第十章 蒸汽动力循环装置(09)——工程热力学课件PPT
合集下载
工程热力学课件10蒸汽动力循环
`
作业
第4版:P345 习题10-2
二、回热循环
从汽轮机中某个部位抽取经过 适当膨胀后的蒸汽,其温度总高于 凝结水的温度,用来预热锅炉给水, 使得水的加热过程从较高温度开始, 使平均加热温度增高,而平均放热 温度不变,从而提高循环热效率。
0’-1—1kg水蒸气的定压吸热过程, 1-a—1kg水蒸气的绝热膨胀过程; a-b—从汽轮机中抽出的αkg蒸汽回热器中定压回热过程; a-2—抽汽后剩余的(1-α)kg水蒸气的绝热膨胀过程, 2-3—(1-α)kg乏汽的定压放热过程, 3-0—(1-α)kg水的绝热加压过程, 0-b—(1-α)kg水在回热器中的定压预热过程; b-0’—回热后重新汇合后的1kg水的绝热加压过程。
第一节
水蒸汽作为工质的卡诺循环
1.汽水混合物压缩过程c-5难以实现。
2.循环局限于饱和区,上限温度受限于临界温度(647.3K),
效率不高。
3.膨胀末期水分过多,不利于动力机。
第二节
基本蒸汽动力装置的理想循环——朗肯循环
一、朗肯循环及其工作过程
简单蒸汽动力装置 的主要热力设备:蒸汽 锅炉、汽轮机、冷凝器 和给水泵。
工作过程:当蒸汽在汽轮机的高 压汽缸中膨胀作功而压力降低到某个 中间压力时,把蒸汽从汽轮机引出, 送至再热器重新加热,使蒸汽的温度 再次达到较高的温度,然后送回汽轮 机的低压汽缸,进一步膨胀作功。 采用再热措施的理想循环称为再热 循环。
蒸汽再热循环的热效率
再热循环本身不一 定提高循环热效率 与再热压力有关 x2 ,给提高初压创 造了条件,选取再 热压力合适,一般 采用一次再热可使 热效率提高2%~ 3.5%。
四、 汽耗率
汽耗率也是衡量蒸汽动力装置工作好坏的重要 经济指标之一。汽耗率d表示每产生1千瓦小时的功 (等于3600kJ)需要消耗多少kg的蒸汽。 1kg蒸汽在一个循环中所作的功为
工程热力学-第十章-蒸汽动力装置循环.讲课教案
■汽轮机的相对内部效率 T 实际作功与理论作功之比,
T
h1 h2act h1 h2
一般为0.85~0.92。
■耗汽率(steam rate)
输出单位功量的耗汽量称为耗汽率,单位为 k g / J
工程上常用 kg/(kWh) 。
●理想耗汽率:d 0 D /P 0 1 /w T 1 /( h 1 h 2 ) ●实际耗汽率:d i D /P i 1 /w T ,a c t 1 /( h 1 h 2 a c t)
(2)吸热量不变,热效率: iw net,act/q10.3972
实际耗汽率:d i 1 /( h 1 h 2 a c t) 7 .5 9 7 1 0 7 k g /J
(3)作功能力损失
查水和水蒸汽图表,得到:
新蒸汽状态点1:s16.442kJ/(kgK ),h13426kJ/kg
乏汽状态点
胀到状态2,然后进入冷凝器,定压放热变为饱和水2
再经水泵绝热压缩变为过冷水4,也进入回热器。
在回热器中, kg的水蒸汽 0 1 和(1 )kg的过
冷水4混合,变为1kg的饱和水 0 1 。然后经水泵绝热压
缩进入锅炉,定压吸热变为过热蒸汽,开始新的循
环。
2、回热循环分析
■抽汽量
能量方程(吸热量=放热量):
说明:质量不同,因此不能直接从T-s图上判断热量的 变化。
●热效率(提高):
t wnet / q1
锅炉给水的起始加热
温度由 2 提高到 0 1 ,平均
吸热温度提高,平均放热 温度不变,热效率提高。
吸热量:
q 1 h 1 h 4 h 1 ( h 3 w p ) h 1 ( h 2 w p ) 3 2 7 1 . 2 2 k J / k g
10工程热力学第十章 水蒸气及蒸汽动力循环
