环氧树脂的增韧改性方法
关于环氧树脂胶黏剂增韧改性的分析

关于环氧树脂胶黏剂增韧改性的分析[摘要]环氧树脂胶黏剂,它属于固化剂、基体树脂、溶剂、增韧剂、增塑剂、填料等各种组分经由化学及物理混合多种方法,所形成有着良好功能性、黏结性,在工程领域当中所需用到的黏胶剂。
那么,为更进一步了解此类黏胶剂的增韧改性具体方法及其情况,鉴于此,本文主要探讨环氧树脂胶黏剂自身增韧改性情况,仅供业内相关人士参考。
[关键词]胶黏剂;环氧树脂;增韧改性前言:因环氧树脂胶黏剂,它和其余胶黏剂所具备优势特点较为不同,故其现阶段在众多行业领域当中实现较为广泛的应用。
但因其呈较大脆性及较弱韧性,因而,对环氧树脂胶黏剂自身增韧改性情况开展综合分析较为必要。
1、简述环氧胶内部成分及其增韧改性基本机理情况1.1在主要成分层面针对环氧胶内部成分,通常以基体树脂、固化剂、增塑剂及增韧剂、溶剂为主。
针对基体树脂层面,现阶段以纯环氧树脂及改性之后的环氧树脂为主。
环氧树脂,其自身黏结强度及抗压性、黏结性及力学性能相对较好,但韧性弱;针对固化剂,其属于环氧胶内部重要成分。
生产过程当中,通常需结合生产条件及其性能指标等,合理选定固化剂;针对增塑剂即增韧剂,其主要是因基体树脂与固化剂相互间经化学反应之后所形成一种固化物,呈现出较脆质地、较差韧性及其抗冲强度。
故生产过程当中需要向着固化物内部添加一定量的增塑剂及增韧剂等,确保其韧性及耐冲性能可得到增强;针对溶剂层面,其属于聚合物的反应介质。
实际应用当中,可以与具体需求结合予以合理选用。
1.2在基本机理层面一是,针对分散相撕裂及塑性拉伸基本机理层面。
此项理论观点,即外部力作用至改性树脂之后,使得裂纹形成,且处于环氧树脂内部持续增长情况下,橡胶会以颗粒形式渗入裂纹内部,连接好裂纹两端位置。
外力持续增强情况下,橡胶颗粒将部分能量吸收,其自身会被逐渐拉长或撕裂,对环氧树脂后期被撕裂整个进度可起到减缓作用,环氧树脂则更具韧性[1];二是,针对微裂纹的钝化增韧基本机理层面。
环氧树脂E51改性增韧研究

183理论研究0 引言 E51型环氧树脂粘度低,环氧值高,固化效果,不足之处在于脆性大,韧性低;E20和E12型环氧树脂粘结度高,韧性好的优点,不足之处在于硬度低。
把三种环氧树脂按比例混合,新得到的混合树脂既有E51树脂活性高,固化效果好及高硬度的特点,又有E20和E12中长分子链韧性好的优点,与自制混胺固化后,提高固化物性能,克服了使用单一环氧树脂固化后综合性能差的弊端。
1 实验部分 (1)主要试剂。
环氧树脂E12、E20、E51,聚醚胺、聚醚二胺、固化剂促进剂,江苏三木化工;二甲苯,上海泰正化工有限公司;正丁醇,扬州市华香化工有限公司。
(2)主要仪器。
环氧树脂高速分散机,上海机电设备有限公司;电子秤,上海信衡电子有限公司,深圳盛美仪器有限公司; UTM4000系列微机控制电子万能试验机;热重差热分析仪EXSTAR6300,精工盈司电子科技(上海)有限公司。
(3)实验测试。
1)配制溶剂:在二甲苯中加入正丁醇,搅拌均匀。
2)配制树脂:按比例在溶剂中加入环氧树脂E12、E20,高速搅拌二十分钟,待树脂溶解后加入环氧树脂E51,高速搅拌混合均匀,按三种环氧树脂的不同比例制作4种混合液,编号为树脂A、B、C、D。
配制三种单一环氧树脂的溶液。
3)样品测试:以环氧当量:胺当量=1:0.6、1:0.7、1:0.8、1:0.9分别将树脂与固化剂混合,在室温下实干后,涂抹于马口铁片上进行弯折观察,粘结20mm 圆柱用拉力试验机进行测试,用邵氏硬度计进行硬度测量,用差热分析仪进行差热分析。
2 结果与讨论 (1)弯折观察 。
弯折角度小于等于90°的有E51、E12和树脂中的B、D。
断裂时角度最小的是E12,为60°;D 涂片断裂角度最小,为70°;E51断裂角度为85°。
混合树脂拥有良好的抗断裂性能,一方面,三种树脂长中短链都有,比例恰当时,搅拌混合过程中保证了长链的完整性,长中短的交互掺杂,使应力分散更为均匀;另一方面,混胺中的柔性链段链接到环氧树脂的网络中,在固化过程中产生微相分离,从而形成紧密、疏松的两种相网络结构,打破了原交联网络的均匀性,此种网络有利于应力分散,使得固化产物内部产生塑性变形,从而增加韧性[1]。
环氧树脂胶粘剂增韧改性的研究

环氧树脂胶粘剂增韧改性的研究一、本文概述Overview of this article环氧树脂胶粘剂是一种广泛应用于工业生产和日常生活中的重要材料,因其优异的机械性能、良好的化学稳定性和较强的粘附力而备受关注。
然而,随着科技的发展和应用领域的不断拓展,传统的环氧树脂胶粘剂在某些特定场合下已无法满足使用需求,尤其是在需要更高柔韧性和抗冲击性的场合。
因此,对环氧树脂胶粘剂进行增韧改性研究具有重要的现实意义和应用价值。
Epoxy resin adhesive is an important material widely used in industrial production and daily life, which has attracted attention due to its excellent mechanical properties, good chemical stability, and strong adhesion. However, with the development of technology and the continuous expansion of application fields, traditional epoxy resin adhesives can no longer meet the usage needs in certain specific situations, especially in situations where higher flexibility and impact resistance are required. Therefore, studying the tougheningmodification of epoxy resin adhesives has important practical significance and application value.本文旨在探讨环氧树脂胶粘剂的增韧改性方法,以提高其柔韧性和抗冲击性。
环氧树脂的改性与增韧研究

