2-3.连续型随机变量的概率密度函数ppt
合集下载
连续性随机变量分布函数PPT详解
1
f ( x)dx
b
dx (b a)
∴ =1/(b-a).
a
d 1
d c
(2) P{c X d}
dx
c ba ba
(一)均匀分布 若连续型随机变量X的概率密度函数为
f
(x)
b
1
a
,
a
x
b
0, else
则称X在(a, b)上服从均匀分布,记为 X ~ U (a, b)
易知, f ( x) 0,
a
f ( x)dx
0
20
③ F(a) = F(a)
④ F(a) = 2F(a) 1
练习
2.设X为连续型随机变量,其分布函数为:
F
(
x)
A
Be
2
x
,
x0
C,
x0
求:(1)A ,B,C (2) f(x) (3) P{-2<X<1}
练习
3、设X与Y 同分布,X 的概率密度为
f
(
x)
3 8
x
2
Z的概率密度: x
1
x2
e2
2
Z的分布函数:(x) x
y ( x)
y
1 t2 e 2 dt
2
(x)
(x)
xx 1
x 0 x
x
29
标准正态分布N(0, 1)
(x)
密度函数记为 (x),
分布函数记为 (x).
(1) (0) 1 , 2
( x)
1 (x)
x 0 x
x
(2) ( x) 1 (x)
2
3 P{ X C } 3F (C ) 3(C 3) 2
连续型随机变量PPT课件
20
1
x
e 10 dx
1
x
e 10
20
10 1 0
10 10
e1 e2 0.2325
2021/5/11
33
3.正 态 分 布
如果连续型随机变量X 的密度函数为
f x
1
e
x 2
2 2
2
x
其中 , 0为参数
则称随机变量X 服从,参数为 , 2 的
正态分布.记作
f (x)
下面验证:
x
f x dx
1
e
x 2
2 2
dx
1
2
2021/5/11
36
密度函数的验证(续)
下面验证:
f xdx
1
x 2
e 2 2 dx 1
2
首先验证:
x dx
1
x2
e 2 dx 1
2
或验证:
x2
e 2 dx 2
2021/5/11
P 1或 2
11 dx 6 1 dx
3 9
29
24 2 99 3
2021/5/11
27
2.指 数 分 布
如果随机变量 X 的密度函数为
f
x
e
x
x0
0 x0
其中 0为常数,则称随机变量服从 参数为的指数分布.
2021/5/11
28
密度函数的验证
设X ~ 参数为的指数分布,f x是其密度函数,则有:
例 7:
设打一次电话所用的时间 X(单位:分钟)是
以 1 为参数的指数随机变量.如果某人刚
10 好在你前面走进公用电话间,求你需等待10分 钟到20分钟之间的概率.
连续型随机变量的概率密度
x
F ( x) f ( x)dx
则称X为连续型随机变量,称 f (x)为X的概率密度函数,简称 概率密度或密度.
概率论与数理统计
2
❖ 一.连续型随机变量的概率密度 1.概念
x
F ( x) f ( x)dx
➢ 从几何上看, 连续型随机变量X的分
布函数是由概率密度曲线 f (x), x轴,
概率论与数理统计
3
❖ 一.连续型随机变量的概率密度 1.概念
x
F ( x) f ( x)dx
➢ 根据高等数学的知识,容易得到,连续型随机变量的分布函
数一定是连续函数,且在F(x)的导数存在的点上有
F( x) f (x).
➢ 由上述定义,显然,对于任意的实数 x1 x2 ,均有
P
x1 X x2
试求(1)
常数A,
1 Aex1 , x 1.
B的值;(2) 概率密度f
(x);
(3)
P(X
1 ).
2
➢ 解 (1) 由分布函数的连续性知 lim F( x) F(0), lim F( x) F(1),
x0
x1
可得
A
B,1
A
B,
则
A
B
1 2
.
1 2
e
x
,
故分布函数为:F
(
x
)
1
,
2
x 0, 0 x 1,
概率论与数理统计
❖ 一.连续型随机变量的概率密度 1.概念
➢ 由于连续型随机变量是在实数集上连续取值的随机变量,其 概率分布与离散型完全不同,由于其取值有无穷多个,不能 一一列举,需要用新的方法来研究其分布律. 对于这类随机变 量,用概率密度来描绘连续型随机变量的概率分布.
F ( x) f ( x)dx
则称X为连续型随机变量,称 f (x)为X的概率密度函数,简称 概率密度或密度.
概率论与数理统计
2
❖ 一.连续型随机变量的概率密度 1.概念
x
F ( x) f ( x)dx
➢ 从几何上看, 连续型随机变量X的分
布函数是由概率密度曲线 f (x), x轴,
概率论与数理统计
3
❖ 一.连续型随机变量的概率密度 1.概念
x
F ( x) f ( x)dx
➢ 根据高等数学的知识,容易得到,连续型随机变量的分布函
数一定是连续函数,且在F(x)的导数存在的点上有
F( x) f (x).
➢ 由上述定义,显然,对于任意的实数 x1 x2 ,均有
P
x1 X x2
试求(1)
常数A,
1 Aex1 , x 1.
B的值;(2) 概率密度f
(x);
(3)
P(X
1 ).
2
➢ 解 (1) 由分布函数的连续性知 lim F( x) F(0), lim F( x) F(1),
x0
x1
可得
A
B,1
A
B,
则
A
B
1 2
.
1 2
e
x
,
故分布函数为:F
(
x
)
1
,
2
x 0, 0 x 1,
概率论与数理统计
❖ 一.连续型随机变量的概率密度 1.概念
➢ 由于连续型随机变量是在实数集上连续取值的随机变量,其 概率分布与离散型完全不同,由于其取值有无穷多个,不能 一一列举,需要用新的方法来研究其分布律. 对于这类随机变 量,用概率密度来描绘连续型随机变量的概率分布.