10-3 水蒸气的热力过程 目的—确定过程的能量转换关系 分析水蒸气热力过程的目的 确定过程的能量转换关系, 分析水蒸气热力过程的目的 确定过程的能量转换关系, 包括w 以及 以及u和 等 因此,需确定状态参数的变化. 包括 ,q以及 和Δh等.因此,需确定状态参数的变化. 确定过程的能量转换关系的依据为热力学第一,二定律: 确定过程的能量转换关系的依据为热力学第一,二定律:
图和T-s图 三,水蒸气的p-v图和 图 水蒸气的 图和
分析水蒸气的相变图线可见,上,下界线表明了水汽化的始末界线, 分析水蒸气的相变图线可见, 下界线表明了水汽化的始末界线, 二者统称饱和曲线, 图分为三个区域,即液态区( 二者统称饱和曲线,它把p-v和T-s图分为三个区域,即液态区(下 界线左侧) 湿蒸汽区(饱和曲线内) 汽态区(上界线右侧) 此外, 界线左侧),湿蒸汽区(饱和曲线内),汽态区(上界线右侧).此外, 习惯上常把压力高于临界点的临界温度线作为"永久" 习惯上常把压力高于临界点的临界温度线作为"永久"气体与液体 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点) 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点), 二线(上界线,下界线) 三区(液态区,湿蒸汽区,气态区) 二线(上界线,下界线),三区(液态区,湿蒸汽区,气态区)和五态 未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, (未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, 过热蒸汽状态) 过热蒸汽状态)
q = h h ′′
显然, 的水加热变为过热水蒸气所需的热量, 显然,将0.01℃的水加热变为过热水蒸气所需的热量,等于液 的水加热变为过热水蒸气所需的热量 体热,汽化潜热与过热热量三者之和. 体热,汽化潜热与过热热量三者之和.而且整个水蒸气定压发生过 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算 用水和水蒸气的焓值变化来计算. 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算.
《工程热力学》第十章 水蒸汽及蒸汽动力循环
T
0’
锅炉
1kg
C
1
给水泵
汽
轮
WS
0’
P1
机 回热器 akg
b
a
0
b
a (1-a)kg 3
P2
0
2
2
冷凝器
s
水泵 3
21
回热循环计算
Q' (kg)(ha hb )
Q" (1 )(kg)(hb h0 )
Q' Q"
抽汽率
hb h0
hb h0
(ha h0 ) (hb h0 ) ha h0
22
( w s ,T ) 1 a 1 kg ( h1 h a )
( w s ,T ) a 2 (1 ) kg ( h a h 2 ) w s ,T 1 kg ( h1 h a ) (1 ) kg ( h a h 2 ) (1 ) kg ( h1 h 2 ) kg ( h1 h a ) Q 2 (1 ) kg ( h 2 h 3 )
w 0 ( w s ,T ) 1 2 ( w s , p ) 3 0 h1 h2 (h0 h3 ) h1 h2
16
4、循环热效率
t
w0 q1
h1 h2 (h0 h3 ) h1 h0
h1 h2 h1 h3
举例说明计算过程
17
提高循环热效率的措施 1、提高蒸汽初温对热效率的影响 2、提高蒸汽初压对热效率的影响 3、降低乏汽压力以提高热效率