环氧树脂的改性与增韧研究引言环氧树脂是一种重要的聚合物材料,具有优异的力学性能和化学稳定性,在工业领域中广泛应用。
然而,传统的环氧树脂存在一些固有的缺点,如脆性、易开裂和低冲击韧性等。
为了提高环氧树脂的性能,研究人员不断努力开展改性与增韧研究,以满足不同领域对材料性能的需求。
一、环氧树脂的改性方法1. 添加剂改性添加剂是改善环氧树脂性能的常见方法之一。
通过添加不同类型的添加剂,如填料、增塑剂和稀释剂等,可以调整环氧树脂的硬度、抗冲击性和粘附性等性能。
填料的加入可以增加环氧树脂的强度和硬度,同时降低成本。
增塑剂的加入可以提高环氧树脂的柔韧性和延展性,改善其加工性能。
稀释剂的加入可以调节环氧树脂的粘度,降低粘度有利于涂层的施工。
2. 聚合物改性聚合物改性是另一种常见的环氧树脂改性方法。
将其他聚合物与环氧树脂共混,可以改变其力学性能和热性能。
常用的聚合物改性剂包括丙烯酸酯、苯乙烯和聚酰胺等。
通过共混聚合,可以在环氧树脂中引入新的相,从而改善其力学性能和耐热性。
此外,聚氨酯改性剂也常用于环氧树脂的改性,可以提高其抗冲击性和抗裂性。
二、环氧树脂的增韧方法1. 纤维增韧纤维增韧是一种常用的增韧方法,主要通过引入纤维增强相来增加环氧树脂的韧性。
常用的纤维增韧剂包括玻璃纤维、碳纤维和芳纶纤维等。
这些纤维增韧剂具有高强度和高模量的特点,可以增加环氧树脂的拉伸强度和韧性。
此外,纤维增韧还能提高环氧树脂的热稳定性和抗老化性能。
2. 橡胶增韧橡胶增韧是另一种常见的增韧方法,通过在环氧树脂中引入橡胶颗粒,可以提高其冲击韧性和拉伸韧性。
常用的橡胶增韧剂包括丁苯橡胶、丙烯酸酯橡胶和乙烯-丙烯橡胶等。
橡胶颗粒能吸收冲击能量,从而有效阻止环氧树脂的开裂和断裂。
此外,橡胶增韧还能提高环氧树脂的耐热性和耐溶剂性。
三、环氧树脂的改性与增韧研究进展随着科学技术的不断发展,环氧树脂的改性与增韧研究取得了显著的进展。
一方面,研究人员通过改变添加剂的类型和含量,实现了对环氧树脂性能的精确调控。
环氧树脂的增韧改性

环氧树脂增韧改性的研究摘要:介绍了环氧树脂通过共聚共混法增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络聚合物增韧、热致液晶聚合物增韧、刚性高分子增韧、核壳结构聚合物增韧等,并分别对其增韧机理作了总结分析。
关键词:环氧树脂;增韧;改性The study on toughening methods and mechanism of epoxy**** **** ***(College of Chemistry and Chemical Engineering, Qingdao university, Qingdao 266071, China) Abstract: The new methods of toughening epoxy resins, including toughing using thermoplastic resin, thermoset liquid crystal polymer and core-shell latex polymer and forming interpenetrating networks polymer were introduced and their mechanisms was discussed as well. The other methods of toughening epoxy resins were also studied.Key words: epoxy resin; toughening; modification0 引言由于具有良好的力学性能、粘接能力、化学稳定性、易加工性以及价格低廉等优点,环氧树脂被广泛应用于绝缘材料、结构材料、涂料及胶粘剂等领域。
但环氧树脂也存在质脆及韧性不足的缺点,所以在过去的几十年中,对环氧树脂进行增韧改性一直是科学家们努力的方向,这方面也有很多出色的成果。
目前,环氧树脂增韧途径有以下几种[1]:a.用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;b.用热塑性树脂连续地贯穿于热固性树脂中形成互穿网络来增韧改性;c.通过改变交联网络的化学结构以提高网链分子的活动能力来增韧;d.控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。
环氧树脂的增强增韧

李健民:环氧树脂的增强增韧第29卷第12期粘接 Adhesi on i n Ch i na环氧树脂的增强增韧李健民 编译中图分类号:TQ 433.4+37 文献标识码:B文章编号:1001-5922(2008)12-0050-031 前言环氧树脂(EP)问世60年以来以其优异性能至今保持着高性能高分子材料的地位。
但是与热塑性树脂相比,环氧树脂最大缺点是其脆性。
所以对EP 的增韧研究由来已久,改性方法也多种多样,如用液态弹性体增韧;用交联的橡胶粒子增韧;用有机弹性体 无机填料复合改性;用核/壳型橡胶粒子改性;用热塑性工程合金塑料改性等。
最近又出现了介晶体(m esogen ic)为主链的EP ,由于其网络链的取向而使自身增韧,介晶型环氧结构如式(1)。
(1)本文介绍EP 增强增韧的方法、机理,及新近取得的进展。
2 EP 通过弹性体增强增韧2.1 CTBN 增韧EP 中加入弹性体增韧的同时,为防止其耐热性降低,应使弹性体在EP 中是呈亚微米粒子分布。
A F YEE 等人研究过用CTB N 改性EP 的机理。
认为:1)在裂缝附近,橡胶相由于应力集中而向着裂纹的前端膨胀并引起空穴化;2)与膨胀的CTBN 橡胶相连接的EP 基体发生剪切变形;3)EP 基体相的交联密度越低,CTBN 改性效果越好;4)在断裂面周边可观察到空穴化及剪切变形,从而可证明韧性得以提高。
此结果说明,增韧的原因不仅靠橡胶分散相而且靠EP 相的剪切变形。
2.2 中空粒子增韧由于增韧机理是因EP 基体的变形,不难想象,就不一定非要弹性体不可。
Baghere 和Ke ifer 等人,通过在EP 体系中引入微细的中空粒子增韧,加入了这种中空粒子的EP 破坏韧性与粒子间基体的厚度间的关系见图1。
引入中空粒子的EP 与加入弹性体的EP 破坏韧性值基本相同,两者的破坏断面的形态也基本相同。
这一结果表明,EP 的增强增韧不一定非加弹性体不可,假若能把EP 基体横向的约束解除,也是能够增强增韧的。
环氧树脂增韧途径与机理

