立体几何专题训练-经典题型1
立体几何垂直问题经典题型汇总

1 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 证明 ◆◆◆◆◆◆◆◆◆◆◆2 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.3 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .证明:5 如图3,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC .证明:.6. 空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD ,求证:AC ⊥BDADB OC证明: 7. 证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1DD 1 C 1A 1B 1D CA B证明:8.如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC分析:10【典型例题精讲】[例1] 如图9—39,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC .图9—39[例2] A B C D F E G A'在长方体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,侧棱长为3,E 、F 分别是AB 1、CB 1的中点,求证:平面D 1EF ⊥平面AB 1C .【证明】如图9—43,∵E 、F 分别是AB 1、CB 1的中点,3.如图9—44,已知斜三棱柱ABC —A 1B 1C 1的各棱长均为2,侧棱与底面成3的角,侧面ABB 1A 1垂直于底面, 图9—44(1)证明:B 1C ⊥C 1A .(2)求四棱锥B —ACC 1A 1的体积.4.如图9—45,四棱锥P —ABCD 的底面是边长为a 的正方形,PA ⊥底面ABCD ,E 为AB 的中点,且PA=AB .图9—45(1)求证:平面PCE ⊥平面PCD ;(2)求点A 到平面PCE 的距离.5.已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,对角线AC=2,BD=23,E 、F 分别为棱CC 1、BB 1上的点,且满足EC=BC=2FB .图9—466(1)求证:平面AEF ⊥平面A 1ACC 1;(2)求异面直线EF 、A 1C 1所成角的余弦值. (2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16AC =,求三棱柱111ABC A B C -的体积. C 11A AB C。
立体几何经典大题(各个类型的典型题目)

1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。
(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;F CBAEDA B C D EF 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]立体几何大题训练(3)C15. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ; (2)MN ⊥平面B 1BG .6. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.立体几何大题训练(4)7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G_ M _ D_1_ C_1_ B_1_ A_1_ N_ D _ C_ B _ ABA 1FE、E1分别是棱AD、AA1的中点(1)设F是棱AB的中点,证明:直线EE1∥面FCC1;(2)证明:平面D1AC⊥面BB1C1C。
立体几何基础题题库1(有详细答案)

立体几何基础题题库1(有详细答案)立体几何基础题题库一(有详细答案)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C1和∠2分别为直线AB与平面,αβ所成的角。
根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是PPQQRSSPPPQ Q RR R SS SPP P QQQ R RSSSPP Q Q R RRSS(A )(B )(C )(D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。
3. 有三个平面α,β,γ,下列命题中正确的是ααα (C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=?,则α∩γ=? D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为11111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:P 点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。
5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条(B )6条(C )8条(D )10条 C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。
高中数学立体几何经典常考题型

高中数学(一)立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO.(1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明∵OB =OC ,又∵∠ABC =π4,∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB.又PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O ,∴CO ⊥平面PAB ,即CO ⊥平面PDB.又CO ⊂平面COD ,∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3).设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.【类题通法】利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB→,AD →,AA1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1. 设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A1E →=⎝ ⎛⎭⎪⎫12,12,0,A1D →=(0,1,-1),由n 1⊥A1E→, n 1⊥A1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A1B1→=(1,0,0),A1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D B 1的余弦值为|n1·n2||n1|·|n2|=23×2=63. 题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB.(2)解 取AD 的中点O ,连接PO ,CO.因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO.因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2.所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱PA 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA上存在点M,使得BM∥平面PCD,此时AMAP=14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为PA,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8).假设AB 上存在一点F 使CF ⊥BD ,设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0),设平面FPC 的法向量为n =(x ,y ,z ).又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y ,不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n||m|=81×82+122+92=817. 又由图可知,该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ;(2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得AE AD =CF CD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB2-AO2=4.由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF→的方向为x 轴正方向,建立空间直角坐标系H -xyz . 则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x1-4y1=0,3x1+y1+3z1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x2=0,3x2+y2+3z2=0, 所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m||n|=-1450×10=-7525. sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n1·BC →=0,n1·A1C →=0,得⎩⎨⎧-x1+y1=0,y1-z1=0,取n 1=(1,1,1); ⎩⎪⎨⎪⎧n2·CD →=0,n2·A1C →=0,得⎩⎨⎧x2=0,y2-z2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
立体几何经典题型

m •n=cos p =cos<m ,n >= mn 立体几何经典题型cos 0=cos<AB ,CD >= AB -CDABCDcos 01.线线角0e 八兀03(异面直线e e<兀103L2)1..(2010天津)如图,在五面体ABCDEF中,四边形ADEF是正方形,FA,平面ABCD,BC〃AD,CD=1,AD=2<2,/BAD=Z CDA=45(I)求异面直线CE与AF所成角的余弦值;(II)证明CD,平面ABF;(III)求二面角B—EF—A的正切值.C1.线面角e e*一1.(2018全国卷I)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF1BF.(1)证明:平面PEF1平面ABFD;(2)求DP与平面ABFD所成角的正弦值.题型二:空间距离1.两点间的距离:一z 21 2 1 2 1 AB =Q -x I +(y -y )+ 2.点到线的距离【面积】 AB -nAB -n[向量法]d =AB cos <n ,AB >=AB =AB -nn 【几何法】等面积法3.点到面的距离【体积】AB -nAB -n [向量法]d =AB cos <n ,AB >=AB =AB -nn 【几何法】等体积法1.点到面的距离例(2014新课标2)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA,平面ABCD,E为PD的中点.(I)证明:PB〃平面AEC;(II)设二面角D—AE—C为60°,AP=i,AD=3,求三棱锥E—ACD的体积.题型三:探索性问题方法:共线向量的基本定理b二九a,用一个变量表示一个坐标1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,NBCD=135°,侧面PAB,底面ABCD,NBAP=90°, AB二AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(I)求证:EF,平面PAC;(II)若M为PD的中点,求证:ME〃平面PAB;(III)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求到的值.PD2.在四棱锥P-ABCD中,侧面PCD1底面ABCDPD1CD,E为PC中点,底面ABCD是直角梯形AB//CD,ZADC=90,AB=AD=PD=1,CD=2.(1)求证:BE//平面PAD;(2)求证:BC1平面PBD;(3)在线段PC上是否存在一点Q,使得二面角Q—BD—P为PQ45?若存在,求的值;若不存在,请述明理由P C\PA B3.如图,在四棱锥P-ABCD中,PB±底面ABCD,底面ABCD为梯形,ADBC,AD±AB,且PB=AB=AD=3,BC=1.1(I)若点F为PD上一点且PF=3PD,证明:CF平面PAB;P(II)求二面角B—PD—A的大小;\、T F\(III)在线段PD上是否存在一点M,使得CM±PA?若存在,求出PM的长;若不存在,说明理由.。
高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
从易到难分析立体几何常见题型及练习

立体几何常见类型题题型一、空间几何体三视图与直观图 (1)由实物图画三视图1.如图甲所示,在正方体1111D C B A ABCD -中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的_______________。
(2)三视图还原实物图2..某空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+D. 2343π+ (3)斜二测画法有关的计算问题(S S 42'=) 3.等腰梯形ABCD ,上底1=CD ,腰2==BC AD ,下底,3=AB 以下底所在直线为x 轴,则由斜二侧画法画出的直观图''''D C B A 的面积是 ________ 题型二、空间几何体的表面积与侧面积 (1)空间几何体的表面积与体积4.已知某几何体的俯视图如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形。
