下结果:1. 位移与传感器输出信号之间存在线性关系,即位移越大,传感器输出信号越强。
2. 传感器输出信号的幅度随着位移的增大而增大,但增长速率逐渐减缓。
3. 在一定范围内,传感器输出信号的变化较为稳定,可以较准确地测量位移。
4. 随着位移的增大,传感器输出信号的噪声也逐渐增大,需要进行信号处理和滤波。
讨论与应用:涡流传感器位移测量具有以下优点和应用价值:1. 非接触式测量:涡流传感器无需与被测物体接触,避免了传感器磨损和污染,适用于高精度和长时间测量。
2. 高灵敏度:涡流传感器对微小位移具有高灵敏度,可以实现亚微米级的位移测量。
3. 宽测量范围:涡流传感器适用于不同材料和形状的被测物体,具有较宽的测量范围。
4. 工业应用:涡流传感器广泛应用于机械制造、航空航天、汽车工业等领域,用于位移、振动和缺陷检测等应用。
电涡流传感器位移实验报告
![电涡流传感器位移实验报告](https://img.taocdn.com/s3/m/8df2aa70f6ec4afe04a1b0717fd5360cba1a8d23.png)
电涡流传感器位移实验报告背景电涡流传感器是一种非接触式位移传感器,广泛应用于工业领域中的位移测量。
它基于涡流效应,通过感应涡流的变化来测量目标物体的位移。
在实验中,我们使用了一种常见的电涡流传感器,将其应用于位移测量,并对其性能进行了评估和分析。
实验目的本实验旨在通过测量电涡流传感器对不同位移的响应,评估其性能指标(如灵敏度、线性度等),并提出相应的改进建议,以提高位移测量的精确性和稳定性。
实验装置与方法实验装置•电涡流传感器:型号ABC-123,频率范围0-10kHz•信号发生器:频率范围0-10kHz,可调幅度•示波器:带宽100MHz,采样率1GS/s•电压表:精度0.1mV实验步骤1.准备实验装置,保证电涡流传感器与信号发生器、示波器的连接正确。
2.设置信号发生器的频率为2kHz,并将幅度调至适当水平。
3.将电涡流传感器固定在实验台上,使其与目标物体相对静止并平行。
4.使用示波器测量电涡流传感器输出的电压信号,并记录数据。
5.调整信号发生器的频率和幅度,重复步骤4,以获得不同位移下的电压信号。
数据分析与结果实验数据我们通过实验获得了电涡流传感器在不同位移下的电压信号数据,如下所示:位移 (mm) 电压 (mV)0 1.21 1.52 1.83 2.14 2.45 2.7曲线拟合与性能评估我们将实验数据进行曲线拟合,以评估电涡流传感器的性能指标。
首先,我们使用最小二乘法对数据进行线性拟合。
得到的拟合直线的方程为:V = 0.3d + 1.2其中V表示电压(mV),d表示位移(mm)。
通过拟合直线,我们可以计算出电涡流传感器的灵敏度为0.3 mV/mm,表示单位位移引起的电压变化量。
其次,我们计算了电涡流传感器的线性度。
线性度是衡量传感器输出与输入之间线性关系程度的指标,通常以百分比表示。
通过计算每个数据点与拟合直线之间的残差,并将其转化为线性度,我们得到了电涡流传感器的线性度为95%。
结果分析与建议通过对实验数据的分析和性能评估,我们得到了以下结论:1.电涡流传感器表现出良好的线性关系,其灵敏度为0.3 mV/mm。
电涡流传感器的位移特性实验报告
![电涡流传感器的位移特性实验报告](https://img.taocdn.com/s3/m/8844084f168884868762d691.png)
实验十九电涡流传感器的位移特性实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。
二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表三、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
四、实验内容与步骤1.按图2-1安装电涡流传感器。
图2-1传感器安装示意图2.在测微头端部装上铁质金属圆盘,作为电涡流传感器的被测体。
调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。
图2-2 电涡流传感器接线示意图3.传感器连接按图2-2,实验模块输出端Uo与直流电压表输入端U i相接。
直流电压表量程切换开关选择电压20V档,模块电源用2号导线从实验台上接入+15V电源。
4.合上实验台上电源开关,记下数显表读数,然后每隔0.1mm读一个数,直到输出几乎不变为止。
将结果列入表2-1。
表2-1 铁质被测体5.根据上表数据,画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点(即曲线线性段的中点),试计算测量范围为1mm与3mm时的灵敏度和线性度(1)由上图可得系统灵敏度:S=ΔV/ΔW=1.6825V/mm(2)由上图可得非线性误差:当x=1mm时:Y=1.6825×1-0.1647=1.5178VΔm =Y-1.46=0.0578VyFS=2.32Vδf =Δm /yFS×100%=2.49%当x=3mm时:Y=1.6825×3-0.1647=4.4828VΔm =Y-3.84=1.0428VyFS=3.84Vδf =Δm /yFS×100%=27.15%五、思考题1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm的量程应如何设计传感器?答:量程与线性度、灵敏度、初始值均有关系。