环氧树脂增韧途径与机理环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。
由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。
因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。
一、序言目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性;通过改变交联网络的化学结构以提高网链分子的活动能力来增韧;控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。
近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(IPN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。
这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。
随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。
中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。
采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。
使用较多的有聚醚砜(PES)、聚砜(PSF)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。
据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。
环氧树脂增韧改性技术的研究进展

3 刚性纳 米粒 子增韧 环氧树 脂 利用 化 学 、物 理 方法 ,在 环氧 树脂 中引人 细
有 比原来 较好 的拉 伸 强度 : 同时体 系形成 刚 柔相
问、密 度较 高的 网络 ,提高 了冲击 强度 。 张 宏 元 等 l合 成 了 一 种 侧 链 型 液 晶聚 合 物 5 】
树 脂粘接 性 强度 高 ,电绝缘 性优 良,机械 强度 高, 收缩 率低 ,尺 寸稳定 ,耐化 学试 剂 以及 加 工性 良
好 。总之环 氧树 脂 具有优 良的综 合性 能 ,因而 在
中,而 导致材料 模量 和玻璃 化温 度 的下 降。
武渊 博等 【 用端 环氧 基丁腈 橡胶 ( T N) 1 1 采 EB 对环 氧 树脂 进行 增韧 ,研 究 了增 韧环氧 树 脂浇注
有 序 、深度 分 子交 联 的聚合 物 网络 ,它 融合 了液 晶有序 与 网络 交联 的优 点 ,具有 更高 的力 学性 能 和 耐热 性 。 L P增韧 环氧树 脂 是通过 原位复 合 的 TC 方法 来 实施 的 , 其机 理可概括 为银 纹一 剪切带 的银
但液氮 温度 下可 使冲 击韧性 增加 5%。液 氮温 度 9
析 ( C)和 偏光 显微镜 ( O )对聚合 物 结构 DS PM 和液 晶性 能进行 表 征 ,探 讨其 对环 氧 树脂共 混 物 力学 性 能的影 响 , 并分 析共混 物 的微 相分 离结 构 。 结果 表 明, T 1 固化剂 时 , L P对环 氧树脂 用 3作 SC
有较 好 的增 强增 韧效 果 ,在 强度和 玻璃 化温 度不 降低 的情 况 下 ,断裂伸 长 度 比未 改性 固化物 最大 提高 26倍 ,但用 三 乙醇胺作 固化 剂 时,S C . L P对
环氧树脂增韧

普通环氧树脂在固化后交联密度会变高,呈三维网状结构,存在内应力大、质脆、耐疲劳性、耐热性、冲击性能差等不足,加之表面能高,在很大程度上限制了它在某些高技术领域的应用,但在更多领域有需要用到环氧树脂,因此进行环氧树脂增韧,这也是一个重要的研究课题。
关于一些具体的环氧树脂增韧研究问题,络合高新材料(上海)有限公司为大家带来解答,希望能帮到大家。
目前,环氧树脂增韧的方法主要有以下几种:1、用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;2、用热塑性树脂连续地爨穿于热固性树脂中形成互传网络来增韧改性;3、通过改变简练网络的化学结构以提高网链分子的活动能力来增韧;4、控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。
弹性体增韧环氧树脂由丁腈橡胶、聚氨酯弹性体、有机硅弹性体、聚丙烯酸酯弹性体等改性环氧树脂制得。
端羧基液体丁腈橡胶(CTBN)增韧环氧树脂开发最早、效果最好,其中预反应法最优。
先将CTBN与催化剂(三苯基膦等)反应生成羧酸盐,然后快速与环氧树脂反应(环氧树脂与CFBN的摩尔比为8~10),形成橡胶含量约55%的预聚体,再以同种或不同品种的环氧树脂稀释得到所需浓度和储存稳定的增韧环氧树脂。
获得最佳增韧效果的CTBN含量为12%~18 %。
除了CTBN之外,还可用端羟基、端氨基、端乙烯基丁腈橡胶增韧环氧树脂。
聚氨酯弹性体增韧环氧树脂有端氨基液体橡胶、端羟基聚氨酯预聚体、封闭异氰酸酯及聚氨酯/环氧树脂接枝共聚等改性环氧树脂。
目前多以聚氨酯和环氧树脂形成半互穿网络(SIPN)和互穿网络(IPN)聚合物,使聚氨酯的高弹性与环氧树脂的良好耐热性和粘接性融为一体,获得优异的增韧效果。
聚丙烯酸酯弹性体增韧环氧树脂是通过引入核一壳粒子,而使体系的冲击强度明显提高,达到增韧效果。
有机硅弹性体增韧环氧树脂是采用硅氧烷与甲基丙烯酸甲酯接杖共聚物引入与环氧树脂相容性好的链段。
还可将羟基封端的聚硅钒烷低聚物作为改性剂,以甲苯二异氰酸酯扩链合成IPN结构的仃机硅一环氧树脂复合体系,而使有机硅弹性体与环氧树脂相容,令其韧性显著提高。
环氧树脂增韧改性新技术