(1)画出几何体的直观图 (2)求该几何体的侧面积S 。
(3)求该几何体的体积V ;(2)空间几何体展开图及面积计算5.已知圆锥的侧面展开图是右图所示的扇形,半径为1,圆心角为ο120, 则圆锥的表面积和体积分别是多少?(3)割补法和等体积法求体积6.如图,正方体''''D C B A ABCD -的棱长为2,E 是AB 的中点, 求:(1)三棱锥EC A B '-的体积V . (2)求B 点到平面EC A '的距离。
类型三.证明线面平行1.在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。
2.正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证: C1O ∥面11AB D ; 考点:法1:利用平行四边形 法2:利用面面平行的性质类型四.证明面面平行1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .2.在正方体1111ABCD A B C D -中,E 、F 、G分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .A ED 1CB 1DCBAD 1ODBAC 1B 1A 1C A 1AB 1C 1 CD 1D G EF类型五.证明线面垂直1. 正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. (考点:线面垂直的判定定理)2. ,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 考点:线面垂直的判定,运用勾股定理寻求线线垂直3. 已知ABC ∆中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC .4. 四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=o ,求证:BD ⊥平面ACD5. 如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠= 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂 直于底面ABCD . G 为AD 的中点,求证:BG ⊥平面PAD ; (考点:利用面面垂直性质定理)类型六.证明面面垂直1. 如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. 求证:平面1A AC ⊥平面BDE . (考点:面面垂直的判定)ABD CA ’D ’B ’C ’SDCBA2.如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC . 考点:面面垂直的判定(证二面角是直二面角)类型七.证明线线垂直1. 在正方体ABCD-A ’B ’C ’D ’中,M 为DD ’的中点,O 为AC 的中点,AB=2 证明:B ’O ⊥AC 考点:法1:线面垂直→线线垂直 法2:勾股定理法3:等腰三角形三线合一。
高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.π【例1】如图,在△ ABC中,∠ ABC =孑,O为AB边上一点,且 30B= 30C= 2AB ,已知Po丄平面 ABC,2DA = 2A0 = P0, 且 DA // P0.(1) 求证:平面PBD⊥平面C0D;(2) 求直线PD与平面BDC所成角的正弦值.π⑴证明OB= 0C,又τ∠ ABC= ^4,ZπZπ∙∙∙∠ OCB= —, ∙∙∙∠ BOC="2.∙∙∙C0⊥ AB.又PO丄平面ABC0C?平面 ABC, ∙∙∙ PO丄 0C.又∙∙∙ PO, AB?平面PAB P0∩ AB= 0, ∙∙∙ C0⊥平面PAB,即CO丄平面PDB.又C0?平面COD则 C(2, 0, 0), B(0, 2, 0), P(0, 0, 2), D(0,—1,1), ∙∙∙ Pb= (0,— 1,— 1), BC = (2,— 2, 0), BD = (0,— 3, 1).X, y, Z轴,建立空间直角坐标系,如图所示.•••平面PDB丄平面COD.设OA = 1,贝U PO= OB = OC = 2, DA =1.设平面BDC 的一个法向量为n = (x, y, z),n BC = 0,2x —2y= 0, n BD = 0, —3y + Z = 0,令 y= 1,则 X= 1, Z= 3,∙∙∙ n= (1, 1, 3).设PD 与平面BDC 所成的角为θ,1× 0+ 1x(— 1)+ g×(— 1)= 2√221'02+(— 1) 2+(— 1) 2× ,'12+ 12+ 32= 11【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系第二步:确定点的坐标.第三步: 求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值). 第五步: 将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范【变式训练】 如图所示,在多面体A 1B 1D 仁DCBA 中,四边形AA 1B 1B, ADD 1A 1, ABCD 均为正方形, E 为B 1D 1的中点,过A 1, D , E 的平面交CD 1于F.(1) 证明:EF// BC(2) 求二面角E-A I D-B I 的余弦值.(1)证明 由正方形的性质可知 A 1B 1 / AB// DC,且A 1B 1= AB= DC,所以四边形A 1B 1CD 为平行四边形, 从而B 1C// A 1D,又 A 1D?面 A 1DE, B 1C?面 A 1DE,于是 B 1C//面 AQE 又 B 1C?面 B I CDl,面 A 1DE∩面 B I CD= EF,所以EF// BQ.则SinPD ・n IPDlnl即直线PD 与平面BDC 所成角的正弦值为 2 ,22 11AlD⑵解因为四边形 AA i B i B, ADD i A i, ABCD均为正方形,所以AA i ⊥ AB, AA i ⊥ AD, AB⊥ AD且AA i=AB= AD.以A为原点,分别以AB, AD, AA i为X轴,y轴和Z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标 A(0, 0, 0), B(i, 0, 0), D(0, i, 0), A i(0, 0, i), B i(i, 0, i), D i(0,i ii, i),而E点为B i D i的中点,所以E点的坐标为2, 2,i .→i i设平面A i DE的一个法向量n i= (r i, s i, t i),而该面上向量A i E= 2, 2,。
立体几何最典型的平行与垂直题型归纳(带答案)(1)

专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.2.如图,在四棱锥P﹣ABCD 中,PA⊥底面ABCD ,四边形ABCD 为长方形,AD=2AB,点E、F 分别是线段PD、PC 的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)在线段AD 上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O 的位置,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M 为PD 的中点.Ⅰ)求证:CM ∥平面PAB;Ⅱ)求证:CD ⊥平面PAC.AD ∥BC ,∠ BAD =90°,PA4.如图,△ ABC 为正三角形,AE 和CD 都垂直于平而ABC,F 是BE 中点,AE=AB=2,CD=1.1)求证:DF ∥平面ABC;2)求证:AF ⊥DE;3)求异面直线AF 与BC 所成角的余弦值.5.如图,在四棱锥A﹣BCDE 中,平面ABC⊥平面BCDE ,∠ CDE =∠ BED =90°,AB=CD=2,DE=BE=1,AC=.(1)证明:D E⊥平面ACD ;2)求棱锥C﹣ABD 的体积.6.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD,PA=AD=2,AB =1,M 为线段PD 的中点.I)求证:BM ⊥PDII )求直线CM 与PB 所成角的余弦值.7.如图,在正三棱柱ABC﹣A1B1C1 中,所有棱长都等于2.(1)当点M 是BC 的中点时,求异面直线AB1和MC1所成角的余弦值;专题 :立体几何最容易错的最难的平行与垂直问题汇编1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M 分别是棱 AA 1, BC 的中点.证明:2)若∠ ABC =120°,AE ⊥EC ,AB =2,求点 G 到平面 AED 的距离.3.如图,在四棱锥 P ﹣ ABCD 中,平面 PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD , AB =1,AD =2,AC =CD = .( 1)求证: PD ⊥平面 PAB ;1)证明:平面 PAB ⊥平面 PAD;AB ∥CD ,且∠ BAP =∠ CDP =90BE ⊥平面 ABCD .1)证明:平面 AEC ⊥平面 BED .2)若 PA =PD =AB =DC ,∠APD =90°,且四棱锥 P ﹣ABCD 的体积为 ,求该四棱 1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD ,若 E 为棱 BD 上与 D6.如图,在四棱锥 A ﹣EFCB 中,△ AEF 为等边三角形,平面 AEF ⊥平面 EFCB ,EF = 2,四边形 EFCB 是高为 的等腰梯形, EF ∥BC ,O 为 EF 的中点.AD =CD . 求 O 到平面 ABC 的距离.专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.A .0 B.1 C. 2 D. 3【解答】解:取AC 的中点E,连接BE,DE,∵∠ ABD=∠ CBD ,∴ BD 在平面ABC 上的射影在直线BE 上,∵△ ACD 是直角三角形,∴∠ ADC=90°,设 AB = 2,则 BE = ,DE = AC =1,BD =2,2 2 2∴DE 2+BE 2= BD 2,即 DE ⊥BE ,又 BE ⊥ AC ,DE ∩AC =E ,∴ BE ⊥平面 ACD ,∴平面 ABC ⊥平面 ACD .∵ D 在平面 ABC 上的射影为 E , B 在平面 ACD 上的射影为 E ,∴平面 ABD 与平面 ABC 不垂直,平面 BCD 与平面 ABC 不垂直,平面 ABD 与平面 ACD 不垂直,平面 BCD 与平面 ACD 不垂直, 过A 作 AF ⊥BD ,垂足为 F ,连接 CF ,由△ ABD ≌△ CBD 可得 CF ⊥BD ,故而∠ AFC 为二面角 A ﹣BD ﹣C 的平面角, ∵ AD == , ∴ cos ∠ ABD ∴ CF = AF =∴ cos ∠ AFC =∴∠ AFC ≠ 90°,∴平面 ABD 与平面 BCD 不垂直.F 分别是线段 PD 、PC 的中点.证明: EF ∥平面 PAB ;BO ⊥平面 PAC ,若存在,请指出点 O 的位置, 并证明 BO ⊥平面 PAC ;若不存在,请说明理由.2.如图, 在四棱锥 P ﹣ABCD 中, PA ⊥底面 ABCD ,四边形 ABCD 为长方形, AD = 2AB ,在线段 AD 上是否存在一点 O ,使得,∴ sin ∠ ABD=∵EF ∥CD ,∴ EF ∥AB ,∴ EF ∥平面 PAB . ⋯(6 分)此时点 O 为线段 AD 的四等分点,满足 ,⋯( 8 分) ∵长方形ABCD 中,∴△ ABO ∽△ ADC , ∴∠ ABO+∠CAB =∠ DAC + ∠CAB =90°,∴AC ⊥BO ,(10 分) 又∵ PA ⊥底面 ABCD ,BO? 底面ABCD , ∴PA ⊥BO , ∵PA ∩AC =A ,PA 、AC? 平面 PACABCD 为长方形,∴CD ∥AB ,∠ BAO =∠ ADC = 90°,四边形 ABCD 为直角梯形, AD∥BC ,∠ BAD=,PA 又∵ EF? 平面 PAB , AB? 平面 PAB ,Ⅱ) 在线段 AD 上存在一点 O ,使得 BO ⊥平面 PAC ,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M为PD 的中点.(Ⅰ)求证:CM ∥平面PAB;(Ⅱ)求证:CD ⊥平面PAC.解答】证明:(I )取PA 的中点E,连接ME 、BE,∵ ME ∥AD,ME AD,∴ ME ∥BC,ME=BC,∴四边形BCME 为平行四边形,∴ BE∥CM ,∵BE? 平面PAB,CM?平面PAB,∴ CM∥平面PAB;(II )在梯形ABCD 中,AB=BC=1,AD=2,∠ BAD=90° 过C作CH⊥AD于H,∴AC =CD=2 2 2∵AC2+CD2=AD2,∴ CD⊥AC又∵ PA⊥平面ABCD ,CD ?平面ABCD,∴ CD⊥PA∵PA∩AC=A,∴CD ⊥平面PAC4.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D是B1C1 的中点,证明:A1D⊥平面A1BC.解答】 证明:设 E 为 BC 的中点,连接 A 1E , DE ,AE ,由题意得 A 1E ⊥平面 ABC ,∴ A 1E ⊥AE .∵ AB = AC , AE ⊥BC ,∴ AE ⊥平面 A 1BC . 由 D ,E 分别为 B 1C 1,BC 的中点,得 DE ∥B 1B 且 DE =B 1B , 从而 DE ∥A 1A 且 DE =A 1A ,∴四边形 A 1AED 为平行四边形,∴ A 1D ∥AE .5.如图,△ ABC 为正三角形, AE 和 CD 都垂直于平而 ABC ,F 是 BE 中点, AE =AB = 2,CD = 1.(1)求证: DF ∥平面 ABC ;(2)求证: AF ⊥DE ;(3)求异面直线 AF 与 BC 所成角的余弦值.【解答】(1)证明:取 AC 中点 O ,过 O 作平面 ABC 的垂线交 DE连结 OB ,则 OG ⊥OB , OG ⊥ OC ,∵△ ABC 是正三角形, O 是 AC 中点,∴ OB ⊥ OC ,以 O 为原点, OB 、OC 、OG 所在直线分别为 x 、y 、z轴,建立空间直角坐标系,又∵ AE ⊥平面 A 1BC , ∴ A 1D ⊥平面 A 1BC∵F 是 BE 中点, AE =AB = 2,CD =1,=(﹣ , 1, 0), =( 0,0, 1),∵CD ⊥平面 ABC ,∴ =(0,0,1)是平面 ABC 的一个法向量,又 DF? 