连续型随机变量的概率密度
解:⑴.P1 X 5 F (5) F (1)
(5 2) (1 2)
3
3
1
1 3
1 1 1
3
0.84134 0.62930 1
0.47064
⑵.PX 2 6 1 PX 2 6
1 P 6 X 2 6
x
令 u t
1
t2 x
e 2 dt
2
1
(2) (0) P( X 0) 1 2
() 1 ;() 0
引理:
设X ~ N , 2 ,则 Y X ~ N ( 0, 1 )
FY
y
PY
y
P{ X
P{X y} 1
y}
y
e
t 2
2 2
dt
2
作变换
u
t
,du
dt
FY y
使用了s 小时,它总共能使用至少 s t
指数分布
若 X 表示某一元件的寿命,则 (*)式表明:已知元件 使用了s 小时,它总共能使用至少 s t 小时的条件 概率与从开始使用时算起它至少能使用 t小时的概 率相等,即元件对它使用过 s 小时没有记忆,具有这
一性质是指数分布具有广泛应用的重要原因.
设X ~ N , 2 ,则 Y X ~ N ( 0, 1 )
(2)若X~N(,2),
P{X x} P{ X x }
( x )
(3) 若X~N(,2),对于任意区间(x1,x2]有
P( x1
X
x2 )
P
x1
X
x2
x2
x1
【例5】 设 随 机 变 量 X ~ N 2, 9 求 : ⑴ P1 X 5;⑵ PX 2 6;⑶ PX 0.
概率论与数理统计连续型随机变量及其概率分布ppt课件
0 x
则t , dt d
1-(x)
x1
2
3
F(x) 1
(t )2
1 x e
2 2
dt
x
2
e 2 d
( x )
2
2
4. P{a X b} (b ) ( a )
P{X b} (b ) P{X a} 1 (a )
例6
设 X ~ N(1,4) , 求 P (0 X 1.6)
解:X 的密度函数为
f
x
1 10
e
x 10
0
x0 x0
令:B={ 等待时间为10-20分钟 }
则 PB P10 X 20
20
1
x
e 10 dx
10 10
x
e 10
20
e 1
e 2
0.2325
10
例5 假定一大型设备在任何长为 t 的时间内发生
故障的次数 N( t ) 服从参数为t 的Poisson分布,
P(2
X
4)
4
2
2
2
2
(0)
0.3
2
0.8
P( X 0) 0.2
解二 图解法
0.2 0.15
0.1 0.05
0.3 0.2
-2
2
4
6
由图 P( X 0) 0.2
例 3 原理
设 X ~ N ( , 2), 求 P(| X | 3 )
解 P(| X | 3 ) P( 3 X 3 )
应用场合:
若随机变量X在区间(a,b)内等可能的取值,则
X ~ U a,b
例3 秒表的最小刻度差为0.01秒. 若计时精度 是取最近的刻度值, 求使用该秒表计时产生的 随机误差X 的概率密度, 并计算误差的绝对值 不超过0.004秒的概率.
连续型随机变量及其概率密度
问:怎样求一般正态分布的概率?
对一般的正态分布 :X ~ N ( , 2)
其分布函数 F( x)
1
e d t x
(t )2 2 2
2
作变量代换s
t
F(x)
1 2
x
s2
e 2ds
x
即 X ~ N ( , 2) 则 X ~ N ( 0 ,1)
P{a
X
b}
F (b)
222 0.3830
3) 0.6826 4) 0.4981
0.02
-10
-5
a
5
b
x
例1 有一批晶体管,已知每只的使用寿命 X 为 连续型随机变量,其概率密度函数为
f
(
x)
c x2
,
0,
x 1000 其它
( c 为常数)
(1) 求常数 c
(2) 已知一只收音机上装有3只这样的晶体管,
每只晶体管能否正常工作相互独立,求在
使用的最初1500小时只有一个损坏的概率.
(3) P(X>1.76)= 1 – P(X≤1.76)= 1 – Φ(1.76)
=1 – 0.9608 =0.0392 (4) P(X< – 0.78)= Φ(- 0.78) =1-Φ(0.78)
=1 – 0.7823 =0.2177 (5) P(|X|<1.55)= 2Φ(1.55) – 1 (6) P(|X|>1.55)= 1 – P(|X|<1.55)
即: P( X a) 0, a为任一指定值
事实上 { X a} {a x X a}
x 0
0 P{ X a} P{a x X a} aax f ( x)d x
概率2-3连续型随机变量及其概率密度-2
x
e
dt , x
概率论
( x)
( x )
概率论
7. 标准正态分布与一般正态分布的关系 定理1
X 若 X ~ N , , 则 Z ~ N 0 , 1 .
2
标准正态分布的重要性在于,任何一个一 般的正态分布都可以通过线性变换转化为标准 正态分布.
概率论
例2 在一公共汽车站有甲、乙、丙 3人,分别等1、2、3路公交车,设 每人等车时间(分钟)都服从[0,5] 上的均匀分布,求3人中至少有2人 等车时间不超过2分钟的概率。
概率论
(II)指数分布 1. 含义:随机变量X描述对某一事件发生的 等待时间,各种不会变老的物品寿命。 2. 密度函数:若 r .v. X具有概率密度
x 2
2
Φ(x)
概率论
作业
58页,24,25,26,27,29,30
概率论
3σ准则
由标准正态分布的查表计算可以求得,
当X~N(0,1)时, P{|X| ≤ 1}=2 Φ(1)-1=0.6826 P{|X| ≤ 2}=2 Φ(2)-1=0.9544 P{|X| ≤ 3}=2 Φ(3)-1=0.9974 这说明,X的取值几乎全部集中在[-3,3]区间
内,超出这个范围的可能性仅占不到0.3%.