环氧树脂增韧改性新技术环氧树脂增韧改性新技术是一种应用于环氧树脂制品表面改性增韧的新技术,被广泛应用于船舶、桥梁、管道、水泥地面、防腐保护、环境治理和防火涂料行业等。
该技术通过引入增韧剂,增加环氧树脂表面或树脂涂层的强度和抗压性能,从而起到增韧的作用。
该技术可实现环氧树脂产品的改性和增韧,具有增加环氧树脂表面剥离强度、抗水蚀性能和材料使用寿命等多方面优点。
同时该技术还能够有效抑制环氧树脂表面粘附性,改善耐久性,使环氧树脂表面抗污染性能,提升耐老化性能和抗冻性能。
此外,环氧树脂增韧改性新技术还可以在环氧树脂基体中加入各种不同类型的微粒,如纳米颗粒和添加剂,以提高环氧树脂产品的抗撞击能力和耐磨性。
使环氧树脂产品具有很高的耐老化和耐久性,而且还可以改善湿滑性和冲击力。
总之,环氧树脂增韧改性新技术应用范围广泛,尤其是在船舶、桥梁、管道、水泥地面等专业用途中具有优越的性能优势。
实际应用中,如果能结合多种改性技术,使用不同的改性材料,当环氧树脂表面缺乏增韧效果时,可以提高产品耐久性,延长使用寿命。
Epoxy Resin Reinforcement Modification Technology is a new technology for surface modification of epoxy resin products to improve their strength and compression resistance, which is widely used in shipbuilding, bridge, pipeline, cement ground, corrosion protection, environmental treatment and fireproof coating industries. This technology increases the strength and compression performance of the epoxy resin surface or resin coating by introducing toughening additives.。
对环氧树脂增韧改性方法的研究

对环氧树脂增韧改性方法的研究X吴庆娜(黑龙江中盟化工有限公司,黑龙江安达 151400) 摘 要:介绍了环氧树脂增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络增韧、热致性液晶增韧、原位聚合增韧、核壳结构聚合物增韧等,并对其中的增韧机理作了简浅的总结分析。
关键词:环氧树脂;增韧;改性 中图分类号:T E38 文献标识码:A 文章编号:1006—7981(2012)08—0008—01 环氧树脂(EP)是一种热固性树脂,因具有优异的粘接性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。
由于纯环氧树脂具有高的交联结构,因而存在质脆,耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制,因此对环氧树脂的改性工作一直是各方研究的热门课题。
1 热塑性树脂增韧环氧树脂采用热塑性树脂改性环氧树脂,其研究始于80年代。
使用较多的有聚砜醚(PES)、聚砜(P SF)、聚酰亚胺醚(PEI)、聚酮醚(PEK)、聚苯醚(P PO)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。
这些热塑性树脂不仅具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。
热塑性树脂增韧环氧树脂的机理和橡胶增韧环氧树脂的机理没有实质性差别,一般仍可用孔洞剪切屈服理论或颗粒撕裂吸收能量理论。
但是,热塑性树脂增韧环氧树脂时,基体对增韧效果影响较小,而分散相热塑性树脂颗粒对增韧的贡献起着主导作用。
2 使环氧树脂形成互穿网络聚合物(IP N)国内外对环氧树脂的互穿网络聚合物体系进行了大量的研究,其中包括:环氧树脂-丙烯酸酯体系、环氧树脂-聚氨酯体系、环氧树脂-酚醛树脂体系和环氧树脂-聚苯硫醚体系等,增韧效果满意。
主要表现在环氧树脂增韧后,不但抗冲击强度提高,而且抗拉强度不降低或略有提高,这是一般增韧技术无法做到的。
环氧树脂增韧改性新技术

环氧树脂增韧改性新技术
环氧树脂是工业应用中广泛使用的合成材料,它具有优越的物理和化学性能,可以用于各种工业应用。
然而,环氧树脂的使用仍然有一个重要的缺点,即其易于降解,从而降低其使用寿命。
为了解决这一问题,科学家们从环氧树脂的分子结构出发,开发出了一种新的技术,即“环氧树脂增韧改性”,以增强其耐老化性能。
环氧树脂增韧改性是一项复杂的工艺,它通过改变环氧树脂分子结构来改变树脂的特性,使其更耐老化。
该技术通常采用两种方式来完成:一是加入改性剂,如尼龙分子链、硅油、硅酸钠、硅水凝胶等,以改善树脂的性能;二是通过化学氧化、热处理等方式将环氧树脂的内部结构发生变化,使其具有更强的抗老化性能。
经过环氧树脂增韧改性处理后,树脂具有较高的强度和耐腐蚀性能,其使用寿命大大延长。
除了延长树脂使用寿命外,环氧树脂增韧改性还可以改善树脂的机械和热性能,有助于提升产品的使用效果。
此外,环氧树脂增韧改性技术还可用于节能环保。
一旦改性后的环氧树脂应用于产品设计中,可以提高产品的耐热性能,从而降低产品的能耗。
同时,改性树脂的使用也有利于减少污染,因为它具有抗氧化和抗腐蚀性能,可以有效减少油污,更加环保。
从以上可以看出,环氧树脂增韧改性技术可以有效提高环氧树脂的耐老化性能,提升产品的使用寿命,节省能源、减少污染,是一种有效的、绿色的技术。
未来,随着科学家们对环氧树脂增韧改性技术的进一步研究,其在工业应用中的潜力将会得到更好的发挥。
总之,环氧树脂增韧改性技术具有巨大的潜力和应用价值,可以有效提高树脂的耐老化性能,为工业应用带来很大的改进。
CTBN增韧环氧树脂