平面 ABC ,∴ DF ∥平面 ABC .2)证明:∵ =( ), =( 0,﹣2,1),∴ = 0﹣ 1+1=0,∴AF ⊥DE .(3)解:∵ =( ), =(﹣ ,1, 0),设 AF 、 BC 所成角为 θ,cos θ= ∴异面直线 AF 与 BC 所成角的余弦值6.如图,在四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB = 1,M 为线段 PD 的中点.( I )求证: BM ⊥PD( II )求直线 CM 与 PB 所成角的余弦值.∴ =( ,0), =( ), =(0,﹣ 2,1),∵ = , ∴,D (0,1,1),E (0,﹣1,∴A (0,﹣ 1,0),B(| | =【解答】( I )证明:连接 BD ,∵四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB =1, ∴PB =BD =∵ M 为线段 PD 的中点,∴BM ⊥PD(II )解:连接 AC ,与 BD 交于 O ,连接 OM ,则∵ M 为线段 PD 的中点,∴MO ∥PB∴直线 CM 与 PB 所成角的余弦值为7.如图,在正三棱柱 ABC ﹣A 1B 1C 1 中,所有棱长都等于 2.( 1)当点 M 是 BC 的中点时,① 求异面直线 AB 1和 MC 1 所成角的余弦值;② 求二面角 M ﹣AB 1﹣C 的正弦值;(2)当点 M 在线段 BC 上(包括两个端点)运动时, 求直线 MC 1与平面 AB 1C 所成角的∴∠ CMO (或其补角)为直线 CM 与 PB 所成角,在△ MOC中, ∴ cos ∠ CMO=CM = = ,. .解答】 解:(1)取 AC 的中点为 O ,建立空间直角坐标系 O ﹣ xyz ,则 ,C ( 0,1,0),当 M 是 BC 的中点时,则 . ①, 设异面直线 AB 1 和 MC 1 所成角为 θ,则 = = .= = .② , , ,,令 x = 2,∴ ,∴ .设二面角 M ﹣ AB 1﹣ C 的平面角为 θ,则=.所以 .( 2)当 M 在 BC 上运动时,设 .设平面 MAB 1的一个法向量为 ,则 .∴ 设平面 AB 1C 的一个法向量为 ,令 ,则 y =﹣ 1,z =﹣ 1,∴,,则正弦值的取值范围.设M(x,y,z),∴,∴ ,则,∴ .设直线MC1 与平面AB1C 所成的角为θ ,则设,设t=λ+1 ∈[1,2],所以,t∈[1,2].设,∴∵ ,∴ ,∴∴直线MC 1与平面AB1C 所成的角的正弦值的取值范围为6.如图,在四棱锥 A ﹣BCDE 中,平面 ABC ⊥平面 BCDE ,∠ CDE =∠ BED =90°, AB =CD = 2,DE =BE =1,AC = .( 1)证明: DE ⊥平面 ACD ;( 2)求棱锥 C ﹣ ABD 的体积.【解答】 解:( 1)在直角梯形 BCDE 中,∵DE = BE = 1, CD = 2,∴ BC == , 又 AB =2, AC = ,∴ AB 2=AC 2+BC 2,即 AC ⊥ BC ,又平面 ABC ⊥平面 BCDE ,平面 ABC ∩平面 BCDE =BC ,AC? 平面 ABC ,∴AC ⊥平面 BCDE ,又 DE? 平面 BCDE ,∴AC ⊥ DE ,又 DE ⊥DC ,AC ∩CD =C ,∴ DE ⊥平面 ACD .1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M分别是棱 AA 1, BC 的中点.证明:S △BCD ?AC =V C ﹣ABD =V A ﹣BCD =1)AM∥平面BDC12)DC1⊥平面BDC .∴AD ∥ MN ,且 AD = MN ;∴四边形 ADNM 为平行四边形,∴DN ∥AM ;又 DN? 平面 BDC 1,AM? 平面 BDC 1,∴ AM ∥平面 BDC 1⋯( 6 分)( 2)由已知 BC ⊥CC 1,BC ⊥AC ,又 CC 1∩ AC = C ,∴ BC ⊥平面 ACC 1A 1,又 DC 1? 平面 ACC 1A 1,∴ DC 1⊥BC ;由已知得∠ A 1DC 1=∠ ADC =45°,∴∠ CDC 1= 90°,∴DC 1⊥DC ;又 DC ∩BC =C ,∴ DC 1⊥平面 BDC .⋯( 12分)【解答】 证明:( 1)如图所示,取 BC 1 的中点 N ,连接 DN ,MN .则 MN ∥ CC 1,且 M N = CC 1;又 AD ∥CC 1,且 ADV = ,2.如图,四边形 ABCD 为菱形, G 为 AC 与 BD 的交点, BE ⊥平面 ABCD .( 1)证明:平面 AEC ⊥平面 BED .因为 BE ⊥平面 ABCD , AC? 平面 ABCD ,所以 AC ⊥BE ,⋯( 2 分)又因为 DB ∩BE =B ,所以 AC ⊥平面 BED .⋯( 3分) 又 AC? 平面 AEC ,所以平面 AEC ⊥平面 BED .⋯( 5 分)2)取 AD 中点为 M ,连接 EM .因为∠ ABC = 120°.,AB =2,所以 AB =DB = 2,AG = ,DG = 1,因为 AE ⊥EC ,所以 EG == ,所以 BE = ,⋯( 6 分)所以 AE =DE = ,又所以 AD 中点为 M ,所以 EM ⊥AD 且 EM = .设点 G 到平面 AED 的距离为为 h , 则三棱锥 E ﹣ADG 的体积为求点 G 到平面 AED 的距离.为菱形,所以 AC ⊥BD ,⋯( 1 分)即,解得 h = .PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,ABCD ,且平面 PAD ∩平面 ABCD =AD ,AB ⊥AD ,AB? 平面 ABCD ,∴ AB ⊥平面 PAD ,∵PD? 平面 PAD ,∴AB ⊥PD ,又 PD ⊥PA ,且 PA ∩AB =A ,∴ PD ⊥平面 PAB ;( 2)解:取 AD 中点 O ,连接 PO ,则 PO ⊥ AD , 又平面 PAD ⊥平面 ABCD , ∴PO ⊥平面 ABCD ,∵PA ⊥PD ,PA =PD ,AD =2,∴ PO =1.10 分) 所以点 G 到平面 AED 的距离为AB =1,AD =2,AC =CD = .1)求证: PD ⊥平面PAB ;在△ ACD 中,由 AD =2,AC =CD = ,可得 .4.如图,在四棱锥 P ﹣ABCD 中, AB ∥CD ,且∠ BAP =∠ CDP =901)证明:平面 PAB ⊥平面 PAD ;P ﹣ABCD 中,∠ BAP =∠ CDP = 90°,∴AB ⊥PA ,CD ⊥PD ,又 AB ∥ CD ,∴ AB ⊥PD ,∵PA ∩PD =P ,∴ AB ⊥平面 PAD ,∵AB? 平面 PAB ,∴平面 PAB ⊥平面 PAD .解:(2)设 PA =PD =AB =DC =a ,取 AD 中点O ,连结 PO ,∵PA =PD =AB =DC ,∠ APD =90°,平面 PAB ⊥平面 PAD ,∵四棱锥 P ﹣ABCD 的体积为由 AB ⊥平面 PAD ,得 AB ⊥ AD ,∴V P ﹣ABCD =2)若 PA =PD = AB = DC ,∠ APD =90°,且四棱锥 P ﹣ ABCD 的体积为求该四棱 ∴ PO ⊥底面ABCD , O P= = = = , 解得 a =2,∴ PA =PD =AB =DC =2,AD =BC =2 ,PO = , ∴ PB = PC = =2 ,∴该四棱锥的侧面积:S 侧= S △PAD +S △PAB +S △PDC +S △PBC=+1)证明: AC ⊥ BD ;2)已知△ ACD 是直角三角形, AB = BD ,若 E 为棱 BD 上与 D 不重合的点, ∵△ ABC 是正三角形, AD =CD ,∴DO ⊥AC ,BO ⊥AC ,∵DO ∩BO =O ,∴ AC ⊥平面 BDO ,∵BD? 平面 BDO ,∴AC ⊥BD . 解:(2)法一:连结 OE ,由( 1)知 AC ⊥平面 OBD , ∵OE? 平面 OBD ,∴ OE ⊥ AC , 设 AD = CD = ,则 OC = OA = 1, EC = EA ,2 2 2 ∵AE ⊥CE ,AC =2,∴ EC 2+EA 2=AC 2,∴ EC = EA = = CD ,∴E 是线段 AC 垂直平分线上的点,∴ EC =EA =CD = ,由余弦定理得:AE ⊥= 6+2 .AD =CD .∵BE<<BD=2,∴BE=1,∴ BE=ED ,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵ BE=ED ,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴ BO==,∴ BO2+DO2=BD2,∴ BO⊥DO,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系,则C(﹣1,0,0),D(0,0,1),B(0,,0),A(1,0,0),设E(a,b,c),,(0≤λ≤1),则(a,b,c﹣1)=λ(0,,﹣1),解得E(0,,1﹣λ),∴ =(1,),=(﹣ 1 ,),∵AE⊥EC,∴=﹣1+3λ2+ (1﹣λ)2=0,由λ∈[0 ,1],解得,∴ DE=BE,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵DE=BE,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.AEF⊥平面EFCB,EF=2,四边形EFCB 是高为的等腰梯形,EF∥BC,O 为EF 的中点.1)求证:AO⊥CF;O 为EF 的中点,所以AO⊥ EF ⋯( 1 分)又因为平面AEF⊥平面EFCB,AO? 平面AEF,平面AEF ∩平面EFCB =EF ,所以AO ⊥平面EFCB,⋯( 4 分)又CF? 平面EFCB ,所以AO⊥ CF ⋯( 5 分)(2)解:取BC 的中点G,连接OG.由题设知,OG⊥BC ⋯( 6 分)由(1)知AO⊥平面EFCB ,又BC? 平面EFCB ,所以OA⊥BC,因为OG∩OA=O,所以BC⊥平面AOG⋯(8 分)过O 作OH⊥AG,垂足为H,则BC⊥ OH ,因为AG∩BC=G,所以OH⊥平面ABC.⋯(10 分)因为,所以,即O 到平面ABC 的距离为.(另外用等体积法亦可)⋯(12 分)10.直三棱柱ABC﹣A1B1C1 中,若∠ BAC=90°,AB=AC=AA1,则异面直线BA1 与B1C 所成角的余弦值为(A.0 B.C.。
高考复习 立体几何大题第一问精练(文科)

高考复习 立体几何大题第一问精练题型1 线线平行、垂直1.(2016新课标Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD , 折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.2.(2015新课标Ⅱ卷)如图,长方体ABCD-A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面 与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由).解 (1)交线围成的正方形EHGF 如图:题型2 线面平行3.(2017新课标Ⅱ卷)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=21AD ,∠BAD=∠ABC=90°.(1)证明:直线BC ∥平面PAD.4.(2016新课标Ⅲ卷)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB.解析 (Ⅰ)由已知得AM=32AD=2.取BP 的中点T ,连结AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=21BC=2.(3分) 又AD ∥BC ,故TN ∥AM ,故四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB.(6分)5.(2016四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =21AD.(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD.(1)解 取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM.所以四边形AMCB 是平行四边形,所以CM ∥AB. 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB.(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)6.(2014新课标Ⅱ卷)如图,四棱锥PABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB∥平面AEC.(1)证明设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.题型3 线面垂直7.(2017新课标Ⅲ卷)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD.[解析] (1)证明:取AC中点O,连OD,OB,∵AD=CD,O为AC中点,∴AC⊥OD,又∵△ABC是等边三角形,∴AC⊥OB,又∵OB∩OD=O,∴AC⊥平面OBD,BD 平面OBD,∴AC⊥BD;8.(2018新课标Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC.(1)证明:∵AB=BC=22,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;9.(2015广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD .解 (1)因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA.(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD.10.(2016北京卷)如图,在四棱锥PABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC.(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC.又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC ,∴CD ⊥平面PAC.