如果需要测量±5mm的量程应使传感器在这个范围内线性度最好,灵敏度最高,这样才能保证的准确度。
电涡流式位移传感器实验报告
![电涡流式位移传感器实验报告](https://img.taocdn.com/s3/m/21d9203700f69e3143323968011ca300a7c3f674.png)
电涡流式位移传感器实验报告引言:电涡流式位移传感器是一种常用于测量物体位移的传感器。
它通过感应物体表面的涡流引起的感应电磁场变化来实现位移测量。
本实验旨在通过实验验证电涡流式位移传感器的工作原理,并探究其在位移测量中的应用。
实验目的:1. 了解电涡流式位移传感器的工作原理;2. 学习使用电涡流式位移传感器进行位移测量;3. 分析位移测量结果的准确性和稳定性。
实验仪器和材料:1. 电涡流式位移传感器;2. 示波器;3. 可调直流电源;4. 待测物体。
实验步骤:1. 将待测物体固定在实验台上,并将电涡流式位移传感器的感应头靠近物体表面;2. 连接电涡流式位移传感器和示波器,并调节示波器的参数以观察信号波形;3. 通过调节可调直流电源的电压,改变电涡流式位移传感器的工作距离,记录不同工作距离下的信号波形;4. 根据示波器上的信号波形,计算出不同工作距离下的位移值;5. 重复上述步骤,以获得多组位移测量数据。
实验结果和分析:根据实验记录的信号波形和位移测量数据,可以得出以下结论:1. 电涡流式位移传感器的工作距离与信号波形的变化呈反比关系,即工作距离越小,信号波形的振幅越大;2. 通过对信号波形的观察和分析,可以较准确地计算出位移值;3. 在一定范围内,电涡流式位移传感器的测量结果具有较高的准确性和稳定性。
实验结论:通过本实验,验证了电涡流式位移传感器的工作原理,并探究了其在位移测量中的应用。
实验结果表明,电涡流式位移传感器具有较高的测量精度和稳定性,在工业自动化控制和机械加工等领域有着广泛的应用前景。
参考文献:[1] Xie Y, Zhang H, Fu C, et al. Design and fabrication of an eddy current displacement sensor[J]. Sensors, 2018, 18(10): 3243.[2] Wei D, Zhao J, Yan Y. Design and evaluation of a noveleddy current displacement sensor for in-situ monitoring of turbine blades[J]. IEEE Sensors Journal, 2019, 19(13): 5284-5291.。
实验 电涡流传感器位移特性实验
![实验 电涡流传感器位移特性实验](https://img.taocdn.com/s3/m/395cdd134a7302768e9939cc.png)
实验电涡流传感器位移特性实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图17.1.1所示。
根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图17.1.2的等效电路。
图中R1、L1为传感器线图17.1.1 电涡流传感器原理图图17.1.2 电涡流传感器等效电路图圈的电阻和电感。
短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。
因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q 值为:Q =Q 0{[1-(L2ω2M2)/(L1Z22)]/[1+(R 2ω2M2)/( R 1Z22)]}式中:Q 0 — 无涡流影响下线圈的Q值,Q 0=ωL1/R 1; Z22— 金属导体中产生电涡流部分的阻抗,Z22=R 22+ω2L 22。
由式Z 、L 和式Q可以看出,线圈与金属导体系统的阻抗Z 、电感L 和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。
因此Z 、L 、Q均是x的非线性函数。
虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。
涡流传感器位移实验报告
![涡流传感器位移实验报告](https://img.taocdn.com/s3/m/119b81b14bfe04a1b0717fd5360cba1aa9118c64.png)
一、实验目的1. 理解涡流传感器的工作原理及其在位移测量中的应用。
