青岛版九年级数学上册用因式分解法解一元二次方程练习题

合集下载

2022年青岛版九上《用因式分解法解一元二次方程》习题精选(附答案)(二)

2022年青岛版九上《用因式分解法解一元二次方程》习题精选(附答案)(二)

4.4 用因式分解法解一元二次方程 习题精选〔二〕直接开平方法1.如果〔x -2〕2=9,那么x = .2.方程〔2y -1〕2-4=0的根是 .3.方程〔x+m 〕2=72有解的条件是 .4.方程3〔4x -1〕2=48的解是 .配方法5.化以下各式为〔x +m 〕2+n 的形式.〔1〕x 2-2x -3=0 .〔2〕210x = .6.以下各式是完全平方式的是〔 〕A .x 2+7n =7B .n 2-4n -4C .211216x x ++D .y 2-2y +27.用配方法解方程时,下面配方错误的选项是〔〕A .x 2+2x -99=0化为〔x +1〕2=0B .t 2-7t -4=0化为2765()24t -=C .x 2+8x +9=0化为〔x +4〕2=25D .3x 2-4x -2=0化为2210()39x -=8.配方法解方程.〔1〕x 2+4x =-3 〔2〕2x 2+x=0因式分解法9.方程〔x +1〕2=x +1的正确解法是〔 〕A .化为x +1=0B .x +1=1C .化为〔x +1〕〔x +l -1〕=0D .化为x 2+3x +2=010.方程9〔x +1〕2-4〔x -1〕2=0正确解法是〔 〕A .直接开方得3〔x +1〕=2〔x -1〕B .化为一般形式13x 2+5=0C .分解因式得[3〔x +1〕+2〔x -1〕][3〔x +1〕-2〔x —1〕]=0D .直接得x +1=0或x -l =011.〔1〕方程x 〔x +2〕=2〔z +2〕的根是 .〔2〕方程x 2-2x -3=0的根是 .12.如果a 2-5ab -14b 2=0,那么235a b b+= . 公式法13.一元二次方程ax 2+bx +c =0〔a ≠0〕的求根公式是 ,其中b 2—4ac .14.方程〔2x +1〕〔x +2〕=6化为一般形式是 ,b 2—4ac ,用求根公式求得x 1= ,x 2= ,x 1+x 2= ,12x x = ,15.用公式法解以下方程.〔1〕〔x +1〕〔x +3〕=6x +4.〔2〕21)0x x ++=.〔3〕 x 2-〔2m +1〕x +m =0.16.x 2-7xy +12y 2=0〔y ≠0〕求x :y 的值.综合题17.三角形两边的长是3,8,第三边是方程x 2—17x +66=0的根,求此三角形的周长.18.关于x 的二次三项式:x 2+2rnx +4-m 2是一个完全平方式,求m 的值.19.利用配方求2x 2-x +2的最小值.20.x 2+ax +6分解因式的结果是〔x -1〕〔x +2〕,那么方程x 2+ax +b =0的二根分别是什么?21.a 是方程x 2-3x +1=0的根,试求的值.22.m 是非负整数,方程m 2x 2-〔3m 2—8m 〕x+2m 2-13m+15=0至少有一个整数根,求m的值.23.利用配方法证明代数式-10x 2+7x -4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l 、2、3.24.解方程〔1〕〔x 2+x 〕·〔x 2+x -2〕=24;〔2〕260x x --=25.方程x 2-6x -k =1与x 2-kx -7=0有相同的根,求k 值及相同的根.26.张先生将进价为40元的商品以50元出售时,能卖500个,假设每涨价1元,就少卖10个,为了赚8 000元利润,售价应为多少?这时,应进货多少?27.两个不同的一元二次方程x 2+ax +b =0与x 2+ax +a =0只有一个公共根,那么〔 〕A .a =bB .a -b =lC .a +b =-1D .非上述答案28.在一个50米长30米宽的矩形荒地上设计改造为花园,使花园面积恰为原荒地面积的寺,试给出你的设计.29.海洲市出租车收费标准如下〔规定:四舍五入,精确到元,N ≤15〕N 是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N 的值吗?30.方程〔x -1〕〔x +2〕〔x -3〕=0的根是 .31.一元二次方程x 2—2x =0的解是〔 〕A .0B .2C .0,-2D .0,232.方程x 2+kx —6=0的一根是2,试求另一个根及k 的值.33.方程(2)310m m x mx +++=是一元二次方程,那么这方程的根是什么?34.x 1、x 2是方程2x 2—3x —6=0的二根,求过A 〔x 1+x 2,0〕B 〔0,x l ·x 2〕两点的直线解析式.35.a 、b 、c 都是实数,满足2(2)80a c c -++=,ax 2+bx +c =0,求代数式x 2+2x +1的值.36.a 、b 、c满足方程组求方程2848a b ab c +=⎧⎪⎨=+-⎪⎩的解。

青岛版初中数学九年级上册《用因式分解法解一元二次方程》习题精选(一)

青岛版初中数学九年级上册《用因式分解法解一元二次方程》习题精选(一)

A. 1
B. -1 C. 1 或-1
1
D.
2
ab
10.将 4 个数 a,b,c,d 排成 2 行、2 列,两边各 加一条竖直线记成
,定义
cd
TB:小初高题库
青岛版初中数学
ab
x 1 x 1
ad bc ,上述记号就叫做 2 阶行列式.若
6 ,则 x
cd
1 x x 1