Q 1 Q 2 w s ,T w s , p Q 1 Q 2 w s ,T
(1 ) kg ( h 2 h 3 ) kg ( h1 h a )
23
tH
1 Q2 Q1
工程热力学蒸汽动力循环装置PPT课件
T
wt ,act wt
h1 h2act h1 h2
h2act h2 1T h1 h2 h2 1T h0
h0 h1 h2 称为理想绝热焓降
大功率汽轮机的ηT在0.85~0.92之间
▪ 实际循环内部功wnet,act:每千克蒸汽在实际工作循环中作出的循 环净功
wnet,act wt,act wP,act wt,act h1 h2act
1 1 h1 1 1 h1
h2 h2
h1 h1
h2 h2
▪ 回热循环工质平均吸热温度提高,平均放热温度不变,故循环热效率 提高,大于单纯朗肯循环热效率
第34页/共44页
▪ 回热循环工质吸热量减少,锅炉热负荷减低,节省金属材料 ▪ 由于汽耗率增大,汽轮机高压端蒸汽流量增加,低压端流量减小,
wt
wp q1
h1 h2 h4 h3 h1 h4
第5页/共44页
水泵功的近似值为
wp h4 h3 u4 p4v4 u3 p3v3
p4 p3 v3 p1 p2 v2
可t 得 hh热11 效hh率32 的 pp近11 似pp22式vv22
h1 h2 p1 h1 h2 p1
p2 v2 p2 v2
略
t
去w
h1 h2 p简h化1 为h2
循环初压力p1甚高时,水泵功约占汽轮机作 第6页/共44页
➢ 蒸汽参数对热效率的影响 ▪ 初温t1对热效率的影响 在相同的初压及背压下,提高新蒸汽的温度可使热效率增大 提高初温还可使终态2的干度x2增大,有利于提高汽轮机内效率和 延长汽轮机的使用寿命 提高初温受材料耐热性能的限制,最高蒸汽温度很少超过600℃
用轴功率表示为
Ps mT P0 mT Dh1 h2
2021优选蒸汽动力循环及制冷循环优秀课件ppt
1.再热循环
T
8 7 6
1 P1 3 p2
2 p3
45
S 结论:(1)η提高
再热循环的热效率
w sw SH w SL w pw SH w SL Q Q HQ RH Q HQ RH
1
2
wsh+wsL 34
QR
H
(2)乏汽湿含量减少,干度增加。
2.回热循环
回热循环的热效率:
w s w pw s Q H Q L 1 (1 )H (3 H 2)
高压流体经过节流阀后迅速膨胀到低压的过程称为节 流膨胀。
1. 特点:等焓过程
由热力学第一定律: H12c2gZqws
Q=0(来不及传热),
Ws=0(不做功)
若忽略掉动能、位能的影响 ∴ΔH=0
对于H=f(T,P) ∵ P发生变化 之发生变化
∴T也随
2. 微分节流效应(焦汤效应)
(1) 定义式
QRH
QH
QH H1 H 7
Q RH H 6 H 2 w s H 1 H 2 (1 )H 2 H 3
热效率 w s
QH
能量利用参数 w s Q h
QH
4.应用举例
[P140-143 例6-3~6-4] 自看
6.2 节流膨胀与作外功的绝热膨胀
一. 节流膨胀过程
4
3
2 2’
P2=0.008MPa
S
一. 提高郎肯循环热效率的措施
对卡诺循环:
c
ws QH
1TL TH
对郎肯循环: ws H1H2H1H2
QH H1H4 H1H3
要使η↑:
(1) H2↓,降低压力P2(汽轮机出口蒸汽压力)
(2) H1↑,提高汽轮机进口蒸汽的压力或温度 (3) 使吸热过程向卡诺循环靠近,以提高热效率
水蒸气与蒸汽动力循环课程PPT(32张)
(4)查附表5,p1MPa,ts179.916℃,tts。故第四 种情况是饱和状态,但无法确定是饱和水,干饱和水蒸 气还是湿蒸汽,其余参数也无法确定。
三、水蒸气的焓熵图
欲获得水蒸汽的状态参数,可查