2. 掌握电涡流传感器位移测量的基本操作流程。
3. 分析电涡流传感器在不同位移条件下的测量特性。
二、实验原理电涡流传感器是利用电磁感应原理进行非接触式测量的传感器。
当高频电流通过传感器线圈时,会在其周围产生交变磁场。
当金属被测物体靠近该磁场时,会在物体表面产生感应电流,即电涡流。
电涡流的产生会消耗部分能量,从而改变传感器线圈的阻抗,进而影响线圈的输出电压。
根据电涡流效应,当金属被测物体与传感器线圈之间的距离发生变化时,电涡流的强度和分布也会发生变化,导致传感器线圈的阻抗和输出电压随之改变。
通过测量线圈阻抗或输出电压的变化,可以实现对金属被测物体位移的测量。
三、实验器材1. 电涡流传感器2. 被测金属圆片3. 测微头4. 数显电压表5. 直流电源6. 连接导线7. 主控箱四、实验步骤1. 将电涡流传感器安装在主控箱上,并将传感器输出线接入实验模块的标有“TI”的插孔中。
2. 将测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
3. 将电涡流传感器输出线接入实验模块的输出端Vo,并与数显电压表输入端Vi相接。
4. 将实验模块输出端Vo与数显电压表输入端Vi相接,并选择电压20V档。
5. 用连接导线从主控台接入15V直流电源到模块上标有15V的插孔中,同时主控台的地与实验模块的地相连。
6. 使测微头与传感器线圈端部有机玻璃平面接触,开启主控箱电源开关(数显表读数能调到零的使接触时数显表读数为零且刚要开始变化),记下数显表读数。
7. 每隔0.1mm读取一次数显表读数,直到输出几乎不变为止。
8. 将结果列入表格,并绘制位移-电压曲线。
五、实验结果与分析1. 位移-电压曲线如图所示,可以看出电涡流传感器具有较好的线性度,且在较小的位移范围内,其测量精度较高。
2. 通过曲线拟合,可以得到电涡流传感器的线性区域,并选择最佳工作点进行位移测量。
电涡流传感器测量位移特性实验报告
![电涡流传感器测量位移特性实验报告](https://img.taocdn.com/s3/m/6c0b7c0b0812a21614791711cc7931b765ce7bf5.png)
电涡流传感器测量位移特性实验报告电涡流传感器测量位移特性实验报告2010-04-27 12:11一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。
涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。
电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线圈阻抗,涡流传感器就是基于这种涡流效应制成的。
电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。
三、实训器材:主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。
四、实训步骤:1.观察传感器结构,这是一个平绕线圈。
调节测微头的微分筒,使微分筒的0刻度值与轴套上的5mm刻度值对准。
根据图22-4安装测微头、被测体、电涡流传感器(注意安装顺序:先将测微头的安装套插入安装架的安装孔内,再将被测体铁圆片套在测微头的测杆上;然后在支架上安装好电涡流传感器;最后平移测微头安装套使被测体与传感器端面想贴并拧紧测微头安装孔的紧固螺钉)2.调节测微头使被测体与传感器端部接触,将电压表显示选择开关切换到20V挡,检查接线无误后开启主机箱电源开关,记下电压表读数,然后逆时针调节测微头微分筒,每隔0.1mm读一个数,直到输出几乎不变为止。
将数据列入表22。
表22 电涡流传感器位移X与输出电压数据1敏度和线性度(可以用最小二乘法或其他拟合直线)。
实验完毕,关闭电源。
数据分析:问题与讨论:读取示数是眼睛应该与数字在同一水平线上,避免造成更大的额人为误差;注意安装顺序:先将测微头的安装套插入安装架的安装孔内,再将被测体铁圆片套在测微头的测杆上;然后在支架上安装好电涡流传感器;最后平移测微头安装套使被测体与传感器端面想贴并拧紧测微头安装孔的紧固螺钉,每隔0.1mm读一个数,直到输出几乎不变为止2第二篇:采用电涡流传感器测量转子振动实验实验报告 1100字采用电涡流传感器测量转子振动实验实验报告一、实验目的了解电涡流传感器及其专用的前置放大器的使用方法,了解用电涡流传感器测量振动位移量的基本方法,了解旋转机械转子的运动轨迹和振动频谱特性的测量。
电涡流传感器测量位移特性设计报告
![电涡流传感器测量位移特性设计报告](https://img.taocdn.com/s3/m/33ccf90682c4bb4cf7ec4afe04a1b0717fd5b3c9.png)
电涡流传感器测量位移特性设计报告电涡流传感器测量位移特性设计报告摘要:本设计根据金属位移量影响涡流效应的强弱,利用电涡流传感器测量出金属位移量引起的电压变化模拟信号,并作为AD采集卡的输入量,最终在上位机实现金属位移量和电压变化的动态显示。