11.用因式分解法解下列方程:
(1) x2 12x 35 0 (2) (3x 1)2 4 0 (3) 3(2x 3)2 2(2x 3) 0
(4) 9(x 2)2 16(2x 5)2
(5) (x 3)2 5(x 3) 6 0
(三)拓展测试:(12,13,14 每题 5 分,15,16 每题 10 分,共 35 分)
5.若关于 x 的方程 x2 5x k 0 的一个根是 0,则另一个根是

6.经计算整式 x 1与 x 4 的积为 x 2 3x 4 ,则 x 2 3x 4 0 的所有根为
()
A. x1 1, x2 4
B. x1 1, x2 4
C. x1 1, x2 4
D. x1 1, x2 4


, 2x(x 3) 5(x 3) 因式分解结果
2. x 2 20x 96 因式分解结果为


3.一元二次方程 x(x 1) x 的解是
, x 2 20x 96 0 的根

4.小华在解一元二次方程 x2-4x=0 时.只得出一个根是 x=4,则被他漏掉的一个根是 x=____.
参考答案
1. x(x 50), (x 3)(2x 50) 2. (x 24)(x 4), x1 24, x2 4

【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册一元二次方程解法练习100题1.解方程:2x2﹣8x+3=0(用公式法). 2.解方程:(2x-1)(x+3)=43.解方程:4y2+4y-1=-10-8y.4.解方程:x(x-3)=105.解方程:(x-1)(x-3)=86.解方程:x2-2=-2 x7.解方程:4x(3x-2)=6x-4. 8.解方程:3x(7-x)=18-x(3x-15);9.解方程:5x2-8x+2=0. 10.解方程:x2+12x+27=0.11.解方程:2x2-4x+1=0(用配方法) 12.解方程:4(x-1)2=9(x-5)2 13.解方程:x2﹣6=﹣2(x+1) 14.解方程:x2+4x﹣5=0.15.解方程:2x2+5x﹣1=0.16.解方程:3(x-2)2=x(x-2):17.解方程:2x2-3x-2=0 18.解方程:2x2-7x+1=019.解方程:x2﹣6x﹣4=0(用配方法) 20.解方程:x2-4x-3=021.解方程:x²-5x+2=0 22.解方程:x2﹣4x+8=0;23.解方程:3x2-6x+4=0 24.解方程:(x-2)(x-3)=1225.解方程:(x﹣3)(x+7)=﹣9 26.解方程:3x2+5(2x+1)=0(公式法) 27.解方程:x2﹣12x﹣4=0;28.解方程:(x﹣5)(x﹣6)=x﹣5.29.解方程:x2﹣8x﹣10=0;30.解方程:x(x﹣3)=15﹣5x;31.解方程:5x(x﹣3)=(x+1)(x﹣3) 32.解方程:x2+8x+15=033.解方程:25x2+10x+1=0 34.解方程:x2﹣7=﹣6x.(配方法)35.解方程:x2+4x﹣5=0(配方法) 36.解方程:4(x+3)2﹣(x﹣2)2=0(因式分解法)37.解方程:2x2+8x﹣1=0(公式法) 38.解方程:2x2-4x-1=0.39.解方程:(2x﹣5)2﹣(x+4)2=0.40.解方程:(x+1)(x﹣2)=2x(x﹣2) 41.解方程:4x2﹣6x﹣3=0(运用公式法) 42.解方程:2x2﹣x﹣3=0.43.解方程:(x+3)(x-1)=12 44.解方程:x2+3=3(x+1)45.解方程:x2-2x-24=0. 46.解方程:4x2-7x+2=0.47.解方程:x2-2x=2x+1;48.解方程:2(t-1)2+t=1;49.解方程:(3x-1)2-4(2x+3)2=0. 50.解方程:x2-6x-4=0;51.解方程:x(x﹣3)=4x+6.52.解方程:y2+3y+1=0;53.解方程:3y2+4y-4=0 54.解方程:(x-3)2-2x(x-3)=055.解方程:x2﹣2x=4 56.解方程:3(x﹣1)2=x(x﹣1) 57.解方程:3x2﹣6x+1=0(用配方法) 58.解方程:3(x-5)2=2(5-x) 59.解方程:3x2+5(2x+1)=0 60.解方程:x2+6x=9.61.解方程:x2﹣2x=x﹣2.62.解方程:(2x﹣1)2=(3﹣x)2 63.解方程:2x2-10x=3. 64.解方程:(x﹣1)(x﹣3)=8.65.解方程:3x2+2x-5=0;66.解方程:(1-2x)2=x2-6x+9.67.解方程:5(3x-2)2=4x(2-3x).68.解方程:(2x+1)2+4(2x+1)+3=0.69.解方程:2x2+3=7x; 70.解方程:(2x+1)2+4(2x+1)+3=0.71.解方程:x2﹣2x﹣3=0.72.解方程:x﹣3=4(x﹣3)273.解方程:(x+1)(x-1)=2x;74.解方程:3x2-7x+4=0.75.解方程:(x+2)2﹣10(x+2)=0.76.