(2)证明 ∵AB ∥CD ,CD ⊥平面PAC ,∴AB ⊥平面PAC ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAC.11.(2014山东卷)如图,四棱锥PABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =21AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面PAC.证明 (1)设AC ∩BE =O ,连接OF ,EC.由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC , 所以AE ∥BC ,AE =AB =BC ,所以四边形ABCE 为菱形,所以O 为AC 的中点.又F为PC的中点,所以在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,所以BE∥CD.又AP⊥平面PCD,所以AP⊥CD,所以AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP、AC⊂平面PAC,所以BE⊥平面PAC.12.(2016新课标Ⅰ卷)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点.解:(Ⅰ)证明:∵P−ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;题型4 面面垂直13.(2018新课标Ⅲ卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC.解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧所在平面垂直,∴AD⊥平面BCM,则AD⊥MC,∵AD∩DM=D,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.14.(2018新课标Ⅰ卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC.解:(1)证明:∵在平行四边形ABCM 中,∠ACM=90°,∴AB ⊥AC ,又AB ⊥DA .且AD ∩AB=A ,∴AB ⊥面ADC ,∴AB ⊂面ABC ,∴平面ACD ⊥平面ABC ;15.(2017新课标Ⅰ卷)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD .(1)证明:∵90BAP CDP ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD16.(2015新课标Ⅰ卷)如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC ⊥平面BED.解 (1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.所以AC ⊥平面BED ,又AC ⊂平面AEC ,所以平面AEC ⊥平面BED.17.(2015湖南卷)如图,直三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1.(1)证明∵△ABC为正三角形,E为BC中点,∴AE⊥BC,∴又B1B⊥平面ABC,AE⊂平面ABC,∴B1B⊥AE,∴由B1B∩BC=B知,AE⊥平面B1BCC1,又由AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.。
专题01 立体几何部分(解析版)-2020年江苏高考数学试卷名师分析与预测

专题一 立体几何部分一、近几年江苏高考1、(1)(2019江苏卷)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.【答案】10.【解析】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. (2)(2019江苏卷).如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E . 【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.2、(1)(2018江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为(2)(2018江苏卷)在平行六面体中,.求证:(1);(2).【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .3、(1)(2017江苏卷)如图,圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.【答案】 32【解析】设球的半径为R ,则圆柱的底面半径为R ,高为h =2R .因为V 1=πR 2h =2πR 3,V 2=4πR 33,所以V 1V 2=32. (2)(2017江苏卷)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1) EF ∥平面ABC ; (2) AD ⊥AC .证明:(1) 在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2) 因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD. 因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.4、(1)(2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1) 若AB=6 m,PO1=2 m,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?【答案】 (1) 由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P A 1B 1C 1D 1的体积 V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCDA 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2) 设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连结O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎫2a 22+h 2=36,即a 2=2(36-h 2), 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO1=2 3 m时,仓库的容积最大.(2)(2016江苏卷)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1) 直线DE∥平面A1C1F;(2) 平面B1DE⊥平面A1C1F.解析:(1) 在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2) 在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.5、(1)(2015江苏卷)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.【答案】7【解析】设新的底面半径为r ,则13π×52×4+π×22×8=13πr 2×4+πr 2×8,解得r =7.(2)(2015江苏卷)如图,在直三棱柱ABCA 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1) DE ∥平面AA 1C 1C ; (2) BC 1⊥AB 1.(1) 由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2) 因为棱柱ABCA 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C . 因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.二、近几年高考试卷分析从近五年江苏高考数学来看体现了以下几个方面:1、从题型来看主要以一个填空,一个解答;(2016年填空题中没有考查体积,体积的考查体现在应用题中);2、从知识点考查的内容来看主要以填空题是关于体积的计算,解答题设置了2问,第一问考查了平行,主要时候以线面平行,使用的方法还是以中位线为主。
立体几何典型例题精选(含答案)

FEDCBA 立体几何专题复习热点一:直线与平面所成的角例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,3AE =.(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC ===2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图.(1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.热点二:二面角例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC 于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D -AF -E的余弦值.变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小.变式4:[2014·全国19] 如图1-1所示,三棱柱ABC -A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.热点三:无棱二面角例3.如图三角形BCD 与三角形MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =.(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且114BK BB =,134CM CC =. 求:平面AKM 与ABCD 所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,AB =2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2014·四川,18] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.2.[2014·湖南卷] 如图所示,四棱柱ABCD -A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.3.[2014·江西19] 如图1-6,四棱锥P -ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD. (2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P -ABCD 的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.M OH FED C B A 立体几何专题复习 答案例1.(2014,广二模)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE nAE=. ……………11分∴cos θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE……………14分变式1:(2013湖北8校联考)(1)取BD 中点F ,连结,EF AF ,则11,,60,2AF EF AFE ==∠=……………2分由余弦定理知22222113121cos 60,222AE AF EF AE AE EF ⎛⎫+-⋅⋅=+=∴⊥ ⎪⎝⎭………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分 (2)以E 为原点建立如图示的空间直角坐标系,则31),(1,,0)2A C -,11(1,,0),(1,,0)22B D --- ………8分设平面ABD 的法向量为n (,,)x y z =,由00n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得201302x x y =⎧⎪⎨+=⎪⎩,取3z =,则3,(0,3)y =-∴=-n . 136(1,,),cos ,224||||AC AC AC AC =--∴<>==-n n n ……11分故直线AC 与平面ABD 10. …………12分变式2:(2014福建卷)解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD . …………3分 又CD ⊂平面BCD ,∴AB ⊥CD . …………4分 (2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . ……6分以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1).…………7分 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). …………9分设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. …………11分 即直线AD 与平面MBC 所成角的正弦值为63. …………12分例2.(2014,广东卷):(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CD DECF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,419||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:(2014浙江卷)解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . …………2分 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . …………4分 (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG . 由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.…………6分在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6.