CTBN增韧环氧树脂许多热固性树脂,如环氧树脂、酚醛树脂、不饱和聚酯等,存在着韧性差的问题,使用时可加入CTBN 进行增韧。
1. CTBN 增韧环氧树脂,使用叔胺或仲胺(如:2-乙基-4-甲基咪唑、三乙醇胺、DMP -30、苄基二甲胺、六氢吡啶、双氰胺),则羧基反应程度可达到100%,因胺类固化剂,其既起催化作用,又起固化作用。
因在叔胺催化下,环氧树脂本身还发生均聚反映,所以固化剂种类和用量对固化物的结构是有影响的,应尽量使橡胶分子和环氧树脂基体之间形成化学键。
为此,可使CTBN 先和过量环氧树脂反应,形成端环氧基预聚物,再用固化剂固化。
另形成的预聚物,可用更多的环氧树脂稀释以获得所需浓度、储存稳定的改性环氧树脂。
2. 非催化型固化剂,如:间苯二胺、六氢苯二甲酸酐、邻苯二甲酸酐等,可将CTBN 与环氧树脂进行加热反应,形成嵌段预聚物后再与非催化型固化剂反应。
电子工业用CTBN- 环氧型密封胶(此资料仅供参考)(1)电子工业用CTBN —环氧型密封胶(I):适用于电子工业中印刷线路和集成电路元件的密封保护。
方法如下:先将CTBN与双酚A型液体环氧树脂(E51 )以合适的配合比,在通N2保护下搅拌升温到100C,并在此温度下搅拌反应90min,冷却至室温制得CTBN改性的环氧树脂。
将改性环氧树脂100 份、双氰胺 5 份、有机取代脲类化合物7 份、微晶蜡 1 份和OK-412 消光剂2份混合均匀,制得外观为黑色膏状物,黏度(25C)为23Pa.s的电子线路用密封胶。
此密封胶的粘接试件经120C /30min固化后其拉伸强度为24.5Mpa,剪切强度为17.8 Mpa。
密封胶的贮存期(25 C)大于3个月。
(2)电子线路用CTBN- 环氧型密封胶(II ):该胶料是一种单组分,以端羧基液体丁腈橡胶增韧双酚 A 型环氧树脂和酚醛—环氧树脂,以已二酸二酰肼和咪唑化合物的组合物为催化固化体系和以熔凝二氧化硅粉为填料的液体橡胶—环氧树脂型密封胶。
改性环氧树脂的固化与稀释增韧研究

( .h n h i ei a tr o, t. S a g a , 0 3 6 C ia .h n h i n tueo c n l y, h n h i 1 a g a s F coy C . Ld , h n h i 2 0 3 , hn ;2 a g a si t f T h oo S a g a , S R n S I t e g
第 9期
宋
琼 , :改性环氧树脂 的固化与稀释增韧研究 等
1 7
方 面 , 得 E 分 子 链 的 内旋 转 更 为 容 易 , 子 构 象 使 P 分 更 多 ;另 一 方 面 , 低 了 E 降 P的 交 联 密 度 。因 此 , 这 种 方 法 在 增 韧 的 同时 也 会 降低 树 脂 的强度 和耐 热 性 。 寻 找 综 合 性 能 均 衡 的最 佳 固化 体 系 是 本 研 究 的主 要 内容 。
固化 剂 5 8 是 含 长 链 脂 肪 族 改 性 伯 胺 的无 色 黏 74
应 用 广 泛 。其 主要 成 分 为 聚醚 胺 D 0 、 乙醇胺 等 。 40 三
固化 剂 5 1 是 一 种 改 性 的脂 环 族 胺 加 成 物 , 68 可
用 作液 体 环 氧树 脂 的 室温 固化 剂 。 具 有低 毒 , 色 它 颜
222 稀 释 制对 环氧 树 脂 固化 物玻 璃 化转 变温度 ..
的 ,向 1 】
固化物 的性 能 有 较 大影 响 , 环 胺 9 3 与 ME 脂 02 P固化
物 的综 合性 能 较 为优 异 。
( 2) 表 干 时 问 随 固 化 剂 5 1 用 量 的减 少 而 增 68 加 。 :m ㈣ 为 1 5 , m 5 0: 时 综合 性 能最 佳 。 ( 3) 加 入 活 性 稀 释 剂 ( 性 环 氧 树 脂 质 量 的 改 1 % ) , 氧 树 脂 固化 物 的 冲 击 强 度 有 所 上 升 , 0 后 环 而
环氧树脂的增韧改性研究

环氧树脂的增韧改性研究近年来,随着科技的发展,环氧树脂作为一种重要的材料被广泛应用于航空、汽车、建筑等领域。
然而,环氧树脂的脆性限制了其在某些特殊情况下的应用。
为了克服这个问题,人们开始研究环氧树脂的增韧改性方法。
本文将探讨目前常见的几种环氧树脂增韧改性的研究方法和技术。
一、颗粒增韧法颗粒增韧法是一种常见的环氧树脂改性方法。
在这种方法中,将颗粒状的增韧剂添加到环氧树脂中,增加了其断裂韧性。
常见的颗粒增韧剂包括橡胶颗粒、纳米颗粒等。
这些颗粒能够在树脂中形成弥散相,有效地吸收冲击能量,从而提高环氧树脂的韧性。
颗粒增韧法的优点是简单易行,改性效果明显。
然而,由于颗粒增韧剂的存在,环氧树脂的性能也会发生变化。
因此,在具体应用时需要根据实际需求进行选择,并进行相应的实验研究和测试。
二、改性树脂模型法改性树脂模型法是另一种常用的环氧树脂增韧改性方法。
在这种方法中,通过在环氧树脂中引入改性树脂,如聚乙烯、聚丙烯等,来提高树脂的韧性。
改性树脂与环氧树脂之间通过共混或交联形成整体结构,从而改善了环氧树脂的断裂性能。
与颗粒增韧法相比,改性树脂模型法能够更加精确地调控环氧树脂的性能。
通过选择合适的改性树脂以及控制其添加量,可以有效地改善树脂的断裂韧性,并在一定程度上保持环氧树脂的原有性能。
三、纳米填料增韧法纳米填料增韧法是一种新兴的环氧树脂改性方法。
通过将纳米级的填料添加到环氧树脂中,可以改善其力学性能。
常见的纳米填料包括氧化铝、氧化硅、纳米蒙脱土等。
这些纳米填料具有高比表面积和特殊的物理化学特性,能够有效地提高环氧树脂的力学强度、热稳定性和阻燃性能。
纳米填料增韧法的优点是填料与环氧树脂之间形成了较强的界面相互作用,从而提高了树脂的强度和韧性。
然而,纳米填料的添加量和分散性对环氧树脂的性能影响较大,需要进行精确的调控和研究。
结论环氧树脂的增韧改性研究主要采用颗粒增韧法、改性树脂模型法和纳米填料增韧法。
这些方法各有优点和适用范围,可以根据实际需求进行选择。
端羧基丁腈橡胶增韧改性环氧树脂的研究