解方程:x2+3x+2=0;77.解方程:(x-1)2-2(x2-1)=0 78.解方程:x2-4x+2=0;79.解方程:x2﹣5x+1=0;80.解方程:x2﹣2x=4.81.解方程:x2+3x-2=0. 82.解方程:x2-5x+1=0(用配方法)83.解方程:x2+5x﹣6=0(因式分解法) 84.解方程:x2+3x﹣4=0(公式法)85.解方程:x2﹣4x+1=0(配方法) 86.解方程:(x﹣5)2=16 (直接开平方法)87.解方程:(x﹣1)(x+2)=6. 88.解方程:2x2+3x+1=089.解方程:(3x+1)2=9x+3. 90.解方程:5x2﹣3x=x+191.解方程:(x﹣4)2=(5﹣2x)2. 92. 解方程:(2x+1)2+15=8(2x+1)93.解方程:x2+x﹣1=0. 94.解方程:2x2﹣3x﹣1=0.95.解方程:x2-2x-3=0 96.解方程:3x2-7x+4=0.97.解方程:(x+3)(x-1)=12 98.解方程:x2-x-6=099.解方程:2x2﹣4x=1(用配方法) 100.解方程:(x+8)(x+1)=-12参考答案1.答案为:x=,x2=.12.答案为:x=1,x2=-3.5.13.答案为:y=y2=-1.5.14.答案为:x=5,x2=-2.15.答案为:x=5,x2=-1.16.答案为:∴,7.答案为:x=1/2,x2=-2/3.18.答案为:x=39.答案为:10.答案为:x=-3,x2=-9.111.答案为:12.答案为:x=13,x2=-3.4.113.答案为:x=﹣1+,x2=﹣1﹣.114.答案为:x=1,x2=﹣5.115.答案为:x=.16.答案为:x=2,x2=3.117.答案为:x=-0.5,x2=-2.118.答案为:;19.答案为:x=-3+,x2=-3-120.答案为:x=2721.答案为:略;22.答案为:x=x2=2;123.方程无实根;24.答案为:x=-1,x2=6. ;125.答案为:x=﹣6,x2=2;126.答案为:∴x1=,x2=.27.答案为:x=6+2,x2=6﹣2;128.答案为:x=5,x2=7.129.答案为:x=4+,x2=4﹣;130.答案为:x=3,x2=﹣5131.答案为:x=3,x2=0.25.132.答案为:x=-3,x2=-5.133.答案为:x=x2=-0.2.134.答案为:x=1,x2=﹣7.135.答案为:x=﹣5,x2=1;136.答案为:x=﹣4/3,x2=﹣8;137.答案为:x=,x2=.138.答案为:x=+1,x2=1-139.答案为:x=1/3,x2=9.140.答案为:x=2,x2=1.141.答案为:,;42.答案为:x=1.5,x2=﹣1.143.答案为:44.答案略;45.答案为:x=0,x2=3;146.答案为:x=+,x2=-.147.答案为:x=2+,x2=2-.148.答案为:t=1,t2=.149.答案为:x=-,x2=-7.150.答案为:x=3+,x2=3-.151.答案为:x=,x2=.152.答案为:y=,y2=.153.答案为:54.答案为:x=3,x2=-3;155.答案为:∴x=1﹣,x2=1+;156.答案为:x=1,x2=1.5.157.答案为:x=1+,x2=1﹣;158.答案为:x=5,x2=13/3.159.答案为:60.答案为:x=﹣3+3,x2=﹣3﹣3.161.答案为:x=2,x2=1.162.答案为:63.答案为:x 1=,x 2=. 64.答案为:x 1=5,x 2=﹣1. 65.答案为:x 1=1,x 2=-. 66.答案为:x 1=,x 2=-2. 67.答案为:x 1=,x 2=.68.答案为:x 1=-1,x 2=-2.69.答案为:x 1=,x 2=3.70.答案为:x 1=-1,x 2=-2.71.答案为:x 1=3,x 2=﹣1.72.答案为:x 1=3,x 2=3.25;73.答案为:x 1=+,x 2=-74.答案为:x 1=,x 2=1 75.答案为:x 1=﹣2,x 2=8.76.答案为:x 1=-1,x 2=2.77.答案为:x 1=1,x 2=3.78.答案为:x 1=22 ,x 2=2-2. 79.答案为: 80.答案为:x 1=1+,x 2=1﹣.81.∵a=1,b=3,c=-2,∴Δ=32-4×1×(-2)=17,∴x=,∴x 1=,x 2=.82.答案为:,.83.x1=﹣6,x2=1.84.答案为:x=﹣4,x2=1;185.;86.x=1,x2=9;187.x=,x2=.188.x1=﹣0.5,x2=﹣1;89.x1=﹣,x2=.90.x=﹣0.2,x2=1;191.x=3,x2=1.192.x=1,x2=2.193.x=,x2=.194.x=,x2=.195.96.解:(3)x=,x2=1197.98.99.x=1+,x2=1﹣.1100.1=﹣4,x2=﹣5.。