在Rt △AED 中,由ED =1,AD =6,得AE =7.…………7分在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23. …………9分在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23. …………11分在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF=32. …………13分所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.…………14分方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴, 建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).…………7分由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).…………9分由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2).…………11分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32. …………13分由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6.变式4:(2014全国卷)19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C AA 1C 1C ⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C . …………2分连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC 1⊥A 1B . ……4分(注意:这个定理我们不能用) (2) BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. …………6分又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3. …………8分 作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.…………10分由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1DDF=15,……12分 所以cos ∠A 1FD =14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B . …………4分(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为 |CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c . …………6分又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3). …………8分 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1).…………10分 又p =(0,0,1)为平面ABC 的法向量,…………11分 故 cos 〈n ,p 〉=n ·p |n ||p |=14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分例3. 无棱二面角(2010年江西卷)解法一:(1)取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD .又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO ∥AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则∠AEB 就是AM 与平面BCD 所成的角.OB =MO 3,MO ∥AB ,MO//面ABC ,M 、O 到平面ABC 的距离相等,作OH ⊥BC 于H ,连MH ,则MH ⊥BC ,求得:OH=OCsin600,利用体积相等得:A MBC M ABC V V d --=⇒=5分 (2)CE 是平面ACM 与平面BCD 的交线.由(1)知,O 是BE 的中点,则BCED 是菱形.作BF ⊥EC 于F ,连AF ,则AF ⊥EC ,∠AFB 就是二面角A -EC -B 的平面角,设为θ. ……7分因为∠BCE =120°,所以∠BCF =60°.sin 603BF BC =⋅=9分tan 2ABBFθ==,sin θ=…………11分所以,所求二面角的正弦值是5. …………12分 解法二:取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .以O 为原点,直线OC 、BO 、OM 为x 轴,y 轴,z 轴,建立空间直角坐标系如图. OB =OM ,则各点坐标分别为O (0,0,0),C (1,0,0),M (0,0,B (0,,0),A (0,,3),(1)设(,,)n xy z =是平面MBC 的法向量,则BC=(1,3,0),BM =,由n BC⊥得0x +=;由n BM ⊥得0+=;取(3,1,1),(0,0,n BA =-=,则距离2155BA n d n⋅==…………5分 (2)(CM =-,(1,CA =-.设平面ACM 的法向量为1(,,)n x yz =,由11n CM n CA⎧⊥⎪⎨⊥⎪⎩得0x x ⎧-+=⎪⎨-+=⎪⎩.解得x =,y z =,取1(3,1,1)n =.又平面BCD 的法向量为(0,0,1)n =,则1111cos ,5nn n n n n⋅<>==⋅ 设所求二面角为θ,则sin θ==.…………12分BA变式5:解析:由于BCMK 是梯形,则MK 与CB 相交于E .A 、E 确定的直线为m ,过C 作CF ⊥m 于F ,连结MF ,因为MC ⊥平面ABCD ,CF ⊥m ,故MF ⊥m .∠MFC 是二面角M -m -C 的平面角.设正方体棱长为a ,则34CM a =,14BK a =.在△ECM 中,由BK ∥CM 可得12EB a =,CF =,故tan 4MFC ∠=.因此所求角的余弦值为cos 21MFC ∠=. 变式6:解析:∵平面ABCD ∥平面1111A B C D ,∴平面1AB C 与平面1111A B C D 的交线m 为过点1B 且平行于AC 的直线.直线m 就是二平面1AB C 与1111A B C D 所成二面角的棱.又平面1AB C 与平面1AA ⊥平面1111A B C D ,过1A 作AH ⊥m 于H ,连结AH .则1AHA ∠为二面角1A m A --的平面角.可求得1tan AHA ∠=.高考试题精选1.(2014 四川卷)解:(1)如图所示,取BD 的中点O ,连接AO ,CO .由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP .又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.…………5分 (2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点,所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.…………13分故二面角A - NP - M 的余弦值是105. …………14分 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.…………6分如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32.…………7分 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). …………9分 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0,即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0,从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). …………11分 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.…13分故二面角A -NP -M 的余弦值是105.…………14分2.(2014 湖南卷)解:(1)如图(a),因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1,所以CC 1⊥BD .而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD . …………4分 (2)方法一: 如图(a),过O 1作O 1H ⊥OB 1于H ,连接HC 1.由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1.进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1OB 1D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H =237197=25719.即二面角C 1OB 1D 的余弦值为25719.方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0) ,B 1(3,0,2),C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1OB 1D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1OB 1D 的余弦值为25719.3.(2014 江西卷)19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P - ABCD 的体积为V =13×6·m ·43-m 2=m38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎫m 2-232+83, 所以当m =63,即AB =63时,四棱锥P - ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为 O (0,0,0),B ⎝⎛⎭⎫63,-63,0,C⎝⎛⎭⎫63,263,0,D ⎝⎛⎭⎫0,263,0,P ⎝⎛⎭⎫0,0,63,故PC →=⎝⎛⎭⎫63,263,-63,BC →=(0,6,0),CD =⎝⎛⎭⎫-63,0,0. 设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1).同理可求出平面DPC 的一个法向量为n 2=⎝⎛⎭⎫0,12,1. 设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105.。
高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______题号一二三总分得分评卷人得 分一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为( )A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为( )A.1B.C.D.3.一个棱柱是正四棱柱的条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是( )A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是( )A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:⊥;①FG BD②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是( )A.①和②B.③和④C.①和③D.②和④⊥,垂足为⊥,CH PB7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB BCH,D是PA的中点,则△CDH的面积最大时,CB的长是( )A.B.C.D.8、正方体的直观图如图所示,则其展开图是( )A.B.C.D.评卷人得 分二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且⊥,AC=m,BD=n,则四 边形EFGH的面积为______.AC BD10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结⊥;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与论:①PB AE平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有_ _____个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且⊥1,有下述结论FD AC⊥;(1)AC1BC(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论⊥①AC BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)评卷人得 分三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,∽△.求证:△EFG BCD17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为( )A.B.C.D.解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为( )A.1B.C.D.答案:B解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S ABH△=S ABCD=故选B3.