流体力学综合实验
流体力学综合实训报告总结
本次流体力学综合实训旨在通过实际操作和理论学习的结合,使我对流体力学的基本原理、基本方法及实验技能有更深入的理解和掌握。
通过实训,我能够提高自己的动手能力、实验技能和综合运用知识解决实际问题的能力。
二、实训内容1. 流体力学基本实验(1)流体流速分布测量实验通过实验,我学习了流速分布的测量方法,掌握了流速分布曲线的绘制技巧。
实验结果表明,流速分布曲线呈现出明显的抛物线形状,符合流体力学的基本理论。
(2)流量测量实验在流量测量实验中,我学习了流量计的使用方法,掌握了不同流量计的优缺点。
通过实验,我了解了流量测量在工程实践中的应用,提高了自己的实际操作能力。
(3)伯努利方程实验通过伯努利方程实验,我加深了对伯努利方程的理解,学会了如何运用伯努利方程解决实际问题。
实验结果表明,伯努利方程在流体力学中具有广泛的应用价值。
2. 流体力学综合实验(1)管道摩擦系数测定实验在管道摩擦系数测定实验中,我学习了管道摩擦系数的测量方法,掌握了不同管道的摩擦系数。
实验结果表明,管道摩擦系数与管道材料、粗糙度等因素有关。
(2)弯管流量测量实验弯管流量测量实验使我了解了弯管对流体流动的影响,学会了如何测量弯管流量。
实验结果表明,弯管流量与弯管角度、管道直径等因素有关。
(3)流体阻力实验流体阻力实验使我掌握了流体阻力系数的测量方法,了解了流体阻力系数与流体特性、管道形状等因素的关系。
实验结果表明,流体阻力系数在工程实践中具有重要的应用价值。
1. 实验技能提高通过本次实训,我掌握了流体力学基本实验和综合实验的操作方法,提高了自己的实验技能。
在实验过程中,我学会了如何使用实验仪器、如何观察实验现象、如何分析实验数据,为今后从事相关领域的工作奠定了基础。
2. 理论知识深化在实训过程中,我结合实验现象对流体力学的基本原理进行了深入思考,使我对流体力学的基本理论有了更深刻的理解。
同时,通过实验数据的分析,我对流体力学的基本方法有了更全面的掌握。
流体学综合实验报告
流体学综合实验报告1. 实验目的本实验通过流体力学实验的综合测试,旨在加深对流体学基本原理的理解,并实践流体力学实验的操作方法和数据分析技巧。
具体目标包括:1. 掌握流速测量的原理和方法;2. 学习压力测量的原理和方法;3. 熟悉状态方程的测量方法;4. 分析流体力学实验数据,得出相应结论。
2. 实验仪器与装置本次实验所使用的仪器与装置主要包括:1. 流量计:用于测量流体的流速;2. 压力计:用于测量流体的压力;3. 热敏电阻温度计:用于测量流体的温度;4. 试验台:用于固定仪器和装置。
3. 实验原理3.1 流速测量流速测量的原理基于流体通过管道的体积流量和截面积之间的关系。
通过测量单位时间内流体通过的体积,可以计算出流体的平均流速。
为了保证测量的准确性,实验中使用了流量计。
流量计根据不同的原理可分为多种类型,包括旋转式流量计、压差式流量计和超声波流量计等。
3.2 压力测量压力测量的原理基于流体对容器内壁面施加的压力与流体深度之间的关系。
通过测量所施加的压力,可以计算出流体的压强。
在实验中,为了方便测量压力,使用了压力计。
压力计主要分为摆盘式压力计和压电式压力计。
通过测量压力计的示数,可以间接地得到流体的压力。
3.3 状态方程的测量流体的状态方程描述了流体的温度、压力和体积之间的关系。
实验中,通过使用热敏电阻温度计测量流体的温度,结合压力计测得的压力和容器的体积,可以得到流体的状态方程。
4. 实验步骤与结果分析4.1 流速测量首先将流量计插入管道中,连接相关的测量仪器。
然后根据实验要求设置合适的流速,记录下每组数据,并计算平均流速。
根据实验数据,在相同的压力下,流速与管道截面积成正比例关系。
4.2 压力测量首先将压力计插入容器中,保证测量仪器的稳定性和准确性。
根据实验要求设置不同的压力值,记录下每组数据,并计算平均压力。
通过实验数据的分析,可以得出流体压力与深度成线性关系的结论。
4.3 状态方程的测量在一定的温度下,根据实验要求改变流体的压力和容器的体积,记录下每组测量数据。
流体力学综合实验实验报告
流体力学综合实验实验报告一、实验目的1. 了解流体力学原理。
2. 学习流体力学实验的方法,掌握实验的技能。
3. 通过实验,明白流体力学中流体的各种属性及其产生的作用。
二、实验原理流体力学综合实验主要通过实验装置与实验方法,研究流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性(如阻力、压力损失率、混合性等),量化表征流体运动规律,有助于进一步深入研究流体力学的原理。
三、实验设备流体力学综合实验装置由以下部分组成:1.供水管2.压力表3.流量计4.定压调节装置5.实验室水压测试系统6.实验室水压实验系统四、实验步骤1. 打开供水管,启动实验装置,并记录初始温度和流量。
2. 根据实验要求,调整定压调节装置,使实验装置持续运行。