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。

2.解方程:$(2x-1)(x+3)=43$。

3.解方程:$4y^2+4y-1=-10-8y$。

4.解方程:$(x-1)(x-3)=8$。

5.解方程:$5x^2-8x+2=0$。

6.解方程:$x(x-3)=10$。

7.解方程:$x^2-2=-2x$。

8.解方程:$3x(7-x)=18-x(3x-15)$。

9.解方程:$4x(3x-2)=6x-4$。

10.解方程:$x^2+12x+27=0$。

11.解方程:$2x^2-4x+1=0$,使用配方法。

12.解方程:$4(x-1)^2=9(x-5)$。

13.解方程:$x^2-6=-2(x+1)$。

14.解方程:$x^2+4x-5=0$。

15.解方程:$2x^2+5x-1=0$。

16.解方程:$3(x-2)^2=x(x-2)$。

17.解方程:$2x^2-3x-2=0$。

18.解方程:$2x^2-7x+1=0$。

19.解方程:$x^2-6x-4=0$,使用配方法。

20.解方程:$x^2-4x-3=0$。

21.解方程:$x^2-5x+2=0$。

22.解方程:$x^2-4x+8=0$。

23.解方程:$3x^2-6x+4=0$。

24.解方程:$(x-2)(x-3)=12$。

25.解方程:$(x-3)(x+7)=-9$。

26.解方程:$3x^2+5(2x+1)=0$,使用公式法。

27.解方程:$x^2-12x-4=0$。

28.解方程:$(x-5)(x-6)=x-5$。

29.解方程:$x^2-8x-10=0$。

30.解方程:$x(x-3)=15-5x$。

31.解方程:$5x(x-3)=(x+1)(x-3)$。

32.解方程:$x^2+8x+15=0$。

33.解方程:$25x^2+10x+1=0$。

34.解方程:$x^2+6x-7=0$,使用配方法。

35.解方程:$x^2+4x-5=0$,使用配方法。

九年级数学: 因式分解法解一元二次方程典型例题

九年级数学: 因式分解法解一元二次方程典型例题

例 用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0 y +1=0或y +6=0 ∴y 1=-1,y 2=-6(2)方程可变形为t (2t -1)-3(2t -1)=0 (2t -1)(t -3)=0,2t -1=0或t -3=0 ∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0 ∴x 1=0,x 2=23说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考典型例题二例 用因式分解法解下列方程6223362+=+x x x解:把方程左边因式分解为:0)23)(32(=-+x x∴032=+x 或023=-x ∴ 32,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。

例 用因式分解法解下列方程。

1522+=y y解: 移项得:01522=--y y 把方程左边因式分解 得:0)3)(52(=-+y y ∴052=+y 或03=-y∴.3,2521=-=y y说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。

初三数学解一元二次方程练习题(配方法、公式法)

初三数学解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是 6.用配方法将二次三项式a 2-4a+5变形,结果是 7.把方程x 2+3=4x 配方,得 8.用配方法解方程x 2+4x=10的根为 9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

解一元二次方程练习题(公式法)一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是__ ___ 当b-4ac<0时,方程____.2.方程ax 2+bx+c=0(a ≠0)有两个相等的实数根,则有_______ ,•若有两个不相等的实数根,则有______,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________. 4.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个5.若方程x 2-4x+a=0的两根之差为0,则a 的值为________. 二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9因式分解法解一元二次方程练习题1.填空题(1)方程t(t+3)=28的解为_______.(2)方程(2x+1)2+3(2x+1)=0的解为__________.(3)方程x(x-5)=5-x的解为__________.3.用因式分解法解下列方程:(1)x2+12x=0;(2)4x2-1=0;(3)x2=7x;(4)(2t+3)2=3(2t+3)(5)(3-y)2+y2=9;(6)(1+2)x2-(1-2)x=0; (7)x2+3=3(x+1).1.(4分)(2014年山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=32.(2014年山东烟台)关于x 的方程x 2﹣ax+2a=0的两根的平方和是5,则a 的值是( )A .﹣1或5B . 1C . 5D . ﹣1 3.(3分)(2014•威海)方程x 2﹣(m+6)+m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,4. 若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则b a= . 5.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程 x 2 -12x+k=O 的两个根,则k 的值是( )A 27B 36C 27或36D 18 6.(3分)(2014•枣庄)x 1、x 2是一元二次方程3(x ﹣1)2=15的两个解,且x 1<x 2,) )林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同. (1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?9.(4分)(2014•德州)方程x 2+2kx+k 2﹣2k+1=0的两个实数根x 1,x 2满足x 12+x 22=4,则k 的值为 .一元二次方程根与系数的关系练习题1.如果x 1、x 2是一元二次方程02x 6x 2=--的两个实数根,则x 1+x 2=_________.2.一元二次方程03x x 2=--两根的倒数和等于__________.3.关于x 的方程0q px x 2=++的根为21x ,21x 21-=+=,则p=______,q=____.4.若x 1、x 2是方程07x 5x 2=--的两根,那么_______________x x 2221=+, .________)x (x 221=-5.已知21x ,x 为方程01x 3x 2=++的两实根,则.__________20x 3x 221=+- 6.方程02x 5x 2=+-与方程06x 2x 2=++的所有实数根的和为___________. 7.关于x 的方程01x 2ax 2=++的两个实数根同号,则a 的取值范围是__________. 8.设α、β是方程02012x x 2=-+的两个实数根,则βαα++22的值为( ) A .2009 B.2010 C.2011 D.2012 9.不解方程,求下列方程的两根x 1、x 2的和与积。

青岛版九年级数学一元二次方程测试题(含答案) (2)

青岛版九年级数学一元二次方程测试题(含答案) (2)