概率论
(2) X ~ N ( , 2 ), 求区间概率
X 若 X ~ N ( , ), 则 Y ~N(0,1)
2
P{ a X
a b Y } b} P{
b a ( ) ( )
概率论
例3 若 r. v. X~N(10,4),求 P{10<X<13}, P{│X-10│<2}. 例4 若 r. v. X~N(μ,σ2), P{X ≤ -1.6}=0.036, P{X ≤ 5.9}=0.758,求 P{X> 0}
北京工业大学《概率论与数理统计》课件 第2章 连续性随机变量
2.3.3 常见的连续型随机变量的概率密度函数
△ 均匀分布 △ 指数分布 △ 正态分布
1. 均匀分布 (Uniform) 若随机变量 X 的概率密度为
则称 X 服从区间[a, b]上的均匀分布,记作 X ~U[a, b]。(注: 有时也记作X~U(a, b) )
若X ~ U[a, b],则对于满足 a≤c≤d≤b 的 c 和 d,总有
例2.3.4 假设某地区成年男性的身高(单位: cm) X~N(170,7.692), 求该地区成年男性的身 高超过175 cm的概率。
解 根据假设X~N(170 ,7.692), μ=170, a=175, σ= 7.69。由(2.3.15) 式的后一式,得
小结
本讲首先介绍连续型随机变量、直方图、 概率密度函数及其性质;然后介绍三种常用的 连续型随机变量:均匀分布,指数分布和正态 分布;给出了三种分布应用的例子。
概率密度曲线可用来准确地刻画 X 的概率 分布情况。
2.3. 2 概率密度函数 定义2.3.1 若存在非负可积函数 f(x), 使
随机变量X落入任意区间(a, b]的概率
则称 X为连续型随机变量,f(x)为X的概率密 度函数,简称概率密度或密度。
对概率密度的进一步解释: 若 x 是 f(x) 的连续点,则有
且 f (μ+c) ≤ f (μ), f (μ-c)≤ f (μ). 故 f(x)以 x=μ为对称轴,并在 x =μ处达到最大 值
对
当 x→ ∞时,f(x) → 0。 这说明:曲线 f(x) 向左右伸展时,越来越贴 近 x 轴。即 f (x) 以 x 轴为渐近线。
对
可以证明: x =μσ
为 y = f (x) 曲线的两个拐点的横坐标。
连续型随机变量及其概率密度函数
§2.4 连续型随机变量及其概率密度函数
一、连续型随机变量的概念 定义2.8 设随机变量 的分布函数为 F (x ) ,若存在非负可 设随机变量X的分布函数为 定义 积函数 f (x ),使得对于任意实数 x ,都有 x (2—15) ) F ( x ) = ∫ f ( x )dx
∞
则称X为连续型随机变量, 则称 为连续型随机变量, 称 f (x )为X的概率密度函数 的 (Probability Density Function),简称概率密度或密度 ),简称概率密度或密度. ),简称概率密度或密度 由定义可知,连续型随机变量X的分布函数 由定义可知,连续型随机变量 的分布函数 F (x)在x点的函 点的函 上的积分. 数值等于其概率密度函数 f (x )在区间( ∞, x] 上的积分. 类似于离散型随机变量, 类似于离散型随机变量,连续型随机变量 f (x )的概率密度 函数具有如下基本性质: 函数具有如下基本性质:
P { x1 < X ≤ x 2 } = Φ ( x2
σ
) Φ(
x1
σ
)
关于标准正态分布,一个重要的公式是: 关于标准正态分布,一个重要的公式是:对于任意实数 x . Φ ( x) + Φ ( x) = 1 (2-31) 的定义证明或由下图说明.这里就不做证明了. 这可用 Φ(x ) 的定义证明或由下图说明.这里就不做证明了
∞
σ x+
1 2π σ
( x )2
2σ
2
e
∫
x ∞
1 2π
e
t2 2
dt
(令 σ = t ) 令
x
所以 X * ~ N (0, 1).
这样我们便有如下定理: 这样我们便有如下定理: 2 定理2.2 若 X ~ N ( , σ ),其分布函数为F ( x ) ,则对任意 定理 实数 ,有 x (2—29) ) F (x) = Φ ( )
一、连续型随机变量的概念 定义2.8 设随机变量 的分布函数为 F (x ) ,若存在非负可 设随机变量X的分布函数为 定义 积函数 f (x ),使得对于任意实数 x ,都有 x (2—15) ) F ( x ) = ∫ f ( x )dx
∞
则称X为连续型随机变量, 则称 为连续型随机变量, 称 f (x )为X的概率密度函数 的 (Probability Density Function),简称概率密度或密度 ),简称概率密度或密度. ),简称概率密度或密度 由定义可知,连续型随机变量X的分布函数 由定义可知,连续型随机变量 的分布函数 F (x)在x点的函 点的函 上的积分. 数值等于其概率密度函数 f (x )在区间( ∞, x] 上的积分. 类似于离散型随机变量, 类似于离散型随机变量,连续型随机变量 f (x )的概率密度 函数具有如下基本性质: 函数具有如下基本性质:
P { x1 < X ≤ x 2 } = Φ ( x2
σ
) Φ(
x1
σ
)
关于标准正态分布,一个重要的公式是: 关于标准正态分布,一个重要的公式是:对于任意实数 x . Φ ( x) + Φ ( x) = 1 (2-31) 的定义证明或由下图说明.这里就不做证明了. 这可用 Φ(x ) 的定义证明或由下图说明.这里就不做证明了
∞
σ x+
1 2π σ
( x )2
2σ
2
e
∫
x ∞
1 2π
e
t2 2
dt
(令 σ = t ) 令
x
所以 X * ~ N (0, 1).