水蒸气表
精确度高,但往往不 太方便、且不直观
水蒸气的焓熵图(莫里尔图)
方便、直观, 但不够精确
临界点C 上界线(x1) 下界线(x0)
——单位质量湿蒸汽中所含饱和蒸汽的质量称
为湿蒸汽的干度。表示式为
饱和液体和饱和 蒸汽的混合物
x mv mv mw
mv-湿蒸气中干饱和蒸气的质量 mw-湿蒸气中饱和水的质量
x0 ,饱和液体
干度x的取值范围为0~1。 0﹤x﹤1 ,湿(饱和)蒸汽
x1 ,干饱和蒸汽
• 引入干度x可确定湿蒸汽中所含饱和液体和饱和蒸汽的
6. 了解再热循环和回热循环的基本装置、热力过程及热效率,了 解热电合供循环的基本思想和经济性指标。
本章难点
1. 本章的基本概念较多,也比较抽象,较难理解。 学习中应反复深入地思考,正确理解这些概念的物理 意义,找出其间有机的联系,并在应用中加深理解。
2. 熟练利用水蒸气图表进行相关工程计算在初始阶 段会有一定难度,应结合例题与习题加强练习。
的液体沸点不同。
汽化过程是吸热过程。
如在0.1MPa时,水的沸点为 99.634℃,氨的沸点为-32℃
基本概念
2. 凝结
——物质由气态转变为液态的过程称为凝结。
如水蒸汽冷凝为
液态物质 (吸热)汽化 (放热)凝结
水
气态物质
同压力下蒸汽的凝结 温度与液体的沸点相
等
汽相空间蒸汽分子越多,蒸汽压力越大,凝结速度 越快。
三、水蒸气的焓熵图
欲获得水蒸汽的状态参数,可查
水蒸气表
精确度高,但往往不 太方便、且不直观
水蒸气的焓熵图(莫里尔图)
方便、直观, 但不够精确
临界点C 上界线(x1) 下界线(x0)
——单位质量湿蒸汽中所含饱和蒸汽的质量称
为湿蒸汽的干度。表示式为
饱和液体和饱和 蒸汽的混合物
x mv mv mw
mv-湿蒸气中干饱和蒸气的质量 mw-湿蒸气中饱和水的质量
x0 ,饱和液体
干度x的取值范围为0~1。 0﹤x﹤1 ,湿(饱和)蒸汽
x1 ,干饱和蒸汽
• 引入干度x可确定湿蒸汽中所含饱和液体和饱和蒸汽的
6. 了解再热循环和回热循环的基本装置、热力过程及热效率,了 解热电合供循环的基本思想和经济性指标。
本章难点
1. 本章的基本概念较多,也比较抽象,较难理解。 学习中应反复深入地思考,正确理解这些概念的物理 意义,找出其间有机的联系,并在应用中加深理解。
2. 熟练利用水蒸气图表进行相关工程计算在初始阶 段会有一定难度,应结合例题与习题加强练习。
的液体沸点不同。
汽化过程是吸热过程。
如在0.1MPa时,水的沸点为 99.634℃,氨的沸点为-32℃
基本概念
2. 凝结
——物质由气态转变为液态的过程称为凝结。
如水蒸汽冷凝为
液态物质 (吸热)汽化 (放热)凝结
水
气态物质
同压力下蒸汽的凝结 温度与液体的沸点相
等
汽相空间蒸汽分子越多,蒸汽压力越大,凝结速度 越快。
工程热力学与传热学 第十章 气体动力循环
在斯特林循环中,在定容吸热过程2-3中工质从回热器中吸收的
热量正好等于定容放热过程4-1放给回热器的热量。经过一个循环
回热器恢复到初始状态。 可以证明:在相同的温度范围内,理想的定容回热循环(斯特 林循环)和卡诺循环,具有相同的热效率。
斯特林循环的突出优点是热效率高、污染少,对加热方式的适
应性强。随着科技的发展以及环境保护日益为人们所重视,斯特林
同样可以证明:在相同的温度范围内,理想的定压回热循环( 艾利克松循环)和卡诺循环,具有相同的热效率。 理想回热循环(斯特林循环和艾利克松循环)通常称为概括性 卡诺循环。实践证明,采用回热措施可以提高循环热效率,也是余 热回收的一种重要节能途径。
本章小结
1。气体动力循环的基本概念 1)内燃机的特性参数:
P 3 2 4
0-1:吸气过程。由于阀门的阻力,吸入气缸内