青岛版九年级数学一元二次方程测试题(含答案) (2)九年级上册第三章《一元二次方程》单元测试题一、选择题1、以下方程中不必定是一元二次方程的是 ( )A.(a-3)x 2=8 (a ≠3) 2+bx+c=0C.(x+3)(x-2)=x+5D. 3x2 3 x 2 0572、用配方法解方程x2 2x 5 0 时,原方程应变形为()A. x26 B. x26 1 1C. x29 D. x22 2 93、若关于x的一元二次方程kx2 2x 1 0 有两个不相等的实数根,则k的取值范围是()A . k 1 B、 k 1 且 k 0 C、 k 1 D、 k 1 且 k 04、关于x的方程(a 6) x2 8x 6 0 有实数根,则整数 a 的最大值是()A .6 B.7 C.8 D.95、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年降落的百分数相同 , 则这个百分数为()A、10% B 、 20% C 、120% D 、180%6、使分式x25x 6 的值等于零的 x 的值是 ( ) x 1或 67、设 a, b 是方程x2 x 2009 0 的两个实数根,则 a2 2a b 的值为()A .2006 B.2007 C.2008 D.20098、下边是某同学在九年级期中测试中解答的几道填空题:(1)若 x2 =a2,则 x=a;( 2)方程 2x(x-1 )=x-1 的根是 x=0 ;( 3)若直角三角形的两边长为3 和 4,则第三边的长为 5 . ?此中答案完整正确的题目个数为()A.0B.1C.2D.39、三角形的两边的长分别是 4 和 6,第三边的长是一元二次方程x2 16x 60 0的一个实数根,则该三角形的周长是()A、20B、20 或 16C、16 D 、18 或 2110、假如 x2+2( m-2)x+9 是完整平方式,那么 m 的值等于()B.5 或- 1C.-1D.-5 或-111、某商场一月份的营业额为200 万元 , 已知第一季度的总营业额共1000 万元 ,青岛版九年级数学一元二次方程测试题(含答案) (2)假如均匀每个月增添率为x, 则由题意列方程应为 ()A.200(1+x) 2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) 2]=100012、已知一个直角三角形的两条直角边的长恰好是方程 2 x2 8x 7 0 的两个根,则这个直角三角形的斜边长是()A、3 B 、3 C 、6 D 、9二、填空题:13、若(m+1)x m( m 2) 1 +2mx-1=0 是关于 x 的一元二次方程,则 m的值是 ________.14、已知( x2 y2 1)( x2 y2 3) 5 ,则x 2 y2的值等于。

用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案

用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:- 2 -原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考? 例2:用适当方法解下列方程:(1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27. (3)移项,得3x 2-4x -1=0, ∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0; ∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0, [2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0, (11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.- 3 -(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0. 当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0. (2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程. 分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0, ∵a +b ≠0且a -b ≠0, ∴x 1=b a a b +-,x 2=ba ba -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252yxy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 1.选择题(1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8- 4 -(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0;(3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.- 5 -- 6 -6.已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5. 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. (1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗- 7 -参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31;(7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2.4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1;(5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3;(8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7.5.(1)x 2-4ax +4a 2=a 2-2a +1, (x -2a )2=(a -1)2, ∴x -2a =±(a -1), ∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0,x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0, ∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0, (x +m )[x +(m +1)]=0, ∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0,x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=yy yy +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0, (x 2+y 2)2-(x 2+y 2)-12=0, (x 2+y 2-4)(x 2+y 2+3)=0, ∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,- 8 -∴3x 2+9x -2=3(x 2+3x )-2=3×4-2=1010.10=-5(t -2)(t +1),∴t =1(t =0舍去)11.(1)x 1=-2,x 2=2(2)(x 2-2)(x 2-5)=0, (x +2)(x -2)(x +5)(x -5)=。

青岛版九年级数学上册一元二次方程单元测试卷96

青岛版九年级数学上册一元二次方程单元测试卷96

青岛版九年级数学上册一元二次方程单元测试卷96一、选择题(共10小题;共50分)1. 方程的根的情况是A. 有两个不相等的实根B. 无实根C. 有两个相等的实根D. 有实根2. 已知关于的一元二次方程的两个实数根是,,且,则的值是A. C. D.3. 根据下面表格中列出来的数据,估计方程的近似解是A. B. C. D.4. 已知一元二次方程,嘉淇在探究该方程时,得到以下结论:①该方程有两个不相等的实数根;②该方程有一个根为;③该方程的根是整数;④该方程有一个根小于.则其中正确结论的序号为A. ①③B. ②④C. ①④D. ②③5. 下列方程一定是关于的一元二次方程的是A. B.C. D.6. 若方程和方程有一个相同的实数根,则的值为A. B.7. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了,另一边减少了剩余一块面积为的矩形空地,则原正方形空地的边长是D.8. 如果一元二次方程有实数根,则满足的条件是A. ,B. ,C. ,,异号或D. ,9. 若关于的方程的根是整数,则满足条件的整数的个数为A. 个B. 个C. 个D. 个10. 用配方法解一元二次方程时,方程的左右两边应同时A. 加上B. 减去C. 加上D. 减去二、填空题(共6小题;共30分)11. 用公式法解方程时,若时,原方程有实数根.12. 设,是一元二次方程的两个根,且,则,.13. 把一元二次方程化成的形式是;若多项式是一个完全平方式,则.14. 方程和有一个公共根,则的值是.15. 关于的方程中有整数解,为非负整数,写出个符合条件的的取值可以是.16. 若关于的一元二次方程无实数根,则的取值范围是.三、解答题(共8小题;共104分)17. 已知两个关于的方程和至少有一个相同的实数根,求的值.18. 解方程:.19. 已知:关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)如果为非负整数,且该方程的根都是整数,求的值.20. 满足什么条件时,关于的方程是一元二次方程?21. 已知关于的方程.(1)求证:不论为任何实数,此方程总有实数根;(2)若方程有两个不同的整数根,且为正整数,求的值.22. 商场某种商品平均每天可销售件,每件盈利元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价元,商场平均每天可多售出件.设每件商品降价元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到元?23. 阅读下面材料,再解方程.解方程:.解:()当时,原方程化为,解得,(不合题意,舍去);()当时,原方程化为,解得(不合题意,舍去),.所以原方程的根是,.请参照上述方法解方程:.24. 已知关于的方程.(1)如果方程有两个不相等的实数根,求的取值范围.(2)若,求该方程的根.答案第一部分1. B2. D3. B4. C 【解析】一元二次方程,,此方程有两个不相等的实数根,故①正确;,,,,,故②③错误,④正确,即正确的有①④,故选:C.5. D6. A 【解析】由方程得,由方程得,则有,即,把代入方程,得方程,从而解得.7. A 【解析】设原正方形空地的边长是.由题意可知:,整理得,解得,.答:原正方形空地的边长是.8. C9. C10. C第二部分11.13. ,或【解析】根据题意,一元二次方程化成,括号里面配方得,,即;多项式是一个完全平方式,,解得.14.15. 或16.第三部分17. 假设这个解是,①减②得,解得或.当时,两个方程一样,但没有实数根,舍去;当时,由,得.18.因式分解,得所以解得19. (1)方程有两个不相等的实数根,.,.(2),且为非负整数,,当时,方程为,解得方程的根为,,符合题意;当时,方程为,它的根不是整数,不合题意,舍去.综上所述,.20. 原方程可化为:,所以,当时是一元二次方程.21. (1)当时,原方程化为此时方程有实数根.当时,原方程为一元二次方程..此时方程有两个实数根.综上,不论为任何实数时,方程总有实数根.(2).解得,.方程有两个不同的整数根,且为正整数,.22. (1);(2)由题意,得解之得该商场为尽快减少库存,降价越多越吸引顾客..答:每件商品降价元,商场日盈利可达元.23. 当,即时,方程化为,解得,(不合题意,舍去);当,即时,方程化为,解得(不合题意,舍去),.所以原方程的根是,.24. (1).方程有两个不相等的实数根,,解得.(2)当时,原方程化为,解得,.。