这样我们便有如下定理: 这样我们便有如下定理: 2 定理2.2 若 X ~ N ( , σ ),其分布函数为F ( x ) ,则对任意 定理 实数 ,有 x (2—29) ) F (x) = Φ ( )
概率密度函数 ppt课件
概率密度函数
定义 设X为一随机变量,若存在非负实函数 f (x) , 使对任意实数 a < b ,有
b
P{axb}a f(x)dx
则称X为连续型随机变量, f (x) 称为X 的概 率密度函数,简称概率密度或密度函数.
x
分布函数 F(x) f (t)dt
P {x1Xx2}xx 12 f(x)dx
(1 x 5)
0 其它
所求概率为 P { 1 } 1f(x)d x f(x)d x2
1
3
指数分布
定义 若连续型随机变量X的概率密度为
ex
f(x)
x0(0为 常 数 )
0 x0
则称X服从参数为 的指数分布.
X~ E()
分布函数
0
x0
F(x)1ex x0
f(x)和F(x)可用图形表示
f (x)
均匀分布
定义 若连续型随机变量X的概率密度为
1 f (x) b a
a xb
0 其它
则称X在区间 (a,b)上服从均匀分布.记为 X ~ U (a, b)
分布函数
0,
xa
F
(
x)
x b
a a
,
a xb
1,
b x
意义
0a
b
x
X“等可能”地取区间(a,b)中的值,这里的“等可
能”理解为:X落在区间(a,b)中任意等长度的子区间内
。 P(X a) 1 (a )
例 设X~N(1,4),求 P(0<X<1.6)
解
1, 2
P(0X1.6) (1.61)(01)
2
2
(0.3)(0.5)
(0.3)1 (0.5)
定义 设X为一随机变量,若存在非负实函数 f (x) , 使对任意实数 a < b ,有
b
P{axb}a f(x)dx
则称X为连续型随机变量, f (x) 称为X 的概 率密度函数,简称概率密度或密度函数.
x
分布函数 F(x) f (t)dt
P {x1Xx2}xx 12 f(x)dx
(1 x 5)
0 其它
所求概率为 P { 1 } 1f(x)d x f(x)d x2
1
3
指数分布
定义 若连续型随机变量X的概率密度为
ex
f(x)
x0(0为 常 数 )
0 x0
则称X服从参数为 的指数分布.
X~ E()
分布函数
0
x0
F(x)1ex x0
f(x)和F(x)可用图形表示
f (x)
均匀分布
定义 若连续型随机变量X的概率密度为
1 f (x) b a
a xb
0 其它
则称X在区间 (a,b)上服从均匀分布.记为 X ~ U (a, b)
分布函数
0,
xa
F
(
x)
x b
a a
,
a xb
1,
b x
意义
0a
b
x
X“等可能”地取区间(a,b)中的值,这里的“等可
能”理解为:X落在区间(a,b)中任意等长度的子区间内
。 P(X a) 1 (a )
例 设X~N(1,4),求 P(0<X<1.6)
解
1, 2
P(0X1.6) (1.61)(01)
2
2
(0.3)(0.5)
(0.3)1 (0.5)
概率论课件之连续型随机变量及其概率密度PPT课件
如电话通话时间、各种随机服务系统的服务时 间、等待时间等.
例 某种电子元件的寿命(以小时计) X 服从指数分 布,其概率密度为
f
(
x)
1 100
e
x
100
,
x0
0,
其它.
(1) 求元件寿命至少为200小时的概率. (2) 将3只这种元件联接成为一个系统,设系统工作 的方式是至少2只元件失效时系统失效,又设3只元 件工作相互独立.求系统的寿命至少为200小时的概 率.
(4) 若f ( x )在点x 处连续,则有
F ( x) f ( x),
证明
x
F ( x) [ f (t)dt] f ( x).
例 设随机变量X
ae x , x 0;
的分布函数为
F ( x) b, 0 x 1; 1 ae x1 , x 1
求(1)a,b的值;(2)X的密度函数;(3)P(X>1\3).
解 (1)由于连续型随机变量的分布函数是连续的
lim F ( x) F (0)
x 0
又 lim F ( x) F (1) x 1
lim ae x b
x 0
b 1 a
故,a b 1 2
ab
(2)X的密度函数
1 2
e
x
,
f ( x) F ( x)
又F ( x)
1
2
,
x 0; 0 x 1;
2 πσ (3) 当 x 时, f ( x) 0; (4)曲线在 x μ σ 处有拐点;
(5) 曲线以 x 轴为渐近线;
(6) 当固定 σ, 改变 μ 的大小时, f ( x) 图形的形状不变 ,只是沿 着 x 轴作平移变换;
(7) 当固定 μ, 改变 σ 的大小时, f ( x) 图形的对称轴 不变,而形状在改变 , σ 越小,图形越高越瘦,σ越大, 图形越矮越胖 .
例 某种电子元件的寿命(以小时计) X 服从指数分 布,其概率密度为
f
(
x)
1 100
e
x
100
,
x0
0,
其它.
(1) 求元件寿命至少为200小时的概率. (2) 将3只这种元件联接成为一个系统,设系统工作 的方式是至少2只元件失效时系统失效,又设3只元 件工作相互独立.求系统的寿命至少为200小时的概 率.