本设计具有操作简单、精度高等特点。
关键词:AD采集卡,电涡流传感器,金属位移量,电压变化1 工作原理电涡流传感器采用的是感应电涡流原理,当带有高频电流的线圈靠近被测金属时,线圈上的高频电流所产生的高频电磁场便在金属表面上产生感应电流,电磁学上称之为电涡流。
电涡流效应与被测金属间的距离及电导率、磁导率、几何尺寸、电流频率等参数有关。
当线圈与金属体的距离发生变化时(除距离以外,所有的参数不变),电涡流传感器将位移量转换成电压变化的模拟信号送给AD采集卡,最终在上位机实现对金属位移量和电压变化的实时显示。
2硬件设计2.1系统框图金属位移量图2.1系统总体框图2.2 PCI8735介绍PCI8735是一种基于PCI总线的数据采集卡,可直接插在IBM-PC/AT或与这兼容的计算机内的任一PCI插槽中,主要应用于电子产品质量检测、信号采集、过程控制、伺服控制。
2.2.1 PCI8735的管脚定义图2.2 PCI8735管脚排列PCI8735引脚功能描述如下表:2.2.2 DS18B20技术性能描述1.转换器类型:AD73212.输入量程(InputRange):±10V、±5V、±2.5V、0~10V3.转换精度:12位(Bit)有效位,第13位为符号位4.采样速率:最高系统通过率500KHz,不提供精确的硬件分频功能。
说明:各通道实际采样速率=采样速率/采样通道数5.模拟输入通道总数:32路单端,16路双端6.采样通道数:软件可选择,通过设置首通道(FirstChannel)和末通道(LastChannel)来实现的。
说明:采样通道数=LastChannel –FirstChannel+17.通道切换方式:首末通道顺序切换8.AD转换时间:<1.6us9.转换精度:12 位(Bit)有效位,第13位为符号位10.程控增益:1、2、4、8倍(AD8251)或1、2、5、10倍(AD8250)或1、10、100、1000倍(AD8253)11.模拟输入阻抗:10M?12.非线性误差:±1LSB13.系统测量精度:0.1%14.工作温度范围:-40℃~+85℃15.存储温度范围:-40℃~+120℃3 软件设计本系统采用Visual Basic 6.0语言编写,人机界面主要由三部分构成,第一部分是人工进行量程选择,第二部分是采集方式选择,包括间隔采集和连续采集两种方式;第三部分是数据统计显示区。
电涡流传感器位移特性实验
![电涡流传感器位移特性实验](https://img.taocdn.com/s3/m/dfce1103fe4733687f21aa1b.png)
传感器技术实验报告实验序号:实验二十三系别:电子通信工程系班级:电信****班组别:第七组成员: ******* ****** 实验分析 ******* ***** 线路连接******** ***** 数据记录******** ***** 撰写报告2015年3月30日实验二十三电涡流传感器位移特性实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
三、需用器件与单元:电涡流传感器实验模块、电涡流传感器、直流电源、数显单元(主控台电压表)、测微头、铁圆片。
四、实验步骤:1、根据图8-1安装电涡流传感器。
2、观察传感器结构,这是一个扁平绕线圈。
3、将电涡流传感器输出线接入实验模块上标有Ti的插孔中,作为振荡器的一个元件。
4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
5、将实验模块输出端Vo 与数显单元输入端Vi相接。
数显表量程切换开关选接主控箱数显表地V i接主控箱电源输出图8-2 电涡流传感器位移实验接线图+15V择电压20V档。
6、用连接导线从主控台接入+15V直流电源到模块上标有+15V的插孔中,同时主控台的“地”与实验模块的“地”相连。
7、使测微头与传感器线圈端部有机玻璃平面接触,开启主控箱电源开关(数显表读数能调到零的使接触时数显表读数为零且刚要开始变化),记下数显表读数,然后每隔0.2mm(或0.5mm)读一个数,直到输出几乎不变为止。
将结果列入表8-1。
表8-1 电涡流传感器位移X与输出电压数据X(mm)0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 V(v) 5.76 7.14 8.22 8.58 8.67 8.72 8.75 8.78 8.8 8.82 8.838、根据表8-1数据,画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3mm、5mm时的灵敏度和线性度(可以用端基法或其它拟合直线)。
电涡流传感器位移特性试验
![电涡流传感器位移特性试验](https://img.taocdn.com/s3/m/64165f696c175f0e7dd13711.png)
1. 根据实验得到的数据,试讨论其他条件都相同时,不同材质 的导体材料对传感器电涡流效应的影响是怎么样的?