一个棱柱是正四棱柱的条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是( )A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是( )A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径⊥,三角形ABC是直角三角形∴∠ACB=90°即BC AC又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内⊥因此BC垂直于平面PAC中两条相交直线,∴PA BC∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是棱A 1B 1、BB 1、B 1C 1的中点,则下列结论中:①FG BD ⊥;②B 1D ⊥面EFG ;③面EFG ∥面ACC 1A 1;④EF ∥面CDD 1C 1.正确结论的序号是( )A .①和②B .③和④C .①和③D .②和④答案:D 解析:解:如图连接A 1C 1、A 1B 、BC 1、BD 、B 1D ,因为E 、F 、G 分别是棱A 1B 1、BB 1、B 1C 1的中点对于①因为FG BC ∥1,△BDC 1是正三角形,FG BD ⊥,不正确.对于②因为平面A 1C 1B ∥平面EFG ,并且B 1D ⊥平面A 1C 1B ,所以B 1D ⊥面EFG ,正确.③面EFG ∥面ACC 1A 1;显然不正确.④EF ∥平面CDD 1C 1内的D 1C ,所以EF ∥面CDD 1C 1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,⊥,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是(PA=4,AB BC⊥,CH PB)A.B.C.D.答案:D解析:⊥;解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC AB⊥,BC∩PC=C,又AB BC∴AB⊥平面PBC;又CH⊂平面PBC,⊥,∴AB CH⊥,又CH PBPB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,⊥;∴CH DH又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;△,设BC=x,在Rt PBC则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是( )A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D评卷人得 分二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,⊥,AC=m,BD=n,则四 边形EFGH的面积为______.并且AC BD答案:解析:⊥,可得四边形解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC BDEFGH为矩形,且此矩形的长和宽分别为和 ,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面⊥;②平面ABC⊥平面PBC;③直线BC∥平面PAE;ABC,PA=2AB,给出下列结论:①PB AE④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:⊥,解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA AE⊥,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,又由正六边形的性质得AE AB⊥,①正确;∴AE PB对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;∥,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面对于③、由正六边形的性质得BC ADPAE也不成立,③错;△中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于④、在Rt PAD∥,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的对于⑤、由于DE AB距离,即EA,EA=AB,在Rt PAD △中,PA=AD=2AB ,∴PD=2AB ,∴直线PD 与平面PAB 所成角的正弦值为=,∴直线PD 与平面PAB 所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M ,PA ⊥底面ABC ,∠ABC=90°,则此三棱锥P-ABC 中直角三角形有______个.答案:4解析:解:由已知PA ⊥底面ABC ,∠ABC=90°,所以CB PA ⊥,CB AB ⊥,又PA∩AB=A ,所以CB ⊥平面PAB ,所以CB PB ⊥,所以此三棱锥P-ABC 中直角三角形有△ABC ,△ABP ,△ACP ,△PBC 共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长⊥1,有下述结论都等于2,D在AC1上,F为BB1中点,且FD AC⊥;(1)AC1BC(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,∠1C1A==,AC 1=2,cos B故(1)错;(2)连接AF ,C 1F ,则易得AF=FC 1=,又FD AC ⊥1,则AD=DC 1,故(2)正确;(3)连接CD ,则CD AC ⊥1,且FD AC ⊥1,则∠CDF 为二面角F-AC 1-C 的平面角,CD=,CF=,DF===,即CD 2+DF 2=CF 2,故二面角F-AC 1-C 的大小为90°,故(3)正确;(4)由于CD AC ⊥1,且FD AC ⊥1,则AD ⊥平面CDF ,则VD-ACF =V A-DCF =•AD•S DCF △=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a 的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a ,OA=R ,在△OEA 中,OE=,AE=,∵AO 2=OE 2+AE 2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论⊥①AC BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF 的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC BE ⊥,由题意及图形知,AC ⊥面DD 1B 1B ,故可得出AC BE ⊥,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A 1B 1C 1D 1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③由图知,当F 与B 1重合时,令上底面顶点为O ,则此时两异面直线所成的角是∠A 1AO ,当E 与D 1重合时,此时点F 与O 重合,则两异面直线所成的角是∠OBC 1,此二角不相等,故异面直线AE 、BF 所成的角不为定值,故不正确.④A 1点到面DD 1B 1B 距离是定值,所以A 1点到面BEF 的距离为定值,正确;⑤三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD 1B 1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确.故答案为:①②④⑤.评卷人得 分三.简答题(共__小题)16、如图,立体图形A-BCD 的四个面分别为△ABC 、△ACD 、△ADB 和△BCD ,E 、F 、G 分别是线段AB 、AC 、AD 上的点,且满足AE :AB=AF :AC=AG :AD ,求证:△EFG BCD ∽△.答案:证明:在△ABD 中,∵AE :AB=AG :AD ,∴EG BD ∥.同理,GF DC ∥,EF BC ∥.又∠GEF 与∠DBC 方向相同.∴∠GEF=DBC ∠.同理,∠EGF=BDC ∠.∴△EFG BCD ∽△.17、如图,在三棱锥D-ABC 中,已知△BCD 是正三角形,AB ⊥平面BCD ,AB=BC=a ,E 为BC 的中点,F 在棱AC 上,且AF=3FC .(1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ;(3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.。
2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
立体几何证明题常见题型01

A B CDP EF立体几何证明题常见题型1、如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,1==DC PD ,E 是PC 的中点,作PB EF ⊥交PB 于点F .(I) 证明: PA ∥平面EDB ;(II) 证明:PB ⊥平面EFD ;(III) 求三棱锥DEF P -的体积.2、如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。
(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。
3、如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且ACE BF 平面⊥. (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证;BFD AE 平面//;(Ⅲ)求三棱锥BGF C -的体积.4、如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。
EF//AC ,AB=2,CE=EF=1 (Ⅰ)求证:AF//平面BDE ; (Ⅱ)求证:CF ⊥平面BDF;5、在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E G F 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ) 求证:平面PDC EFG 平面⊥;ABCDHPABCDEFA BCDEFG(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.6、如图所示,矩形ABCD 中,AD ⊥平面ABE ,AE=EB=BC=2,F 为CE 上的点,且BF ⊥平面ACE (1)求证:AE ⊥平面BCE ;(2)求证:AE ∥平面BFD ; (3)求三棱锥C-BGF 的体积。
7、在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,且AC =BC =5,SB =55。
立体几何专题复习

专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD.(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1 (1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD.题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC.求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE.微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD.微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A 1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12PD,求证:平面PQC⊥平面DCQ.思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD.(2)(2019·济南质检)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.①证明:AP⊥BC;②若点M是线段AP上一点,且AM=3,试证明平面AMC⊥平面BMC.题型三探究性问题在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB.若存在,确定G点的位置;若不存在,试说明理由.思考题3 (2019·山西长治二模)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=2,E为PD上一点,PE=2ED.(1)求证:PA⊥平面ABCD;(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC若存在,指出F点的位置,并证明;若不存在,说明理由.专题二求解异面直线所成角和线面角问题题型一异面直线所成的角(1)在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E,F分别是CC1,AD的中点,则异面直线OE和FD1所成的角的余弦值等于________.(2)(2019·安徽知名示范高中联合质检)若在三棱柱ABC-A1B1C1中,∠A1AC=∠BAC=60°,平面A1ACC1⊥平面ABC,AA1=AC=AB,则异面直线AC1与A1B所成角的余弦值为思考题1 (2019·湖南雅礼中学期末)如图1,在矩形ABCD中,AB=2,BC=1,E是DC 的中点;如图2,将△DAE沿AE折起,使折后平面DAE⊥平面ABCE,则异面直线AE和BD所成角的余弦值为________.题型二定义法求线面角(1)(2019·山东荷泽期末)在斜三棱柱ABC-A1B1C1中,侧棱AA1⊥平面AB1C1,且△AB1C1为等边三角形,B1C1=2AA1=2,则直线AB与平面B1C1CB所成角的正切值为( )(2)如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是( )A.[33,1] B.[63,1] C.[63,223] D.[223,1]思考题2 (1)(2019·河北石家庄一模)如图所示,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角的大小为________.(2)把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( )A.90° B.60° C.45° D.30°题型三向量法求线面角(1)(2019·河南郑州月考)如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PA=PD=5,平面ABCD⊥平面PAD,M是PC的中点,O是AD的中点,则直线BM与平面PCO 所成角的正弦值是________.