九年级数学上册第4章一元二次方程4.4因式分解法解一元二次方程练习(新版)青岛版

九年级数学上册第4章一元二次方程4.4因式分解法解一元二次方程练习(新版)青岛版

4.4 用因式分解法解一元二次方程1.方程x2﹣2x=0的解为()A.x1=1,x2=2 B.x1=0,x2=1C.x1=0,x2=2 D.x1=,x2=22.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和23.若实数x,y满足(x2+y2+2)(x2+y2﹣2)=0.则x2+y2的值为()A.1 B.2 C.2 或﹣1 D.﹣2或﹣14.已知x2﹣5xy﹣6y2=0(y≠0且x≠0),则的值为()A.6 B.﹣1 C.1或﹣6 D.﹣1或65.已知实数(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值为()A.﹣1 B.7 C.﹣1或7 D.以上全不正确6.已知关于x的方程x2+px+q=0的两个根为x1=3,x2=﹣4,则二次三项式x2﹣px+q可分解为()A.(x+3)(x﹣4)B.(x﹣3)(x+4)C.(x+3)(x+4)D.(x﹣3)(x﹣4)7.方程x(x﹣2)=0的解为______.8.方程(x﹣2)2=3(x﹣2)的解是______.9.一元二次方程x(x﹣6)=0的两个实数根中较大的根是______.10.若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.11.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为______.12.方程(x﹣2)2﹣25x2=0用______法较简便,方程的根为x1=______,x2=______.13.用因式分解法解方程x2﹣kx﹣16=0时,得到的两根均整数,则k的值可以是______ (只写出一个即可)14.a※b是新规定的一种运算法则:a※b=a2﹣b2,则方程(x+2)※5=0的解为______.15.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是______.16.用因式分解法解下列方程;①(x+2)2﹣9=0 ②(2x﹣3)2=3(2x﹣3)③x2﹣6x+9=0 ④(x+5)(x﹣1)=7.17.用适当方法解下列方程:①x2﹣2x=99②x2+8x=﹣16③x2+3x+1=0④5x(x+2)=4x+8.18.已知下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x ﹣3=0,…(n)x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程①、②、③、(n);(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.参考答案1.C 2.D 3.B 4.D 5.B 6.A7. 0或2 8. x1=2,x2=5 9.6 10.1 11.2512.因式分解,,﹣13.6(答案不唯一)14. x1=﹣7,x2=3 【解析】由题中的新定义得:(x+2)※5=(x+2)2﹣52=0,可得(x+7)(x﹣3)=0,即x+7=0或x﹣3=0,解得:x1=﹣7,x2=3.15. 6或12或10 【解析】由方程x2﹣6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.16【解】①分解因式,得(x+2+3)(x+2﹣3)=0,∴x+5=0或x﹣1=0∴x1=﹣5,x2=1;②移项,得(2x﹣3)2﹣3(2x﹣3)=0提公因式,得(2x﹣3)(2x﹣3﹣3)=0,∴2x﹣3=0或2x﹣6=0∴x1=,x2=3;③由公式法,得(x﹣3)2=0,∴x﹣3=0∴x1=x2=3(4)变形为:x2+4x﹣5=7,移项,得x2+4x﹣5﹣7=0,x2+4x﹣12=0∴(x+6)(x﹣2)=0,∴x+6=0或x﹣2=0∴x1=﹣6,x2=2.17.【解】①x2﹣2x=99,x2﹣2x﹣99=0,(x﹣11)(x+9)=0,x﹣11=0,x+9=0,x1=11,x2=﹣9;②x2+8x=﹣16,x2+8x+16=0,(x+4)2=0,x+4=0,x=﹣4,即x1=x2=﹣4;③x2+3x+1=0,b2﹣4ac=32﹣4×1×1=5,x=,x1=,x2=;④5x(x+2)=4x+85x(x+2)﹣4(x+2)=0,(x+2)(5x﹣4)=0,x+2=0,5x﹣4=0,x1=﹣2,x2=.18.【解】(1)①(x+1)(x﹣1)=0,所以x1=﹣1,x2=1②(x+2)(x﹣1)=0,所以x1=﹣2,x2=1;③(x+3)(x﹣1)=0,所以x1=﹣3,x2=1;(n)(x+n)(x﹣1)=0,所以x1=﹣n,x2=1(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等等.。