端羧基丁腈橡胶增韧改性环氧树脂的研究1. 引言1.1 研究背景为了解决环氧树脂的这些缺陷,科研人员开始研究将端羧基丁腈橡胶作为增韧剂加入环氧树脂中,通过改性处理来提高环氧树脂的机械性能和热稳定性。
端羧基丁腈橡胶在环氧树脂中的良好分散性和界面相容性,可以有效地提高环氧树脂的韧性,抗冲击性和耐热性,从而使其在复杂工程环境中更加稳定可靠。
研究端羧基丁腈橡胶增韧改性环氧树脂对于拓展环氧树脂的应用领域,提高其性能表现具有重要意义。
在本研究中,我们将探讨端羧基丁腈橡胶在环氧树脂中的增韧效果,并通过实验研究及分析,探讨其改性方法和实际应用前景,为进一步完善环氧树脂性能提供理论支持。
1.2 研究目的研究目的是通过将端羧基丁腈橡胶引入环氧树脂中,探究其在增韧改性中的作用机制和效果。
具体来说,通过深入研究端羧基丁腈橡胶的特性和环氧树脂的性质,我们旨在找到最佳的配比和改性方法,以达到提高环氧树脂的韧性、耐磨性和耐冲击性的目的。
我们也希望通过本研究,为开发更加高性能的环氧树脂材料提供有益的参考和指导,推动材料科学领域的发展。
通过对端羧基丁腈橡胶在环氧树脂中的应用进行系统性的研究和探索,我们旨在为材料工程领域的发展做出贡献,并为新型环氧树脂改性技术的研究提供新思路和实践经验。
1.3 研究意义端羧基丁腈橡胶增韧改性环氧树脂是目前在材料领域备受关注的研究方向之一。
通过对端羧基丁腈橡胶在环氧树脂中的引入和改性,可以显著提高环氧树脂的力学性能和耐热性能,从而拓宽了环氧树脂在工程领域的应用范围。
研究表明,端羧基丁腈橡胶可以有效增加环氧树脂的韧性和抗冲击性能,提高其耐磨性和耐久性,从而使得环氧树脂更加适用于复杂环境下的使用。
端羧基丁腈橡胶增韧改性环氧树脂还具有绿色环保的特点,符合现代社会对材料环保性能的需求。
本研究对于推动环氧树脂材料的绿色化和可持续发展具有积极的意义。
通过深入探究端羧基丁腈橡胶增韧改性环氧树脂的研究,可以为材料领域的发展提供实用的技术支持和理论指导,促进相关领域的创新和进步。
环氧树脂增韧改性新技术