(2)如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.若直线FO与平面BED所成的角为45°,则AE=________.思考题3 (1)正四棱锥S-ABCD中,O为顶点S在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是________.(2)(2019·河南百校联盟联考)已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为( )(1)(2019·太原模拟一)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA⊥BD.①求证:PB=PD;②若E,F分别为PC,AB的中点,EF⊥平面PCD,求直线PB与平面PCD所成角的大小.(2)(2019·湖南长郡中学选拔考试)如图,在直三棱柱ABC-A1B1C1中,BA=BC=5,AC=8,D为线段AC的中点.①求证:BD⊥A1D;②若直线A1D与平面BC1D所成角的正弦值为45,求AA1的长.思考题4 (2019·石家庄质检二)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为∠CBB1=60°的菱形,AB=AC1.(1)证明:平面AB1C⊥平面BB1C1C;(2)若AB⊥B1C,直线AB与平面BB1C1C所成的角为30°,求直线AB1与平面A1B1C所成角的正弦值.专题三求解二面角问题题型一定义法求二面角(1)(2019·台州一模)在边长为a的等边三角形ABC中,AD⊥BC于点D,沿AD折成二面角B-AD-C,若此时BC=12a,则二面角B-AD-C的大小为________.(2)如图,二面角α-l-β的大小是60°,线段AB?α,B∈l,AB与l所成的角为30°,则AB与平面β所成的角的正弦值是(3)已知三棱锥P-ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径.当三棱锥P-ABC的体积最大时,设二面角P-AB-C的大小为θ,则sinθ=( )思考题1 (1)如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D重合于F,此时二面角E-BC-F的余弦值为( )(2)如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,若PA=AB=2,AC=BC,则二面角P-AC-B的正切值是________.题型二向量法求二面角(1)已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的锐二面角的正切值为________.(2)(2019·河南安阳)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为( ) A.150°B.45° C.60° D.120°思考题2 (1)设平面α的一个法向量为n1=(1,2,-2),平面β的一个法向量为n2=(-2,-4,k),若α和β所成的锐二面角的余弦值为23,则k=________.(2)(2019·辽宁丹东模拟)如图,正方形A1BCD折成直二面角A-BD-C,则二面角A-CD -B的余弦值是________.(3)(2019·广东中山模拟)在矩形ABCD中,已知AB=2,AD=22,M,N分别为AD和BC 的中点,沿MN把平面ABNM折起,若折起后|AC|=6,则二面角A-MN-C的大小为( ) A.30° B.45° C.60° D.90°(2019·惠州二次调研)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC =60°,PA⊥PB,PC=2.(1)求证:平面PAB⊥平面ABCD;(2)若PA=PB,求二面角A-PC-D的余弦值.思考题3 (2019·河北五一名校联考)在斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,底面△ABC是边长为2的正三角形,A1A=A1C,A1A⊥A1C.(1)求证:A1C1⊥B1C;(2)求二面角B1-A1C-C1的正弦值.题型三空间角的综合问题(2019·唐山五校联考)如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求直线PA与平面EAC所成角的正弦值.思考题4 (2019·江南十校素质检测)如图,在以A,B,C,D,E,F为顶点的五面体中,平面CDEF⊥平面ABCD,FC=FB,四边形ABCD为平行四边形,且∠BCD=45°.(1)求证:CD⊥BF;(2)若AB=2EF=2,BC=2,直线BF与平面ABCD所成角为45°,求平面ADE与平面BCF 所成锐二面角的余弦值.专题四综合问题题型一空间的距离(1)(2019·江西九江期末)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为正方形,E为CD的中点,F为PA的中点,且PA=AB=2.则点P到平面BEF的距离为( )(2)已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F分别是AB,AD的中点,求点B到平面GEF的距离.思考题1 (1)(2019·黑龙江哈尔滨期末)三棱柱ABC-A1B1C1底面为正三角形,侧棱与底面垂直,若AB=2,AA1=1,则点A到平面A1BC的距离为( )2.(2017·课标全国Ⅰ,理)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.(2)(2019·湖南长沙一模)正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,求点F到平面A1D1E的距离.题型二探究性问题(2019·湖南重点校联考)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.思考题 2 (2019·西安八校联考)已知几何体ABCC1B1N的直观图如图所示,CB⊥底面ABB1N,且ABB1N为直角梯形,侧面BB1C1C为矩形,AN=AB=BC=4,BB1=8,∠NAB=∠ABB1=90°.(1)连接B1C,若M为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C-NB1-C1的余弦值.题型三翻折问题(2019·安徽合肥调研性检测)平面四边形ABCD中,∠DAB=π2,AD=AB,△BCD为等边三角形.现将△ABD沿BD翻折得到四面体P-BCD,点E,F,G,H分别为PB,PD,CD,CB的中点.(1)求证:四边形EFGH为矩形;(2)当平面PBD⊥平面CBD时,求直线BG与平面PBC所成角的正弦值.思考题3 如图,在直角梯形ABCP中,∠A=∠B=90°,AB=BC=3,AP=6,CD⊥AP于D,现将△PCD沿线段CD折成60°的二面角P-CD-A,设E,F,G分别是PD,PC,BC的中点.(1)求证:PA∥平面EFG;(2)若M为线段CD上的动点,求直线MF与平面EFG所成角的最大角,并确定成最大角时点M在什么位置高考题呈现1.(2014·全国Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求A到平面PBC的距离.2.(2016·北京)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD若存在,求AMAP的值;若不存在,说明理由.3.(2018·浙江)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.4.(2016·课标全国Ⅲ)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC =3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.5.(2018·课标全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.6.(2016·课标全国Ⅰ,理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.7.(2017·课标全国Ⅰ,理)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠C DP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.8.(2018·课标全国Ⅱ,理)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.9.(2018·北京,理)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;的余弦值;(2)求二面角B-CD-C1(3)证明:直线FG与平面BCD相交.10.(2017·北京,理)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.。
立体几何经典试题(含答案)

1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 【解析】(Ⅰ)由题设知BC BC⊥⊥1CC ,BC ,BC⊥⊥AC AC,,1CC AC C Ç=,∴BC ^面11ACC A , , 又又∵1DC Ì面11ACC A ,∴1DC BC ^,由题设知01145A DC ADC Ð=Ð=,∴1CDC Ð=090,即1DC DC ^, 又∵DC BC C Ç=, , ∴∴1DC ⊥面BDC , , ∵∵1DC Ì面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+´´´=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ^平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为△PAD 中AD 边上的高. (1)证明:PH ^平面ABCD ;(2)若1PH =,2AD =,1FC =,求三棱锥E BCF -的体积;的体积;(3)证明:EF ^平面PAB . B 1C B A D C 1A 1【解析】(1)证明:因为AB ^平面PAD ,所以PH AB ^。
因为PH 为△PAD 中AD 边上的高,边上的高, 所以PH AD ^。
因为AB AD A = ,所以PH ^平面ABCD 。
(2)连结BH ,取BH 中点G ,连结EG 。
立体几何练习题(含答案)精选全文完整版

可编辑修改精选全文完整版《立体几何 》练习题一、 选择题1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A 、垂直B 、平行C 、相交不垂直D 、不确定2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( )A. BDB. CDC. BCD. 1CC3、线n m ,和平面βα、,能得出βα⊥的一个条件是( )A.βα//n ,//m ,n m ⊥B.m ⊥n ,α∩β=m ,n ⊂αC.αβ⊆⊥m n n m ,,//D.βα⊥⊥n m n m ,,//4、平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A.①和②B.②和③C.③和④D.①和④6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC 的( )A.内心B.外心C.重心D.垂心7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m8. 已知两个平面垂直,下列命题中正确的个数是( )①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.A.3B.2C.1D.09. 设m.n 是两条不同的直线,α.β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β10. 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 二、填空题11、在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 .12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC ,BD=CD 则BC ⊥AD ;②若AB=CD ,AC=BD 则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD 则BC ⊥AD ;④若AB ⊥CD , BD ⊥AC 则BC ⊥AD ;其中真命题序号是 .13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 .14. 如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形参考答案 选择题:AACDA,BCCCB填空题:11、1312、①④ 13、//b b ββ⊂或 14、4A B C P欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G 点,因为 FG∥BC1,所以,G 是 B1C1 的中点。 因为 AB=BC=AA1,AA1⊥底面 ABC, 所以 ABA1B1,BCB1C1 是正方形。 我们设 AB=2,那么,EF=FG= 2----(1)
(步骤 2)连接 EG,在三角形 EFG 中,已知
BEC 的高,(3)BE 是平面 ABC 的高
而 AB、BC 都十分容易求出,任选一个作为高即可。
【解】
【第一步】因为 BC 垂直平面 ABE, 故 BC 是高,且 BC=3------------(4)
【第二步】在 RT△ABA1 中, AB=3, AA1=4 ,所以 A1B=5
第 9页
又因为 AF⊥A1B,
1 V= S△ABE×BC [把(4)、(7)代入]
3
27 =
8
第三问:求二面角 B—AE—C 的大小
【第一步】因为 FB 是 FC 在平面 ABA1B1 的投影, 又因为 AF⊥FB----(8) 故:AF⊥FC-------(9)
【第二步】由(8)(9)知道,
∠CFB 就是 B—AE—C 的二面角。
EF、FG 的长度,如果能知道 EG 的长度,就能
求出∠EFG,那么怎么求呢?