2. 根据表1-表3的实验数据,画出V-X实验曲线,根据曲线找 出线性区域比较好的范围计算灵敏度和线性度(可用最小二 乘法或其它拟合直线方法)。
3. 根据表1、表2和表3分别计算量程为1mm和3mm时的灵敏度 和非线性误差(线性度)。
主要内容
电涡流传感器工作原理 电涡流传感器位移特性实验目的
和仪器简介 实验步骤、实验结果记录和分析
电涡流传感器工作原理(一)
电涡流式传 感器的工作 原理如右图 所示,其中: (a)为传感器 的激励线圈; (b)是 被测金 属导体
电涡流传感器工作原理(二)
根据法拉第定律,当传感器线圈通以正弦交变电流I1时, 线圈周围空间必然产生正弦交变磁场H1,使置于此磁 场中的金属导体中感应电涡流I2,I2又产生新的交变磁 场H2。根据愣次定律, H2的作用将反抗原磁场H1,由 于磁场H2的作用,涡流要消耗一部分能量,导致传感 器线圈的等效阻抗发生变化。线圈阻抗的变化完全取 决于被测金Z属=F导(ρ体,μ,的r,f,电x) 涡流效应。电涡流效应既与被 测体的电阻率ρ、磁导率μ以及几何形状有关,又与线 圈几何参数、线圈中激磁电流频率f有关, 还与线圈与 导体间的距离x有关。因此,传感器线圈受电涡流影响 时的等效阻抗Z的函数关系式为:
实验步骤及实验结果记录和分析(四)
X(mm) UO(V)
X(mm) UO(V)
表2 铜质被测体 表3 铝质被测体
实验完毕后,关闭供电电源,拆卸仪器连接线,并整 理好实验台。
实验注意事项:
1.传感器要轻拿轻放,绝不可掉到地上。 2.不要用手或其它物体接触传感器,否则将会使线性变差。
电涡流位移传感器实验报告
![电涡流位移传感器实验报告](https://img.taocdn.com/s3/m/e5dc9ac303d276a20029bd64783e0912a3167c60.png)
实验目的:通过对电涡流位移传感器的实验,了解其工作原理、特性以及在位移测量中的应用。
### 1. 实验背景
电涡流位移传感器是一种非接触、高精度的位移传感器,主要应用于测量金属导体的微小位移。
本实验旨在深入了解电涡流位移传感器的性能参数和使用方法。
### 2. 实验设备
- 电涡流位移传感器
- 信号调理电路
- 示波器
- 位移标准样品
### 3. 实验步骤
1. 连接电路:将电涡流位移传感器与信号调理电路连接,确保连接正确无误。
2. 设置示波器:对示波器进行适当设置,以便观察电涡流传感器输出信号的波形。
3. 校准:使用位移标准样品对电涡流传感器进行校准,调整信号调理电路,确保输出信号与位移值对应准确。
4. 进行位移测量:将电涡流传感器放置在待测物体上,通过示波器观察和记录输出信号的变化,进行位移测量。
5. 性能评估:测量不同位移值下的输出信号,并评估电涡流位移传感器的灵敏度、稳定性和线性度等性能指标。
### 4. 实验数据处理
对实验得到的数据进行整理和分析,绘制位移与输出信号的关系曲线,计算性能指标。
### 5. 实验结论
根据实验数据和分析结果,得出电涡流位移传感器在不同条件下的性能特点,评估其在位移测量中的适用性。
### 6. 实验总结
通过本次实验,深入了解了电涡流位移传感器的工作原理和性能,掌握了其在位移测量中的应用方法,为今后的传感器应用和实验研究提供了基础。
### 7. 实验改进和展望
根据实验中的经验,提出可能的实验改进方案,并展望电涡流位移传感器在未来的发展方向和应用领域。
电涡流式位移传感器实验报告
![电涡流式位移传感器实验报告](https://img.taocdn.com/s3/m/afc4480bf6ec4afe04a1b0717fd5360cba1a8d19.png)
电涡流式位移传感器实验报告一、引言电涡流式位移传感器是一种常用的非接触式位移测量装置,它基于涡流效应原理,可用于测量金属物体的位移变化。
本实验旨在探究电涡流式位移传感器的原理和性能,并通过实验验证其在位移测量中的应用。
二、实验原理电涡流效应是指当导体在磁场中运动或受力时,由于磁场的变化而在导体中产生涡流的现象。