九年级数学上册 4.4 用因式分解法解一元二次方程《因式分解法》试题资料库素材 (新版)青岛版

九年级数学上册 4.4 用因式分解法解一元二次方程《因式分解法》试题资料库素材 (新版)青岛版

因式分解法资料库:例1. 用因式分解法解以下方程〔1〕224(3)25(2)0x x ---=〔2〕22(1)1t t -+= 分析:用因式分解法解一元二次方程关键有两个:一是要将方程右边化为0,二是掌握因式分解两种方法〔提取公因式法、公式法〕.此题中的第〔1〕题,就是利用平方差公式,第〔2〕题就要用到提取公因式法.解:〔1〕原方程可化为:22[2(3)][5(2)]0x x ---=方程左边分解因式得:[2(3)5(2)][2(3)5(2)]0x x x x -+----=整理,得:〔7x -16〕〔-3x +4〕=0∴7x -16=0或-3x +4=0 ∴原方程的解是12164,73x x ==〔2〕移项,得22(1)(1)0t t -+-= 方程左边分解因式,得:(1)[2(1)1]0t t --+=整理,得:(1)(21)0t t --=∴t -1=0或2t -1=0 ∴原方程的解是1211,2t t ==.例2.用因式分解法解以下方程:. 〔1〕()()t t t -+=342〔2〕()()()21212y y y y +-=-〔3〕()()()232342a a a -=-- 〔4〕x x x x x 233322313+--=-()()解:〔1〕去括号,整理得:t t 2120--=因式分解,得:()()t t -+=430∴-=t 40或t +=30∴==-t t 1243,〔2〕整理得:32102y y +-=因式分解得:()()y y +-=1310∴+=y 10或310y -=∴=-=y y 12113, 〔3〕整理得:a a 2210-+=因式分解得:()a -=102 ∴==a a 121〔4〕整理得:233322312()()()x x x x x +--=- 269662222x x x x x +-+=-27602x x -+=因式分解得:()()x x --=2230∴-=x 20或230x -=∴==x x 12232,例3.解方程:3x(x -4)=5(x -4)解:移项3x(x -4)-5(x -4)=0提取公因式(x -4)得(x -4)(3x -5)=0得x -4=0或3x -5=0 所以x x 12453==,例4.解方程(2x -1)2-7=0解:原方程可变形为 [()][()]2172170x x -+--= 21702170x x -+=--=或x x 1212171217=-=+()(),例5. 解以下方程:〔1〕3x 2-16x +5=0;〔2〕3(2x 2-1)=7x〔3〕2x 2-7x +3=0解:〔1〕方程左边运用十字相乘,得()()3150x x --=,所以x x 12135==,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4 用因式分解法解一元二次方程一、填空题1.如果两个因式的积是零,那么这两个因式至少有__________等于零;反之,如果两个因式中有__________等于零,那么它们之积是__________.2.方程x 2-16=0,可将方程左边因式分解得方程__________,则有两个一元一次方程___________或___________,分别解得:x 1=_________,x 2=_________.3.填写解方程3x(x+5)=5(x+5)的过程解:3x(x+5)__________=0(x+5)(__________)=0x+5=__________或__________=0∴x 1=__________,x 2=__________4.用因式分解法解一元二次方程的关键是(1)通过移项,将方程右边化为零(2)将方程左边分解成两个__________次因式之积(3)分别令每个因式等于零,得到两个一元一次方程(4)分别解这两个__________,求得方程的解5.x 2-(p+q)x ≠qp=0因式分解为____________.6.用因式分解法解方程9=x 2-2x+1(1)移项得__________;(2)方程左边化为两个平方差,右边为零得__________;(3)将方程左边分解成两个一次因式之积得__________;(4)分别解这两个一次方程得x 1=__________,x 2=__________.二、选择题1.方程x 2-x=0的根为A.x=0B.x=1C.x 1=0,x 2=1D.x 1=0,x 2=-12.方程x(x -1)=2的两根为A.x 1=0,x 2=1B.x 1=0,x 2=-1C.x 1=1,x 2=-2D.x 1=-1,x 2=23.用因式分解法解方程,下列方法中正确的是A.(2x -2)(3x -4)=0 ∴2-2x=0或3x -4=0B.(x+3)(x -1)=1 ∴x+3=0或x -1=1C.(x -2)(x -3)=2×3 ∴x -2=2或x -3=3D.x(x+2)=0 ∴x+2=04.方程ax(x -b)+(b -x)=0的根是A.x 1=b,x 2=aB.x 1=b,x 2=a 1C.x 1=a,x 2=b 1D.x 1=a 2,x 2=b 25.已知a 2-5ab+6b 2=0,则a bb a等于21331D.231321C.2 31B.3 21A.2或或三、解方程1.x2-25=02.(x+1)2=(2x-1)23.x2-2x+1=44.x2=4x四、求证如果一个一元二次方程的一次项系数等于二次项系数与常数项之和,则此方程必有一根是-1.4.4用因式分解法解一元二次方程一、填空题:1.分解因式:2x2 +5x -3 = ;2.用因式分解法解方程x2 -5x = 6 , 得方程的根为;3.方程2(x +3)2 -5(x +3) = 0的解为,最简便的解法是 .二、选择题:1.