3. 逐步记录实验装置的运行参数,如流量、压力、温度等。
4. 观察实验装置的运行状态,及时记录实验数据。
5. 根据实验结果,归纳总结实验意义,完成实验报告。
五、实验结果实验中测量的参数如下:1. 流量:1.32mL/min;2. 压力:2.45MPa;3. 温度:18℃。
六、实验分析通过实验,可以看出,流量、压力和温度是流体力学中非常重要的参数,改变这些参数,可以影响流体的运动状态,从而得出实验结论。
根据实验,我们可以得出以下结论:1. 压力的变化可以影响流体的流动状态。
随着压力的增加,流体的物理特性也发生了改变,即流量也相应增大。
2. 温度的变化也会影响流体的流动状态。
随着温度的升高,流量会增加。
七、实验总结本实验通过实验装置,和测量方法,了解流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性,我们可以从中得出流体受到压力、温度等影响而发生变化的结论。
流体力学综合实验报告
流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。
本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。
实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。
通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。
实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。
实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。
实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。
同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。
实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。
通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。
实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。
这表明不同液体的粘度是不同的。
实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。
实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。
同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。
结论:通过以上实验,我们深入了解了流体的性质和运动规律。
我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。
此外,我们还发现,流体的流量和流速之间存在一定的关系。
这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。
流体综合实验报告分析
一、实验背景流体力学是研究流体运动规律及其与固体壁面相互作用的科学。
随着工业、交通、建筑等领域的发展,流体力学在各个领域的应用越来越广泛。
为了提高学生对流体力学知识的理解和应用能力,我们进行了流体综合实验。
二、实验目的1. 掌握流体力学基本实验方法,提高实验操作技能。
2. 验证流体力学基本理论,加深对流体运动规律的理解。
3. 分析实验数据,提高数据处理和分析能力。
4. 培养团队合作精神和创新意识。
三、实验内容1. 流体静力学实验:通过测量液体静压强,验证不可压缩流体静力学基本方程,掌握用测压管测量液体静水压强的技能。
2. 流体阻力实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。
3. 流体流动阻力测定实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。
四、实验方法与步骤1. 流体静力学实验:使用液式测压计测量液体静压强,记录数据,分析结果。
2. 流体阻力实验:通过测量不同雷诺准数下的流体阻力,绘制雷诺准数与直管摩擦系数的关系曲线。
3. 流体流动阻力测定实验:通过测量不同管件和阀门处的阻力损失,分析流体流动阻力的影响因素。
五、实验结果与分析1. 流体静力学实验:实验结果表明,液体静压强与测压管深度成正比,验证了不可压缩流体静力学基本方程。
2. 流体阻力实验:实验结果表明,在一般湍流区内,雷诺准数与直管摩擦系数呈非线性关系,验证了雷诺准数与直管摩擦系数的关系曲线。