在电涡流式位移传感器中,传感器探头由线圈和磁铁构成。
当探头靠近金属物体时,磁铁产生的磁场会感应出涡流,并改变线圈的电阻。
通过测量线圈的电阻变化,可以确定金属物体的位移大小。
三、实验步骤1. 准备实验装置:将电涡流式位移传感器固定在测量平台上,将金属物体放置在传感器上方,并调整传感器与金属物体的距离。
2. 连接电路:将传感器的线圈接入测量电路中,保证电路的可靠连接。
3. 调节参数:根据实际情况,调节传感器的灵敏度和滤波器的参数,以获得准确的位移测量结果。
4. 进行位移测量:通过改变金属物体的位置或距离,记录传感器输出的电阻值,并计算出相应的位移值。
5. 数据分析:根据实验数据,分析位移测量的准确性和稳定性,评估电涡流式位移传感器的性能。
四、实验结果经过多次实验测量,我们得到了一系列位移测量数据,并计算出相应的位移值。
实验结果表明,电涡流式位移传感器具有较高的测量精度和稳定性,在不同位移范围内均能提供准确的测量结果。
五、实验讨论1. 影响位移测量精度的因素:在实验中,我们发现传感器与金属物体的距离、金属物体的材料和形状等因素都会对位移测量结果产生影响。
通过合理调整传感器的参数和选择合适的金属物体,可以提高位移测量的精度。
2. 传感器的应用范围:电涡流式位移传感器广泛应用于工业自动化、机械制造和航天航空等领域,用于测量零件的位移、振动和变形等参数,为工程设计和质量控制提供重要的数据支持。
六、结论通过本次实验,我们深入了解了电涡流式位移传感器的原理和性能,并验证了其在位移测量中的应用。
实验结果表明,电涡流式位移传感器具有高精度、稳定性好的优点,适用于各种位移测量场景。
电涡流式位移传感器实验报告
![电涡流式位移传感器实验报告](https://img.taocdn.com/s3/m/4a6655c6900ef12d2af90242a8956bec0875a54c.png)
电涡流式位移传感器实验报告前言位移传感器是一种用于测量目标物体位置变化的装置。
在各个领域中都有广泛的应用,比如工业自动化、机械制造以及医疗设备等。
本实验将研究一种常见的位移传感器——电涡流式位移传感器,并通过实验测试其性能和准确性。
一、实验原理电涡流位移传感器是一种非接触式传感器,通过检测金属目标物体上产生的电涡流来测量目标物体的位移。
当一个金属目标物体靠近传感器时,传感器中的线圈会产生交变磁场。
这个交变磁场会引起目标物体上的电流变化,从而产生一个反向的磁场与传感器磁场相互作用。
通过检测目标物体上的电流变化来测量目标物体的位移。
传感器输出的电压信号与目标物体的位置成正比。
二、实验准备1. 装置:电涡流位移传感器、目标物体、信号发生器、示波器。
2. 连接:将信号发生器和示波器连接到电涡流位移传感器上。
三、实验步骤1. 将目标物体放置在电涡流位移传感器的感应范围内。
2. 设置信号发生器的频率和振幅,可以根据实际需要进行设置。
3. 打开示波器,并选择合适的测量范围。
4. 观察示波器上显示的波形,并记录下电压的变化。
四、实验结果通过实验,我们得到了与目标物体位置变化相关的电压信号波形。
通过观察示波器上的波形,我们可以获得目标物体位移的信息。
实验结果表明电涡流式位移传感器具有较好的线性和精确性,可以用于准确测量目标物体的位移。
五、实验分析电涡流式位移传感器的原理是基于金属材料的导电性以及磁场和电流的相互作用。
目标物体的位置变化引起了电涡流的变化,从而影响传感器输出的电压信号。
通过对电压波形的观察和分析,我们可以得到目标物体位置变化的相关信息。
因此,电涡流式位移传感器在工业生产中应用非常广泛。
六、实验应用电涡流位移传感器可以用于各种需要测量位移的场合。
在机械制造中,可以用于检测零件的装配精度;在汽车工业中,可以用于测量活塞的位置变化;在医疗设备中,可以用于测量人体关节的运动等。
由于电涡流式位移传感器具有非接触式测量和高精度等特点,因此在现代工业中得到了广泛的应用。
电涡流传感器位移实验报告
![电涡流传感器位移实验报告](https://img.taocdn.com/s3/m/7a0bb2225e0e7cd184254b35eefdc8d376ee1401.png)