空气的压力略低于大气压力。
1-2:压缩过程 2-3-4-5:燃烧和膨胀过程
5 6
燃烧可分为定容过程和定压过 程
1
Pb
0
5-6-0:排气过程
V
P 3 2 4
简化原则为:(1)不计吸气和
排气过程,将内燃机的工作过程 看作是气缸内工质进行状态变化 的封闭循环。
3 - 4为定压加热过程:
T4 v4 T3 v3 T4 T3 T1 k 1;p4 p3 p1 k
v1 v2
p3 p2
v4 v3
4-5为定熵过程,5-1及2-3为定容过程,因此有:
T5 v 4 k 1 v 4 k 1 v 4 v 2 k 1 k 1 ( ) ( ) ( ) ( ) T4 v5 v1 v3 v1
2-3:定容吸热; 4-5:绝热膨胀;
《工程热力学》课件
空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
第10章-蒸汽动力循环装置优秀课件
四有摩阻的实际循环吸热量放热量汽轮机作功水泵耗功1??14qhh??2??23qhh??12twhh????43p??whh??循环净功循环净功1224t4??循环热效率0??1twq??0?1?2?t?p?wqqww????3s2?汽轮机的相对内效率水泵的相对内效率t?oitww??ppp?ww??17hplp一蒸汽再热循环一蒸汽再热循环boilerreheaterlowpturbinehighpturbineqinwturbout蒸汽再热循环系统示意图102再热循环5893pumpcondenserqout蒸汽再热循环系统示意图蒸汽再热循环系统示意图wpumpin165t16hh6h1hh5p1prht1蒸汽再热循环的ts图和hs图二蒸汽再热循环在二蒸汽再热循环在ttss图和图和hhss图中表示图中表示4322s522h2h2p2x2x9x1s压力提高压力提高效率提高效率提高干度下降干度下降升温受限升温受限再热目的是提高乏汽干度再热目的是提高乏汽干度有自己的优缺点
2
(11)(h02' h2')
h02 h2'
10-4 热电合供循环
背
1
压
Generator
式
Boiler
Turbine
汽
qin
轮
机
2
Electricity
热
Heat exchanger
电
4
联
Pump
qout User
产
循
3
环
抽
汽
Turbine
Generator
调
节
qin Boiler
式
热
Regulator valve
力Mpa ~ ~
3.0
2
(11)(h02' h2')
h02 h2'
10-4 热电合供循环
背
1
压
Generator
式
Boiler
Turbine
汽
qin
轮
机
2
Electricity
热
Heat exchanger
电
4
联
Pump
qout User
产
循
3
环
抽
汽
Turbine
Generator
调
节
qin Boiler
式
热
Regulator valve
力Mpa ~ ~
3.0
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
3
表面式回热器
5
4
(1-α)kg
抽汽
给水
冷凝水
抽汽式回热
混合式回热器
蒸汽抽汽回热循环
T
1
1kg 6 kg
a
4 5 (1- )kg
3
2
1 1kg
a2
αkg
6
3
5
4
(1-α)kg
由于T-s图上各点质 量不同,面积不再 直接代表热和功
s 1kg
5
a kg (1- )kg
4
抽汽回热循环的抽汽量计算
放热量:
q2,RG 1 h2 h2'
3
2
净功:wRG h1 ha
热效率:t,RG
h1
ha
s 1
h1 ha'
1 ha ha h2
h2
为什么抽汽回热热效率提高?