(4) 若f ( x )在点x 处连续,则有
F ( x) f ( x),
证明
x
F ( x) [ f (t)dt] f ( x).
例 设随机变量X
ae x , x 0;
的分布函数为
F ( x) b, 0 x 1; 1 ae x1 , x 1
求(1)a,b的值;(2)X的密度函数;(3)P(X>1\3).
解 (1)由于连续型随机变量的分布函数是连续的
lim F ( x) F (0)
x 0
又 lim F ( x) F (1) x 1
lim ae x b
x 0
b 1 a
故,a b 1 2
ab
(2)X的密度函数
1 2
e
x
,
f ( x) F ( x)
又F ( x)
1
2
,
x 0; 0 x 1;
2 πσ (3) 当 x 时, f ( x) 0; (4)曲线在 x μ σ 处有拐点;
(5) 曲线以 x 轴为渐近线;
(6) 当固定 σ, 改变 μ 的大小时, f ( x) 图形的形状不变 ,只是沿 着 x 轴作平移变换;
(7) 当固定 μ, 改变 σ 的大小时, f ( x) 图形的对称轴 不变,而形状在改变 , σ 越小,图形越高越瘦,σ越大, 图形越矮越胖 .
《连续型随机变量》课件
02
对于连续型随机变量的最大值,其概率分布函数为F(x)=1−e−λxtext{F}(x) = 1 - e^{-lambda x}F(x)=1−e−λx,其中λlambdaλ是随机变量的密度函数。
03
对于连续型随机变量的最小值,其概率分布函数为F(x)=1−e−λ(−x)text{F}(x) = 1 - e^{-lambda (-x)}F(x)=1−e−λ(−x)。
THANKS
感谢观看
最大值和最小值在决策分析中的应用
01
在风险管理中,连续型随机变量的最大值和最小值具有重要的应用价 值。
02
通过分析最大值和最小值的概率分布、数学期望和方差,可以帮助决 策者更好地理解潜在的风险和机会,从而做出更明智的决策。
03
在金融领域,连续型随机变量的最大值和最小值可用于评估投资组合 的风险和回报,以及制定风险管理策略。
连续型随机变量的最小值的数学期望 E(Xmin)=−∞∑x=0xP(X<x)text{E}(X_{min}) = infty sum_{x=0} x P(X < x)E(Xmin)=−∞∑x=0xP(X<x)。
连续型随机变量的最小值的方差 Var(Xmin)=−∞∑x=0[x2P(X<x)−E2(Xmin)]text{ Var}(X_{min}) = -infty sum_{x=0} [x^2 P(X < x) E^2(X_{min})]Var(Xmin)=−∞∑x=0[x2P(X<x)− E2(Xmin)]。
03
连续型随机变量的期望和方差
期望的定义和计算
定义
连续型随机变量的期望值是所有可能取值的加权和,其中每个取值的权重等于该 取值出现的概率。
连续型随机变量及其概率密度函数
概率统计
但要注意的是:密度函数 f (x)在某点处 a 的高度, 并不反映X 取值的概率. 但是,这个高度越大, 则 X 取 a 附近的值的概 率就越大. 也可以说, 在某点密度曲线的高度 反映了概率集中在该点 附近的程度.
f (x)
o
f ( x )x 在连续型
随机型变量理论中所 的作用与
x
P ( X xk ) pk
100
x 100
一般称:
若 X 具有概率密度:
1 x e f ( x ) 0
x0 x0
0
则 称 X 为服从参数 的 指数分布.
概率统计
二 . 连续型随机变量的分布函数 定义: 若定义在 (, ) 上的可积函数 f ( x ) 满足: (1). f ( x ) 0
x 2a
]
x 0
1 e
x 2a
0 综合上述得: F ( x ) x2 2a 1 e
x0 x0
1 2a
(2). P (0 X 1) F (1) F (0) 1 e
概率统计
例5. 设连续型随机变量 X 的密度函数为 f (x)
求 : F(x) 解: 当
x
f ( x )dx
当 x 0 时 f ( x) 0
F ( x ) 0 dx 0
x
概率统计
x 当 x 0 时 f ( x) e a x2 0 x x F ( x ) 0 dx e 2a dx 0 a 2 2
x2 2a
[ e
2 1 x2 , 1 x 1 f ( x ) 0, 其它
但要注意的是:密度函数 f (x)在某点处 a 的高度, 并不反映X 取值的概率. 但是,这个高度越大, 则 X 取 a 附近的值的概 率就越大. 也可以说, 在某点密度曲线的高度 反映了概率集中在该点 附近的程度.
f (x)
o
f ( x )x 在连续型
随机型变量理论中所 的作用与
x
P ( X xk ) pk
100
x 100
一般称:
若 X 具有概率密度:
1 x e f ( x ) 0
x0 x0
0
则 称 X 为服从参数 的 指数分布.
概率统计
二 . 连续型随机变量的分布函数 定义: 若定义在 (, ) 上的可积函数 f ( x ) 满足: (1). f ( x ) 0
x 2a
]
x 0
1 e
x 2a
0 综合上述得: F ( x ) x2 2a 1 e
x0 x0
1 2a
(2). P (0 X 1) F (1) F (0) 1 e
概率统计
例5. 设连续型随机变量 X 的密度函数为 f (x)
求 : F(x) 解: 当
x
f ( x )dx
当 x 0 时 f ( x) 0
F ( x ) 0 dx 0
x
概率统计
x 当 x 0 时 f ( x) e a x2 0 x x F ( x ) 0 dx e 2a dx 0 a 2 2
x2 2a
[ e
2 1 x2 , 1 x 1 f ( x ) 0, 其它
2-3连续型随机变量及其概率密度
f
(x)
b
1
a
,
a x b,
0,
其它,
就称 X 服从[a,b] 上的均匀分布,记为 X ~ U[a,b].