电涡流传感器位移实验报告一、前言在工业生产和科研实验中,位移测量是非常重要的。
传统的位移测量方法有很多,但是由于各种原因,比如测量范围小、精度不高等,很难达到实际要求。
电涡流传感器由于其测量范围广、精度高等优点,在位移测量方面得到了越来越广泛的应用。
本次实验旨在通过对电涡流传感器实际应用过程中的位移测量进行研究,探究其应用的可行性和效果。
二、实验原理电涡流传感器是一种基于涡流效应的传感器,它利用电磁感应原理,在传感器和被测物体之间产生一种涡流,再通过测量这种涡流的变化情况来计算出被测物体的位移信息。
在实际应用中,将电涡流传感器固定在被测物体上,当被测物体发生位移时,由于涡流的变化,传感器会产生电信号,再通过信号处理器转化成数字信号,从而得到被测物体的位移信息。
三、实验步骤(一)实验设备准备我们使用的是一台B系列电涡流传感器,其工作频率为250 kHz,灵敏度为5 mV/μm。
同时,我们还需要一台信号处理器、一台电荷放大器和一台示波器。
(二)实验样品准备我们选择了一根长度为200 mm的金属棒作为实验样品。
在金属棒的一端固定电涡流传感器,另一端固定一个位移测量装置。
(三)实验数据采集将电涡流传感器和位移测量装置连接到信号处理器上,启动实验设备,让金属棒发生位移。
在位移过程中,通过示波器对信号进行实时监测和记录,并将数据导出到电脑中进行分析。
(四)实验结果分析通过对实验采集的数据进行分析,我们得到了金属棒的位移曲线图。
从曲线图中可以看出,在位移范围为0-100 mm时,电涡流传感器的测量精度可以达到0.5 μm,这个精度已经可以满足大多数实际应用的需求。
同时,我们还发现,在位移范围为0-100 mm时,电涡流传感器的灵敏度为5 mV/μm,这个灵敏度足以满足大多数实际应用的需求。
四、实验结论通过本次实验,我们得到了以下结论:(一)电涡流传感器的测量精度可以达到0.5 μm,足以满足大多数实际应用的需求。
电涡流式位移传感器实验报告
![电涡流式位移传感器实验报告](https://img.taocdn.com/s3/m/112cca674a35eefdc8d376eeaeaad1f34793116e.png)
电涡流式位移传感器实验报告电涡流式位移传感器实验报告引言:电涡流式位移传感器是一种常用的非接触式传感器,广泛应用于工业领域中的位移测量。
本实验旨在研究电涡流式位移传感器的工作原理、特性以及其在位移测量中的应用。
一、实验目的本实验的主要目的是探究电涡流式位移传感器的工作原理,并通过实验验证其在位移测量中的准确性和可靠性。
二、实验装置与方法实验所使用的装置包括电涡流式位移传感器、信号处理器、位移测量平台等。
实验步骤如下:1. 将电涡流式位移传感器固定在位移测量平台上。
2. 连接传感器与信号处理器,确保传感器与处理器之间的信号传输畅通。
3. 调整传感器与被测物体之间的距离,使其处于适当的工作范围内。
4. 通过信号处理器采集传感器输出的信号,并进行数据处理和分析。
三、实验结果与分析通过实验测量,我们得到了电涡流式位移传感器在不同位移下的输出信号,进而得到了位移与输出信号之间的关系曲线。
实验结果显示,电涡流式位移传感器具有以下特点:1. 高精度:传感器能够实现亚微米级的位移测量,具有较高的精度。
2. 非接触式测量:传感器与被测物体之间无需直接接触,减少了传感器的磨损和损坏的可能性。
3. 快速响应:传感器能够快速响应被测物体的位移变化,实时反馈测量结果。
4. 宽工作范围:传感器能够适应不同位移范围的测量需求。
四、实验误差分析在实验过程中,我们注意到了一些可能导致测量误差的因素,包括:1. 环境温度:环境温度的变化可能会对传感器的测量结果产生影响,因此在实际应用中需要进行温度补偿。
2. 电磁干扰:外部电磁场的存在可能会对传感器的信号传输和测量结果产生干扰,需要采取相应的屏蔽措施。
3. 传感器位置:传感器与被测物体之间的位置关系可能会对测量结果产生影响,需要进行准确定位。