环氧树脂增韧改性新技术近年来,环氧树脂在工业应用方面得到了大量的关注和使用,它能够提供高强度、高耐热等优异性能,并且可以通过增韧改性技术来改善其应用性能。
环氧树脂增韧改性技术是一种在制备环氧树脂材料时,利用特定的助剂和稳定剂改变其结构,调整其配方,可以显著改善其物理和力学性能的技术。
通过增韧改性技术可以改善环氧树脂的性能,使其耐磨性增强,同时也使其缩放和易燃性能得到改善。
环氧树脂增韧改性新技术包括共聚改性、助剂改性和稳定剂改性等多种技术,其中共聚改性技术可以将聚二甲基硅氧烷或其他共聚物与环氧树脂进行共聚,从而改变环氧树脂的特性,使其可以耐高温、耐候性能和抗紫外线性能得到明显改善,使其可以更好地适用于室外环境。
除了共聚改性外,助剂改性技术也可以用于增强环氧树脂的耐湿性、耐腐蚀性能和耐老化性能。
此外,稳定剂改性技术也可以用于改善环氧树脂的热稳定性,从而提高其热老化性能,使其可以在高温环境中更好地应用。
环氧树脂增韧改性技术的应用在工业、汽车和航空航天等领域都被广泛应用,如使用环氧树脂增韧改性技术可以制造出抗震、耐热、耐腐蚀和耐老化的汽车零部件,如车轮半壳、吊桥架等,使车辆的抗震性和耐其它老化环境的能力得到提高。
环氧树脂增韧改性技术在近年来也受到了有趣的应用,如将环氧树脂增韧改性技术应用到地面和建筑物上,以实现耐候性和抗污性能的增强,使用其做防水材料也可以显著提高抗水性和耐老化性能。
此外,在工业应用中,环氧树脂增韧改性技术的应用在一定程度上可以提高阀门的性能,从而有效地解决阀门的耐腐蚀性、耐磨性和耐水性问题,从而使该产品有更多的应用。
综上所述,环氧树脂增韧改性技术的应用及其带来的各种优点为环氧树脂领域的发展带来了巨大的影响,它为工业应用提供了更高的性能和可靠性,同时也为汽车、航空航天等行业提供了可靠性和耐用性,给予了更多的潜力和机遇,该技术有望成为一种重要的工业应用新技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环氧树脂的增韧改性方法摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。
EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。
因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。
一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。
笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。
关键词:环氧树脂增韧改性1环氧树脂的增韧改性1.1橡胶弹性体改性利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。
其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。
因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。
近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。
用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。
这些聚合物一般是耐热性及力学性能都比较好的工程塑料,它们或者以热熔化的方式,或者以溶液的方式掺混入环氧树脂[6]。
韩静等[7]制备了以丙烯酸丁酯、丙烯酸乙酯、丙烯酸缩水甘油酯为主链的带环氧基团的液体橡胶,用来增韧EP/间苯二甲胺体系。
结果表明,随着丙烯酸酯液体橡胶用量的增加,改性EP体系的弯曲强度和冲击强度呈先升高后降低趋势,并在10%和15%出现峰值,与纯EP体系相比,强度可分别提高10.5%和151.8%。
范宏等对比了就地聚合PBA2P(BA2IG)0.2~1μm的橡胶粒子分散体以及用种子乳液聚合制成的PBA/PMMA,P(BA2IG)/P(MMA2IG)橡胶粒子分散体分别在环氧树脂体系中的内应力减低效果。
发现前者固化产物的Tg下降,而后者的Tg完全没有影响。
SEM观察发现,前者形成了IPN结构,而后者仅仅是粒子界面附近形成IPN结构,同时后者制成的粘合剂性能有明显提高。
聚合获得的第1代丙烯酸橡胶粒子其核壳结构基本上是均一的,它们作为结构胶,其剥离强度、冲击性能还不很好。
晶种核壳聚丙烯酸橡胶粒子是第2代产品,其薄壳部分具有絮凝性,核部分担负着增韧作用。
研究表明,后者环氧树脂固化后核部分的丙烯酸橡胶粒子呈微分散型,因此抗冲击性、剥离强度较高[ 8]。
1.2 热塑性树脂增韧EP橡胶弹性体增韧的EP在黏合剂的应用中已经取得很大成功。
但由于存在下述问题,这种方法不适用于对高性能复合材料的基体树脂进行改性。
其一,改性基体的韧性会转移到纤维复合材料中去;其二,由于低剪切模量的橡胶粒子的加入,复合材料层与层之间的剪切强度降低;其三,橡胶组分的加入会降低体系玻璃化温度,这不符合对复合材料日趋升高的耐热性要求。
近年来,随着高分子相容性理论的发展和增容技术的进步,EP与热塑性树脂的合金化增韧改性得到长足发展,有效地克服了橡胶弹性体改性EP体系的缺陷[9]用于EP增韧改性的主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC) 等。
这些聚合物一般是耐热性及力学性能都比较好的工程塑料,它们或者以热熔的方式,或者以溶液的方式掺混入EP。
刚性粒子增韧环氧树脂:在热塑性树脂中加入刚性粒子主要是为了降低材料的成本,控制材料的热膨胀与收缩。
粒状填料的加入会降低材料的压缩强度,但可提高材料的杨氏模量。
在环氧树脂中加入刚性粒子,除了引起上述变化外,还可提高基体的韧性。
赵世琦等报道了用石英砂填充环氧树脂的情况,发现填充体系韧性的增加程度与填料的粒径及表面处理的方法有关[10]。
KeikoKoga发现填料与基体的粘接性愈好,则环氧树脂填充体系的断裂韧性愈大,而杨氏模量愈小[11]。
Ishizu K等发现在橡胶改性的双酚A型环氧树脂中加入玻璃微珠后,会形成橡胶与玻璃微珠的杂交粒子,能够进一步提高环氧树脂的韧性[12]。
另外,经过表面处理的玻璃微珠的改性作用比未处理的要大得多。
Jones C D的实验也证实了该结果,在用锆和铝纤维进一步改性橡胶/环氧树脂体系及用中空玻璃微珠改性橡胶/环氧树脂体系时都发现了类似现象[ 3]热塑性树脂不仅具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入EP固化体系,不仅能够明显提高韧性,还可提高材料的疲劳性能、冲击韧性、横向拉伸和层间剪切强度。
橡胶弹性体和热塑性树脂均可大幅度提高EP的冲击强度,但会影响拉伸强度,此外热塑性树脂不易溶于普通溶剂,而且加工和固化条件要求较高,往往需要加入15%-20%的含量才能达到最佳的增韧效果,这样就不可避免的增加了EP的粘度,限制了后期的应用[14]。
1.3互穿网络聚合物改性互穿网络聚合物(IPN)是由两种或两种以上交联网状聚合物相互贯穿,缠结形成的聚合物,其特点是一种材料无规则地贯穿到另一种材料中去,起着“强迫包容”和“协同效应”的作用。