【注】 X 的分布函数为
0, x a,
F ( x)
x
b
a a
,
a
x
b,
1, b x.
均匀分布与第一章中介绍的几何概型原理相通,适用于一维
的几何概型试验.此时, X 落入某区间 I 内(上)的概率为 P{X I} P{X I I [a,b]} I I [a,b]的长度 . ba
(b ) (a ) .
特别地, P{X b} (b ), P{X a} 1 ( a ) 。
其中 (a ) 和 (b ) 可查表得.
•22
例 3.5 设随机变量 X ~ N(1, 4) ,分别计算
P{X 3}, P{1 X 5} .
解 由题意知, 1, 2 .
y (x)
y
y (x) 1
1 2
O
x
O
x
•20
由于(x) 为偶函数,利用本节例 3.2 的结论,有
F(x()x)
F((x)x)
1;1;F(0()0)
1
1;;P{PX{ X
x}x}
2F(Fx)(x)1.1.
22
当 x 0 时, (x) 可以通过直接查标准正态分布表求得.
当 x 0 时, (x) 1 (x) ,再查标准正态分布表可得.
【注 7】如果 X ~ N(0,1) ,则对于任意的实数 a,b (a b) , P{a X b} (b) (a) ,
其中 (a), (b) 可查标准正态分布表计算.
•21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X越落平f在(缓xμ),的值表最附明大 近X取的值值概为越率分越f 散大.;反之21,当σ越大,则y=f(x)的图形
f (x)
0
x
28
连续型随机变量
(2)分布函数
若 X ~ N , 2 ,则其分布函数为
x
Fx f tdt
1
x (t )2
e 2 2 dt x
2
若 X ~ N 0, 1,则其分布函数为
该乘客候车时间不超过5分钟的概率.
解:设该乘客于7时X 分到达乘到此客7站:3到0,之达X间此服的站从均的匀区时随间间机是[变0,73量:000]
上的均匀分布.其 密 度 函 数 为
f
x
1 30
0 x 30
0 其 它
令:B={候车时间不超过5分钟 },则
PB P10 X 15 P25 X 30
0
x
25
连续型随机变量
密度函数的验证
xdx
只验证
f
x dx
1
x 2
e 2 2 dx 1
2
作变换:u x , 则 du dx
1
x2
e 2 dx 1
2
则有
见高等 数学 (下) 二重积 分
1
x 2
e 2 2 dx
2
x2
( e 2 dx 2 )
1
1
15
1
30
dx
1
dx
1
10 30
25 30
3
20
连续型随机变量
例 6 设随机变量Y 服从区间 1, 3上的均匀分布,
试求方程 4x 2 4Y x (Y 2) 0 有实根的概率.
解
随机变量Y的密度函数为:
f
y
1 4
1 y 3
0 其 它
设:A 方程4x 2 4Y x (Y 2) 0有实根
F ( x) P{X x} pk .
xi x
3
练习 设离散型随机变量X 的分布函数为
0, x 1,
a,
1 x 1,
F
(
x
)
2 3
a,
1 x 2,
a b, x 2.
且 P{ X 2} 1 ,试确定常数a,b,并求 X 的分布律. 2
[思路] 首先利用分布函数的性质求出常数 a, b,
(其中(-∞<μ<+∞,σ>0),则称随机变量X服从参数为μ,σ2的
正态分布,由称高斯分布.记为:X~N(μ,σ2)
f (x)
0
x
24
连续型随机变量
特别是,当μ=0,σ2=1时称正态分布为标准正态分 布.记为:N(0,1)
标准正态分布的概率密度函数为:
x
其图形如右
1
x2
e2
2
f (x)
x
0 x 0
令:B={ 等待时间为10~20分钟 },则
PB
P10
X
20
20
1
x
e 10 dx
x
e 10
20
10 10
e0.21325e 2
10
23
连续型随机变量
3.正 态 分 布
(1) 概率密度函数
如果连续型随机变量X的概率密度函数为
f x
1
x 2
e
2 2
2
x
离 越远时,随机变量X 落在该区间中f的(x概) 率就越小.
0 h h x
27
连续型随机变量
(3) 曲线y=f(x)在x=μ+σ, x=μ-σ时处有拐点;曲线以x轴为
渐近线.
(4) 若σ固定,改变μ的值,则y=f(x)的图形沿x轴平行移动,但图 形的形状不改变.
(5) y若μf固x定图,改形变的σ的位值置,当完σ全越由小参,则数y=f所 (x)的确图定形越陡,即
f (x) x
0
x
x2
tdt
0
2
14
连续型随机变量
例 3(续) x 综当上1所 x述,2时可,得F随x机 变量 f Xt 的dt 分布函数
0
1
x
Fx
x2
x02 2
f t
1
tdt
dt x f 0tdt
x0 0 x 1
2 tdt
1
f
1
t dt
x2
20x 1 11 x 2 2
x2
16
连续型随机变量
二、一些常用的连续型随机变量
1. 均 匀 分 布
定义 若随机变量X的密度函数为
f
x
b
1
a
a xb
0
其它
则称随机变量X服从区间[a,b]上的均匀分布.记作 X ~ U [a , b]
X的分布函数为:
F (x)
0
xa
1
F
x
x b
1
a a
a xb b x
a0 b
x
17
f xdx 1
1
得
1 f xd2x3 4x 2x2 dx
2
18
0
c 4x
c
833
2x
2x2
2
d2xx 3 832cc 2 x 2
3 1
2 3
x3
2 0
18
2
12
连续型随机变量
例2 某电子元件的寿命 X(小时)是以 f x 1000
x 2
x 100 x 100
为密度函数的连续型随机变量.求 5 个同类型的元件在使用的 前 150 小时内恰有 2 个需要更换检的验概5率个. 元件的使用寿命可以看
解 设 A={ 某元件在使用的前作1是50在小做时一内个需5要重更Be换rn}oulli试验
则
PA
PX
150
150 f xdx
150
100
100 dx
x2
1 3
设Y 表示5 个元件中使用寿命不超过150小时的元件数,则
Y ~ B( 5,1/ 3). P故{Y所求2概} 率为
C
2 5
1 3
再用已确定的分布函数来求分布律.