五、实验应用与展望电涡流式位移传感器在工业领域中有广泛的应用前景。
它可以用于机械设备的位移测量、振动监测、材料疲劳分析等方面。
未来,随着科技的不断发展,电涡流式位移传感器有望进一步提高其精度和稳定性,扩大其应用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电涡流传感器的位移特
性实验报告
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
实验十九电涡流传感器的位移特性实验
一、实验目的
了解电涡流传感器测量位移的工作原理和特性。
二、实验仪器
电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表
三、实验原理
通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
四、实验内容与步骤
1.按图2-1安装电涡流传感器。
图2-1传感器安装示意图
2.在测微头端部装上铁质金属圆盘,作为电涡流传感器的被测体。
调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。
图2-2 电涡流传感器接线示意图
3.传感器连接按图2-2,实验模块输出端Uo与直流电压表输入端U
相
i
接。
直流电压表量程切换开关选择电压20V档,模块电源用2号导线从实验台上接入+15V电源。
4.合上实验台上电源开关,记下数显表读数,然后每隔读一个数,直到输出几乎不变为止。
将结果列入表2-1。
5.根据上表数据,画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点(即曲线线性段的中点),试计算测量范围为1mm与
3mm时的灵敏度和线性度
(1)由上图可得系统灵敏度:S=ΔV/ΔW=mm
(2)由上图可得非线性误差:
当x=1mm时:
Y=×=
Δm?==
yFS=
δf=Δm/yFS×100%=%
当x=3mm时:
Y=×=
Δm?==
yFS=
δf=Δm/yFS×100%=%
五、思考题
1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm的量程应如何设计传感器
答:量程与线性度、灵敏度、初始值均有关系。
如果需要测量±5mm的量程应使传感器在这个范围内线性度最好,灵敏度最高,这样才能保证的准确度。
2、用电涡流传感器进行非接触位移测量时,如何根据使用量程选用传感器答:根据需要测量距离的大小,一般距离较大要求量程较大,且灵敏度要求不会太高,而且量程有正负;相反需要测量的距离较小,则对灵敏度要求较高,量程不需要太大,这样既能满足要求,同时又保证了测量的精确度。
实验二十被测体材质对电涡流传感器特性影响
一、实验目的
了解不同的被测体材料对电涡流传感器性能的影响。
二、实验原理
涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。
在实际应用中,由于被测体的材料、形状和大小不同会导致被测体上涡流效应的不充分,会减弱甚至不产生涡流效应,因此影响电涡流传感器的静态特性,所以在实际测量中,往往必须针对具体的被测体进行静态特性标定。
三、实验仪器
除与实验十九相同外,另加铜和铝的被测体圆盘
四、实验内容与步骤
与实验十九相同
将铁质金属圆盘分别换成铜质金属圆盘和铝质金属圆盘。
将实验数据分别记入下面表2-2、2-3。
(1)由上图可得系统灵敏度:S=ΔV/ΔW=mm
(2)由上图可得非线性误差:
当x=1mm时:
Y=×1+=
Δm?==
yFS=
δf=Δm/yFS×100%=%
当x=3mm时:
Y=×3+=
Δm?==0V
yFS=
δf=Δm/yFS×100%=0%
(1)由上图可得系统灵敏度:S=ΔV/ΔW=mm
(2)由上图可得非线性误差:
当x=1mm时:
Y=×1+=
Δm?==
yFS=
δf=Δm/yFS×100%=%
当x=3mm时:
Y=×3+=
Δm?==
yFS=
δf=Δm/yFS×100%=%。