影响IPN性能的主要因素有网络的互穿程度、组分比、交联程度,全互穿IPN明显高于半互穿IPN的性能[15]张影[16]利用原位聚合聚对苯甲酰胺(PNM)对EP和粒子填充EP的改性作用进行了研究,发现当加入5 %左右的PNM时,EP力学性能可以大幅度提高,其拉伸强度从纯EP的50.91 MPa和粒子填充(30质量份) EP的69. 2 MPa分别提高到94. 25 MPa和91.85 MPa;断裂韧性从纯EP的0.83 MPa1/2和粒子填充EP的0.72 MPa1/2分别提高到1.86 MPa1/2和1.98 MPa1/2;而其他性能也有不同程度的改善。
PNM之所以具有这种作用,是因为它能以准分子级均匀分散于树脂基体中,使材料断裂韧性大幅提高,拉伸强度、弯曲强度和断裂韧性明显提高。
刘竞超[17]研究了用原位聚合法制备刚性PUR来改性EP。
当固化体系中刚性PUR用量不大时,刚性分子能以分子水平均匀分散于环氧基体中形成分子复合材料,整个体系类似于半互穿网络,这些刚性分子能对基体起到增强作用,同时又能阻止裂纹而增大基体的韧性。
1.4无机填料改性EP一般情况下,用无机相的粗晶粒填充有机相聚合物时,由于二者的相溶性差,它主要分布在高分子材料的链间,从而使复合材料的性能下降。
无机纳米粒子具有纳米尺寸效应、巨大的比表面积和强的界面作用,易于与EP键合,产生一系列可导致强度增大、韧性提高的化学及物理作用[18]。
纳米粒子是由数目极少的原子或分子组成的原子群或分子群,具有特殊的小尺寸和表面效应,从而有利于增加其与环氧树脂之间的混溶性。
根据扩散理论,粘合强度主要决定于两种物质间的混溶性。
混溶性越大,粘合强度越好。
纳米粒子的表面效应使纳米粒子的比表面积、表面能及表面结合能迅速增大,表明原子的增多,原子配位不满及较高的表面能,产生了许多缺陷而呈现很高活性,也产生一系列其他导致强度增大的化学及物理作用,从而有益于环氧树脂的键合。
同时纳米粒子易团聚,环氧树脂黏度大,使得其在环氧树脂中很难达到纳米尺寸的均匀分散。
与有机机体的界面结构及粘结强度也影响到复合材料的性能[19]。
李朝阳[20]首先将活性硅醇基接到纳米SiO2表面,然后化学改性EP,当纳米SiO2含量为l5%时,断裂伸长率、拉伸强度和弹性模量达到最大值。
消泳[21]制备的EP/粘土纳米复合材料,当粘土用量为4 %时,拉伸弹性模量提高了4.5倍,Tg上升,且Tg范围加宽。
无机纳米填料与EP复合后可使无机物的刚性,尺寸稳定性和热稳定性与环氧树脂的韧性、加工性揉合在一起,表现出增韧与增强的同步效应。
但是如果纳米组分加入太多,在外力冲击时就会产生更大银纹及塑性形变,并发展为宏观开裂、冲击强度反而下降,此外,纳米粒子存在容易团聚的缺点,也需要进一步研究解决。
2 结论综上所述,国内在EP增韧增强研究方面取得了很大进展,但仍存在这样那样的问题。
在传统的EP改性研究中,应用最广泛的是橡胶弹性体增韧,但是该方法会明显降低EP的强度及树脂体系的玻璃化转变温度,给后期应用带来不便,因此目前以、纳米粒子、液晶高分子、互穿网络聚合物、及超支化聚合物等一种或者是几种方法的交叉运用来增韧EP,备受人们关注。
随着研究的深入,将开发新的增韧材料、研究其增韧机理和拓展EP的应用领域等几方面有机结合,是下一步的研究重点。
随着电气、电子及复合材料等行业的飞速发展,对EP各项性能的要求越来越高。
EP的改性研究使其在性能优化、产品应用等方面产生了质的飞跃,由通用型产品向功能性、高附加值系列产品方向转化[22-23]。
这种发展趋势对深入研究EP改性机理、寻找新的改性方法提供了机遇。
参考文献[1] 王绪文.环氧树脂增韧的研究进展[J].中国胶粘利,2006,2(15):45-50.[2] 张娇霞,郑亚萍,许磊.环氧树脂增韧改性研究进展[J].粘接,2008,(9):39-42.[3] 周卫新,曾黎明.环氧树脂增韧研究进展[J].中国胶粘剂,2006,5(15):50-54.[4] 刘志中,王新灵,唐小真,等.环氧树脂增韧改性研究进展[J].中国塑料,1998,12(6):12-18.[5] 史孝群,肖久梅.环氧树脂增韧研究进展[J].绝缘材料,2002(1):31-34.[6] 蒋华麟陈萍华.环氧树脂改性与应用的研究进展[J].江西化工,2009,(12):19-22[7] 韩静,罗炎,沈灿军.聚丙烯酸酯液体橡胶增韧环氧树脂体系研究[J].热固性树脂,2008,3(23):10-13.[8] 范宏,王建黎.核壳弹性粒子增韧环氧树脂研究[J].高分子材料科学与工程. 2001, 17(2): 121-124.[9] 陈同惠,张军志,高锐.聚碳酸酯型聚氨酯/环氧树脂复合聚合物的合成与性能[J].化学工业与工程,1998,15(3):15-19.[10] 赵世琦,云会明.刚性粒子增韧环氧树脂的研究[J].中国塑料,1999, 13(9): 35-39.[11] Keiko Koga,Wei Yuan Le.i Structure and properties of epoxy modified with rigid particles[ J]. Journalof PolymerScience,1993, 25(2): 185-195.[12] IshizuK. Application of a series of novel curing agent and toughingmodified for epoxy resin[ J].Progress inPolymerScience,1998, 23(8): 1383-1408.[13] Jones C D, Lyon L A.Modification of epoxy resins byacrylic copolymerwith side chained mesogenicunits[J]. Polymer, 2000, 33(22): 8301-8306[14] 廖波等:环氧树脂增韧改性的研究进展[J].化工新型材料,2010,6(38):28-30[15] 封朴.聚合物合金[M].上海:同济大学出版社,1997:212.[16] 张影,唐小真,徐祥铭.原位聚合刚性高分子改性环氧树脂的研究[J].高分子材料科学与工程,1998,14(5):136-137.[17] 刘竞超.刚性聚氨酯/环氧树脂分子复合材料的制备与性能[J].高分子材料科学与工程,2000,16(4):151-154.[18] Ma J,Mo M S, Du X S.Effect of inorganic nanoparticles on mechanical property, fracture toughnessand toughening mechanism of two epoxy systems[J]. Polymer, 2008, (49):3510-3523.[19] 谢宇,曹黎华.纳米粒子改性环氧树脂的研究进展[J].应用化工,2008,3(37):334-337[20] 李朝阳,邱大健,谢国先,等.纳米SiO2增韧改性环氧树脂的研究[J].材料保护,2008,(4):21-23.[21] 消泳.环氧树脂/粘土纳米复合材料的制备与性能[J].工程塑料应用,1998,(8):28.[22] 韦春,谭松庭,王履瑜.环氧树脂的增韧改性新方法[J].高分子材料科学与工程,2003,19(1):51.[23] 孙以实.环氧树脂增韧改性新技术[J].高分子学报,1988(2):101.。