解 利用分布函数 F ( x) 的性质 :
4
P{ X xi } F ( xi ) F ( xi 0),
F () 1, 知 1 P{ X 2}
2 (a b) (2 a) 3 2a b 2 , 3
且 a b 1.
由此解得 a 1 , b 5 . 66
前两个条件是概率密度的 充分必要条件
f (x)
3. P{x1 X x2 } F( x2 ) F( x1 )
x2 x1
f
( x)dx.
( x1
x2 )
1
f (x)
0
x
0 x1 x2 x
X落在 (x1,x2]上概率是概 率密度在(x1,x2]上的定积分 值。
9
连续型随机变量
4. 对于一切使f ( x)连续的点x,均有 F ( x) f ( x).
解 3)1)P由1.密5 度X函数 2的.5性 质 F, 有2.5 F1.5 0.0625 f ( x)dx 1
或
02(PA1x.51)Xdx21.5 122..5A5 fx2dx10.0A625
1 2
2) X的分布函数
x
0dx
F
x
0
0dx
x ( 1 x 1)dx 02
1
x0 0 x2
x x
事lim实F上( x, x) F ( x) lim x f (t)dt
x0
x
x0
x
lim f ( ) x lim f ( ) f ( x)
x0 x
x0
既有 F ( x) f ( x).
注5意.设:X连是续连型续随型机随变机量变密量度, 函则数对的任性意质的与实离数散a, 型有随机
则PA P 4Y 2 4 4 (Y 2) 0
PYY11或Y Y2 20
1
0dx
3
1 dx
1
24
4
21
连续型随机变量
2.指 定义
数分布 若随机变量X的密度函数为
f
x
1
1
e 0
x
x0 x0
其中 0为常数,则称随机变量 服从参数为 的指数分布.
记为:X ~ E( )
说服其务明分时布指间数函,分数某布为消常耗F用品x于的近寿1似命表0e,示x放“射xx 寿性 00命元”素分的布衰,变如期:等,
指数分布在排队论与可靠性理论中有广泛的应用。
22
连续型随机变量
例 7 设打一次电话所用的时间X(分钟)是服从参数为λ=1/10
的指数分布.如果某人刚好在你前面走进公用电话间,求你需
要等待10~20分钟的概率.
解 X的密度函数为 f
x
1 10
Xλe=(分11x/01钟0的)是x指服数从0分参布数为
2
2 3
3
80 243
13
连续型随机变量
x 0 x1
例3 设随机变量X的密度函数为f x 2 x 1 x 2
试求 X 的分布函数.
0
其它
x
解 当 x 0时,F x f t dt 0
f (x) 0
x
当0 x 1时,F x f t dt
0
x
f tdt f tdt
变量分布律的P性X 质 a非常0 相似,但是密度函数不是概
率!
10
连续型随机变量
说明:
P{a x b}
由上述性质可知,对于连续型随机变量,我们关心它
P{a x b}
f (x)
0
x
28
连续型随机变量
(2)分布函数
若 X ~ N , 2 ,则其分布函数为
x
Fx f tdt
1
x (t )2
e 2 2 dt x
2
若 X ~ N 0, 1,则其分布函数为
该乘客候车时间不超过5分钟的概率.
解:设该乘客于7时X 分到达乘到此客7站:3到0,之达X间此服的站从均的匀区时随间间机是[变0,73量:000]
上的均匀分布.其 密 度 函 数 为
f
x
1 30
0 x 30
0 其 它
令:B={候车时间不超过5分钟 },则
PB P10 X 15 P25 X 30
0
x
25
连续型随机变量
密度函数的验证
xdx
只验证
f
x dx
1
x 2
e 2 2 dx 1
2
作变换:u x , 则 du dx
1
x2
e 2 dx 1
2
则有
见高等 数学 (下) 二重积 分
1
x 2
e 2 2 dx
2
x2
( e 2 dx 2 )
1
1
15
1
30
dx
1
dx
1
10 30
25 30
3
20
连续型随机变量
例 6 设随机变量Y 服从区间 1, 3上的均匀分布,
试求方程 4x 2 4Y x (Y 2) 0 有实根的概率.
解
随机变量Y的密度函数为:
f
y
1 4
1 y 3
0 其 它
设:A 方程4x 2 4Y x (Y 2) 0有实根
F ( x) P{X x} pk .
xi x
3
练习 设离散型随机变量X 的分布函数为
0, x 1,
a,
1 x 1,
F
(
x
)
2 3
a,
1 x 2,
a b, x 2.