(步骤 3)过 G 作 CC1 的平行线,交 BC 于 H,
连接 EH,
因为 GH=AA1=AB=2---(2)
而△EBH 等腰直角三角形,
所以 EH= 2-----------(3)
在 RT△EHG 中,由勾股定理,
得:EG²=GH²+EH² 【把(1),(2)代入】
解得:EG= 6------------------------(4)
(步骤 4)在而△EFG 中,由余弦定理得,
EF²+FG²-EG²
cos∠EFG=
【把(1),(4)代入】
2EF·FG
1 cos∠EFG= - ,即∠EFG=120°【特别提示】
2
两条直线所成的角为θ范围:(0°,90°】
所以 EF 与 BC1 夹角=180-120=60°
A 作 AF⊥A1B 垂足为 F,且 AF 的延长线交 B1B E
(Ⅰ)求证:D1B⊥平面 AEC;
(Ⅱ)求三棱锥 B—AEC 的体积;
第
(Ⅲ)求二面角 B—AE—C 的大小.
3
题
第 8页
【第一问】:求证:D1B⊥平面 AEC
【第一步】连接 CE、D1B、DB,
解
因为在正方形 ABCD 中,
对角线 DB⊥AC,
8
【第三步】因为 V1、V2 为同一个三棱锥的体
积,故 V1=V2,也就是(7)=(8)
1
6
6
即 h=
解得,h=
8
48
6
[第三问]:求二面角 M—AC1—B 的正切值
【第一步】过 B 作 C1M 的垂线, 交 C1M 的延长线于 F 点。 过 B 作 AC1 的垂线,交 AC1 于 E 点,连接 EF。 【第二步】因为 AM⊥C1M,
2
6 EF= -------------(13)
3
BF 在 RT△EBF 中,tan∠BFE=
EF
6
6
[ 把 BF= ,EF= 代入上式 ]
6
3
1 解得: tan∠BFE=
2
经典结论:二面角的解法,
(1)用本题方法,构建一个直角三角形, 求出各边,再求三角函数值。
(2)向量法:建立三维坐标系
第 14页
2
2
2
在 RT△C1MA1 中,由勾股定理,得: MA1²=C1M²+C1A1² 【把(1),(5)代入】
32
解得:MA1=
-----------------------(6)
2
(步骤 5)因为 ANMA1 是平行四边形,所以:
32
AN=MA1=
-------------------------(7)
解 【第 1 步】因为 ABCD 是菱形,
所以对角线 AC⊥BD---------(1) 【第 2 步】PD⊥平面 ABCD,
思考
因为 BM 不垂直于平面 AMC1 ,直接去求, 比较困难,如果通过等体积法、就简单多了
【解】
【第一步】AM=MC1,
所以
AM²=MC
2 1
=
MC²
+CC
2 1
3
1
2
而 AM= ,MC= ,解得 CC1= ----(6)
2
2
2
第 12页
【第二步】三棱锥 C1-ABM 的体积
1
11
V1= S△ABM×CC1= × ×AM×MB×CC1
而 DB 又是 D1B 在 ABCD 所在平面上的投影, 故有,D1B⊥AC-----------------------(1) 【第二步】已知 AE⊥A1B, 又因为,A1B 是 D1B 在 ABA1B1 所在平面上的 投影,故有,AE⊥D1B-----------------(2) 【第三步】因为 AE、AC 是相交直线---(3)
(I)求证:点 M 为 BC 的中点;
第
(Ⅱ)求点 B 到平面 AMC1 的距离;
4
(Ⅲ)求二面角 M—AC1—B 的正切值.
题
第 11页
[第一问]:求证:点 M 为 BC 的中点
【解】
【第一步】设棱长 AA1=CC1=a , MC=b
在
RT△MCC1
中,MC
2 1
=
a²
+b²
【第二步】
在 RT△AMC1 中,因为 AM=MC1
(步骤 3)已知 AA1= 6 ---(3) 在 RT△AB1A1 中,由勾股定理, 得:AB1²=B1A1²+AA1²
【把(2),(3)代入】
解得:AB1= 10------------------------(4)
(步骤 4)因为 M 点是 CC1 的中点,则
1
1
6
C1M= CC1= AA1=
----------(5)
2
,且 MN=AA1= 6
36 故 NC1=C1M+AA1= -------------(8)
2
第 6页
(步骤 6)因为 B1C1=BC=1------------(9) 在 RT△C1NB1 中,由勾股定理,得: NB1²=C1N²+C1B1² 【把(8),(9)代入】
58 解得:NB1= ------------------------(10)
高中数学 经典题型
立体几何 第一辑
【编著】 黄勇权
第 1页
在三棱柱 ABC﹣A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°,
点 E、F 分别是棱 AB、BB1 的中点,则直线 EF 和 BC1 所成的角是
A.45°
B.60°
C.90°
D.120°
第
1
题
第 2页
. 求异面直线所成角的方法:
2 (步骤 7)在而△ANB1 中,由余弦定理得,
AB1²+AN²-B1N² cos∠NAB1=
2B1A·AN 【把(4),(7)(10)代入】 cos∠NAB1=0,即∠NAB1=90° 也就是 AB1⊥A1M
故:选 C
第 7页
已知正四棱柱 ABCD—A1B1C1D1 的底面边长为 3,侧棱长为 4,连结 A1B,过
AM⊥BC, BC 与 C1M 是相交直线, 故,AM⊥平面 MCC1, 而 BF 又在 MCC1 平面内,所以 AM⊥BF----(9) 我们又作 BF⊥C1M,------------------------(10) 且 AM 与 C1M 是相交直线-------------------(11) 由(9)(10)(11)知, BF⊥平面 AMC1,故 BF 就是 B 到平面 AMC1 的高。 那么,FE 就是 BF 在平面 AMC1 的投影。 因为我们又作 BE⊥AC1,由三垂线定理,得 EF⊥AC1 【第三步】
所以由(1)、(2)、(3)得,
D1B⊥平面 AEC
第二问:求三棱锥 B—AEC 的体积
因为 D1B⊥平面 AEC,那么,B 到平面 AEC 的距离就是高,如果能求出 B 到平面
思考
AEC 的距离,就可以求出 B-AECD 的体积。
可是这个高很难求出,所以,必须想到等体积法,找一
个更容易求出的高,
观察发现,(1)BC 是平面 ABE 的高,(2)AB 是平面
思考
【方法 1】固定一条直线不动,并以这条线的一个端点,作另一条直线的
平行线。
【方法 2】顶点选在特殊的位置上,过该点作两条直线的平行线。
【方法 3】向量法:建立三维坐标系,写出两条直线端点的三维坐标,并
求出线段的向量,以及线段的长度。 设两条直线所成的角为θ。
a*b cosθ=
│a│*│b│
【特别提示】两条直线所成的角为θ范围:(0°,90°】
所以,AC
2 1
=2(a²
+b²)-----------------(2)
【第三步】在 RT△ACC1 中,由勾股定理
AC
2 1
=AC²+a²=
1
+a²
--------------------(3)
由(1)(2),消去 AC1 得,a² +2b²=1----(4)
【第四步】在△AMC 中,AC=1, ∠C=60°
解 【根据方法 1】固定 AB 不动,因为 A 点
在 A1M 的平面上,故过 A 点作 A1M 平行线,并与 CC1 的延长线相交于 N 点,连接 B1N。