解方程① 9(x -3)2 = 25,② 6x2 -x = 1,③ x2 +4x -3596 = 0,④ x(x -1) = 1.较简便的方法依次是();A. 开平方法、因式分解法、公式法、配方法B. 因式分解法、公式法、公式法、配方法C. 配方法、因式分解法、配方法、公式法D. 开平方法、因式分解法、配方法、公式法2.已知(x+y)(x+y +2) = 15, 则x+y的值为().A. 3或5B. 3或-5C. -3或5D. -3或-5三、解答题:用分解因式法解下列方程:1.4(2x-1)2 = 9(x-2)2;2.(2x -3)2 -2(3 -2x) = 8.用适当的方法解下列方程:1.3(x2 -1) = (x -1)2;2.2(1-2x)2 -1 = 0;3.3x2 +7x +2 = 0;4.x2 +6x -72 = 0.有一根长7.2米的木料,做成如图2-8所示的“H”形窗框,问窗框的高和宽各取多少米时,窗户的面积最大?最大面积是多少?(不考虑木料加工时的损耗和中间木料所占的面积).4.4 用因式分解法解一元二次方程 习题精选(二)1.如果(x -2)2=9,则x = .2.方程(2y -1)2-4=0的根是 .3.方程(x+m )2=72有解的条件是 .4.方程3(4x -1)2=48的解是 .5.化下列各式为(x +m )2+n 的形式.(1)x 2-2x -3=0 .(2)210x = .6.下列各式是完全平方式的是( )A .x 2+7n =7B .n 2-4n -4C .211216x x ++D .y 2-2y +27.用配方法解方程时,下面配方错误的是( )A .x 2+2x -99=0化为(x +1)2=0B .t 2-7t -4=0化为2765()24t -=C .x 2+8x +9=0化为(x +4)2=25D .3x 2-4x -2=0化为2210()39x -=8.配方法解方程.(1)x 2+4x =-3 (2)2x 2+x=09.方程(x +1)2=x +1的正确解法是( )A .化为x +1=0B .x +1=1C .化为(x +1)(x +l -1)=0D .化为x 2+3x +2=010.方程9(x +1)2-4(x -1)2=0正确解法是()A .直接开方得3(x +1)=2(x -1)B .化为一般形式13x 2+5=0C .分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x —1)]=0D .直接得x +1=0或x -l =011.(1)方程x (x +2)=2(z +2)的根是 .(2)方程x 2-2x -3=0的根是 .12.如果a 2-5ab -14b 2=0,则235a b b += . 13.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是 ,其中b 2—4ac .14.方程(2x +1)(x +2)=6化为一般形式是 ,b 2—4ac ,用求根公式求得x 1= ,x 2= ,x 1+x 2= ,12x x = ,15.用公式法解下列方程.(1)(x +1)(x +3)=6x +4.(2)21)0x x ++=.(3) x 2-(2m +1)x +m =0.16.已知x 2-7xy +12y 2=0(y ≠0)求x :y 的值.17.三角形两边的长是3,8,第三边是方程x 2—17x +66=0的根,求此三角形的周长.18.关于x 的二次三项式:x 2+2rnx +4-m 2是一个完全平方式,求m 的值.19.利用配方求2x 2-x +2的最小值.20.x 2+ax +6分解因式的结果是(x -1)(x +2),则方程x 2+ax +b =0的二根分别是什么?21.a 是方程x 2-3x +1=0的根,试求的值.22.m 是非负整数,方程m 2x 2-(3m 2—8m )x+2m 2-13m+15=0至少有一个整数根,求m的值.23.利用配方法证明代数式-10x 2+7x -4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l 、2、3.24.解方程(1)(x 2+x )·(x 2+x -2)=24;(2)260x x --=25.方程x 2-6x -k =1与x 2-kx -7=0有相同的根,求k 值及相同的根.26.张先生将进价为40元的商品以50元出售时,能卖500个,若每涨价1元,就少卖10个,为了赚8 000元利润,售价应为多少?这时,应进货多少?27.两个不同的一元二次方程x 2+ax +b =0与x 2+ax +a =0只有一个公共根,则( )A .a =bB .a -b =lC .a +b =-1D .非上述答案28.在一个50米长30米宽的矩形荒地上设计改造为花园,使花园面积恰为原荒地面积的寺,试给出你的设计.29.海洲市出租车收费标准如下(规定:四舍五入,精确到元,N ≤15)N 是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N 的值吗?30.方程(x -1)(x +2)(x -3)=0的根是 .31.一元二次方程x 2—2x =0的解是( )A .0B .2C .0,-2D .0,232.方程x 2+kx —6=0的一根是2,试求另一个根及k 的值.33.方程(2)310m m x mx +++=是一元二次方程,则这方程的根是什么?34.x 1、x 2是方程2x 2—3x —6=0的二根,求过A (x 1+x 2,0)B (0,x l ·x 2)两点的直线解析式.35.a 、b 、c 都是实数,满足2(2)80a c c -++=,ax 2+bx +c =0,求代数式x 2+2x +1的值.36.a 、b 、c 满足方程组求方程2848a b ab c +=⎧⎪⎨=+-⎪⎩的解。

37.三个8相加得24,你能用另外三个相同的数字也得同样结果吗?能用8个相同的数字得到1 000吗?能用3个相同的数字得到30吗?。

相关文档
最新文档