且 P{ X 2} 1 ,试确定常数a,b,并求 X 的分布律. 2
[思路] 首先利用分布函数的性质求出常数 a, b,
(其中(-∞<μ<+∞,σ>0),则称随机变量X服从参数为μ,σ2的
正态分布,由称高斯分布.记为:X~N(μ,σ2)
f (x)
0
x
24
连续型随机变量
特别是,当μ=0,σ2=1时称正态分布为标准正态分 布.记为:N(0,1)
标准正态分布的概率密度函数为:
x
其图形如右
1
x2
e2
2
f (x)
x
0 x 0
令:B={ 等待时间为10~20分钟 },则
PB
P10
X
20
20
1
x
e 10 dx
x
e 10
20
10 10
e0.21325e 2
10
23
连续型随机变量
3.正 态 分 布
(1) 概率密度函数
如果连续型随机变量X的概率密度函数为
f x
1
x 2
e
2 2
2
x
离 越远时,随机变量X 落在该区间中f的(x概) 率就越小.
0 h h x
27
连续型随机变量
(3) 曲线y=f(x)在x=μ+σ, x=μ-σ时处有拐点;曲线以x轴为
渐近线.
(4) 若σ固定,改变μ的值,则y=f(x)的图形沿x轴平行移动,但图 形的形状不改变.
(5) y若μf固x定图,改形变的σ的位值置,当完σ全越由小参,则数y=f所 (x)的确图定形越陡,即
f (x) x
0
x
x2
tdt
0
2
14
连续型随机变量
例 3(续) x 综当上1所 x述,2时可,得F随x机 变量 f Xt 的dt 分布函数
0
1
x
Fx
x2
x02 2
f t
1
tdt
dt x f 0tdt
x0 0 x 1
2 tdt
1
f
1
t dt
x2
20x 1 11 x 2 2
x2
16
连续型随机变量
二、一些常用的连续型随机变量
1. 均 匀 分 布
定义 若随机变量X的密度函数为
f
x
b
1
a
a xb
0
其它
则称随机变量X服从区间[a,b]上的均匀分布.记作 X ~ U [a , b]
X的分布函数为:
F (x)
0
xa
1
F
x
x b
1
a a
a xb b x
a0 b
x
17
f xdx 1
1
得
1 f xd2x3 4x 2x2 dx
2
18
0
c 4x
c
833
2x
2x2
2
d2xx 3 832cc 2 x 2
3 1
2 3
x3
2 0
18
2
12
连续型随机变量
例2 某电子元件的寿命 X(小时)是以 f x 1000
x 2
x 100 x 100
为密度函数的连续型随机变量.求 5 个同类型的元件在使用的 前 150 小时内恰有 2 个需要更换检的验概5率个. 元件的使用寿命可以看
解 设 A={ 某元件在使用的前作1是50在小做时一内个需5要重更Be换rn}oulli试验
则
PA
PX
150
150 f xdx
150
100
100 dx
x2
1 3
设Y 表示5 个元件中使用寿命不超过150小时的元件数,则
Y ~ B( 5,1/ 3). P故{Y所求2概} 率为
C
2 5
1 3
再用已确定的分布函数来求分布律.
解 利用分布函数 F ( x) 的性质 :
4
P{ X xi } F ( xi ) F ( xi 0),
F () 1, 知 1 P{ X 2}
2 (a b) (2 a) 3 2a b 2 , 3
且 a b 1.
由此解得 a 1 , b 5 . 66
前两个条件是概率密度的 充分必要条件
f (x)
3. P{x1 X x2 } F( x2 ) F( x1 )
x2 x1
f
( x)dx.
( x1
x2 )
1
f (x)
0
x
0 x1 x2 x
X落在 (x1,x2]上概率是概 率密度在(x1,x2]上的定积分 值。
9
连续型随机变量
4. 对于一切使f ( x)连续的点x,均有 F ( x) f ( x).
解 3)1)P由1.密5 度X函数 2的.5性 质 F, 有2.5 F1.5 0.0625 f ( x)dx 1
或
02(PA1x.51)Xdx21.5 122..5A5 fx2dx10.0A625
1 2
2) X的分布函数
x
0dx
F
x
0
0dx
x ( 1 x 1)dx 02
1
x0 0 x2
x x
事lim实F上( x, x) F ( x) lim x f (t)dt
x0
x
x0
x
lim f ( ) x lim f ( ) f ( x)
x0 x
x0
既有 F ( x) f ( x).
注5意.设:X连是续连型续随型机随变机量变密量度, 函则数对的任性意质的与实离数散a, 型有随机
则PA P 4Y 2 4 4 (Y 2) 0
PYY11或Y Y2 20
1
0dx
3
1 dx
1
24
4
21
连续型随机变量
2.指 定义
数分布 若随机变量X的密度函数为
f
x
1
1
e 0
x
x0 x0
其中 0为常数,则称随机变量 服从参数为 的指数分布.
记为:X ~ E( )
说服其务明分时布指间数函,分数某布为消常耗F用品x于的近寿1似命表0e,示x放“射xx 寿性 00命元”素分的布衰,变如期:等,
指数分布在排队论与可靠性理论中有广泛的应用。
22
连续型随机变量
例 7 设打一次电话所用的时间X(分钟)是服从参数为λ=1/10
的指数分布.如果某人刚好在你前面走进公用电话间,求你需
要等待10~20分钟的概率.
解 X的密度函数为 f
x
1 10
Xλe=(分11x/01钟0的)是x指服数从0分参布数为
2
2 3
3
80 243
13
连续型随机变量
x 0 x1
例3 设随机变量X的密度函数为f x 2 x 1 x 2
试求 X 的分布函数.
0
其它
x
解 当 x 0时,F x f t dt 0
f (x) 0
x
当0 x 1时,F x f t dt
0
x
f tdt f tdt
变量分布律的P性X 质 a非常0 相似,但是密度函数不是概
率!
10
连续型随机变量
说明:
P{a x b}
由上述性质可知,对于连续型随机变量,我们关心它
P{a x b}