T t,RG t 1
教材推导
6
1kg kg
t,RGa 1
4 5 (1- )kg
h1 h2'
h2 h2'
p1 , p2不变,t1
优点:
• T1
t
T
1' • x2' ,有利于汽轮
1
机安全。
缺点:
5
6
• 对耐热及强度要
4
求高,目前初温
3
一般在550℃左右
2 2' • v2' 汽轮机出
口尺寸大
s
➢ 提高蒸汽初压p1
t1 , p2不变,p1
T
5'
5
4'
4 3
1' 1 6'
6
2' 2
s
优点:
• T1
t
• v2' ,汽轮机出口
10-2 再热循环
T
5 4 3
1a 6b
2 s
1
再 热
4
b 2
a
3
蒸汽再热循环的热效率
T
5 4 3
1a 6b
2
• 与再热压力有关
• x2增加,给提高初 压创造了条件,选 取再热压力合适, 一般采用一次再热 可使热效率提高2 s %~3.5%。
蒸汽再热循环的定量计算
吸热量:
T 5
4
1a 6b
q1 h1 h4 ha hb
T
1
1kg 6 kg
a
4 5 (1- )kg
3
2
以混合式回热器为例 热一律
ha 1 h4 1 h5
h5 h4
ha h4
a kgsBiblioteka 1kg(1- )kg
5
4
忽略泵功
h5 h3
ha h3
抽汽回热循环热效率的计算
T
1
1kg 6 kg
a
4 5 (1- )kg
吸热量:
q1,RG h1 h5 h1 ha'
水蒸气动力循环系统的简化
简化(理想化):
1 汽轮机 12 汽轮机 s 膨胀
锅
23 凝汽器 p 放热
炉
发电机 34 给水泵 s 压缩
4
2
41 锅炉 p 吸热
凝汽器
3 给水泵
郎肯循环
郎肯循环pv图和TS图
p
T
1
4
1
3
2
v 12 汽轮机 s 膨胀 23 凝汽器 p 放热
4
3
2
s
34 给水泵 s 压缩 41 锅炉 p 吸热
➢ 朗肯循环
q1 h1 h4 q2 h2 h3
汽轮机对外作功:
wT h1 h2
水泵消耗功:
wP h4 h3
循环热效率:
t
wnet q1
q1 q2 q1
wT wP q1
(h1 h2 ) (h4 h3) h1 h4
郎肯循环热效率的计算
t
wnet q1
ws,12 ws,34 q1
放热量:
q2 h2 h3
净功(忽略泵功):
3
2 wnet h1 hb ha h2
热效率: t,RH
wqns1et
(h1 hb ) (ha (h1 h4 ) (ha
h2 ) hb )
§10-3 蒸汽回热循环(regenerative)
1 1kg
抽汽 冷凝水
a2
去凝汽器
αkg
h 一般很小,
占0.8~1%,
忽略泵功
t
h1 h1
h2 h3
4 3
1 2
s
二、提高蒸汽动力循环热效率 的途径与方法
1. 提高蒸汽压p1,初温T1 ,降低终参数p2 2. 再热循环 3. 回热循环 4. 高初参数与再热、回热的联合应用 5. 减少循环中的不可逆损失 6. 热电联产循环及其他措施
➢ 提高蒸汽初温T1
尺寸小
缺点: • 对强度要求高
•轮机x2'安不全利。于一汽般
要求出口干度大 于0.85~ 0.88
➢ 降低背压p2
p1 , t1不变,p2
T
5 4
4' 3 3'
1 6
2
2'
s
优点:
• T2 t
缺点: •受环境温度限制, 现在大型机组p2为 0.0035~0.005MPa, 相应的饱和温度约为 27~ 33℃ ,已接近事 实上可能达到的最低 限度。冬天热效率高
1
h1
ha
3
2
简单朗肯循环:
s 物理意义: kg工质100%利用
1- kg工质效率未变
t
1
h2 h1
h2' h2'
1
h1
ha
0
蒸汽抽汽回热循环的特点
•优点 >缺点 提高热效率 减小汽轮机低压缸尺寸,末级叶片变短 减小凝汽器尺寸,减小锅炉受热面
•缺点 循环比功减小,汽耗率增加 增加设备复杂性 回热器投资 小型火力发电厂回热级数一般为1~3级 中大型火力发电厂一般为 4~8级。
第十章 蒸汽动力循环装置
动力机最早的工质为水蒸气 蒸汽工质的动力循环在循环中存在相变
§10-1 简单蒸汽动力装置循环 —郎肯循环(Rankine cycle)
一.简介
二.朗肯循环 1.水蒸气的卡诺循环
水蒸气卡诺循环有可能实现,但: 1)温限小; 2)膨胀末端x太小; 3)压缩两相物质的困难; 所以,实际并不实行卡诺循环。