3. 流体流动阻力测定实验:实验结果表明,管件和阀门对流体流动阻力有显著影响,其中弯头、三通等管件对阻力的影响较大。
六、讨论与心得1. 通过流体静力学实验,我们深入理解了不可压缩流体静力学基本方程,为后续学习流体动力学奠定了基础。
2. 流体阻力实验和流体流动阻力测定实验使我们认识到,在工程实践中,流体阻力对设备性能和能耗有重要影响。
因此,在设计过程中,应充分考虑流体阻力因素,以提高设备性能和降低能耗。
流体力学综合实验
实验报告课程名称:过程工程原理实验(甲) 指导老师: 成绩:__________________ 实验名称:流体力学综合实验(一、二) 实验类型:工程实验 同组学生姓名:姿 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得1、流体流动阻力的测定实验1.1 实验目的:1.1.1 掌握测定流体流经直管、阀门时阻力损失的一般实验方法 1.1.2 测定直管摩擦系数λ与雷诺数 的关系,验证在一般湍流区内λ与 的关系曲线 1.1.3测定流体流经阀门时的局部阻力系数ξ1.1.4 识辨组成管路的各种管件、阀门,并了解其作用 1.2 实验装置与流程: 1.2.1 实验装置:实验对象部分由贮水箱、离心泵、不同管径和材质的水管、阀门、管件、涡轮流量计、U 形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别用于测定粗糙管直管阻力系数和光滑管直管阻力系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力阻力系数。
水的流量使用涡流流量计或转子流量计测量,管路直管阻力和局部阻力采用压差传感器测量。
1.2.2 实验装置流程示意图,如图1,箭头所示为实验流程:其中:1——水箱 2——离心泵 3——涡轮流量计 4——温度计 5——光滑管实验段 6——粗糙管实验段 7——截止阀 8——闸阀 9、10、11、12——压差传感器 13——引水漏斗图 1 流体力学综合实验装置流程示意图Re Re1.3 基本原理:流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成的机械能损失成为直管阻力损失。
流体通过管件、阀门时由于流体运动方向和速度大小的改变所引起的机械能损失成为局部阻力损失。
1.3.1直管阻力摩擦系数λ的测定:由流体力学知识可知,流体在水平等径直管中稳定流动时,阻力损失为:(1) 公式中:fp ∆:流体流经l 米直管的压力将,Pa ;λ:直管阻力摩擦系数,无因次; d :直管内径,m ;fh :单位质量流体流经l 米直管的机械能损失,J/kg ;ρ:流体密度,kg/ ; l :直管长度,m ;u :流体在管内流动的平均速度,m/s ;由上面的式子可知: (2)雷诺数: ρμ式子中:μ:流体粘度,kg/(m ·s)。
流体实验综合实验报告
实验名称:流体力学综合实验实验日期:2023年4月10日实验地点:流体力学实验室一、实验目的1. 通过实验加深对流体力学基本理论的理解和掌握。
2. 掌握流体力学实验的基本方法和步骤。
3. 培养学生的实验操作技能和数据处理能力。
4. 培养学生严谨的科学态度和团队合作精神。
二、实验原理本实验主要研究流体在管道中流动时的基本特性,包括流速分布、压力分布、流量测量等。
实验采用流体力学的基本原理,如连续性方程、伯努利方程、雷诺数等,通过实验数据验证理论公式,分析实验结果。
三、实验仪器与设备1. 实验台:包括管道、阀门、流量计、压力计等。
2. 数据采集系统:用于采集实验数据。
3. 计算机软件:用于数据处理和分析。
四、实验步骤1. 实验准备:检查实验仪器和设备是否完好,熟悉实验操作步骤。
2. 实验数据采集:a. 打开阀门,调节流量,使流体在管道中稳定流动。
b. 在管道不同位置安装压力计,测量压力值。
c. 在管道出口处安装流量计,测量流量值。
d. 记录实验数据,包括流量、压力、管道直径等。
3. 实验数据处理:a. 利用伯努利方程计算流速。
b. 利用连续性方程计算流量。
c. 分析实验数据,验证理论公式。
4. 实验结果分析:a. 分析流速分布、压力分布的特点。
b. 分析流量测量误差。
c. 总结实验结论。
五、实验结果与分析1. 实验数据:a. 管道直径:D = 0.02 mb. 流量:Q = 0.01 m³/sc. 压力:P = 1.0×10⁵ Pad. 流速:v = 0.5 m/s2. 实验结果分析:a. 流速分布:实验数据表明,管道中流速分布均匀,流速在管道中心最大,靠近管道壁面最小。
b. 压力分布:实验数据表明,管道中压力分布均匀,压力在管道中心最大,靠近管道壁面最小。
c. 流量测量误差:实验数据表明,流量测量误差较小,说明实验装置和测量方法可靠。
六、实验结论1. 实验验证了流体力学基本理论,如连续性方程、伯努利方程等。
综合流体力学实验报告
实验一:综合流体力学实验一、实验目的1、掌握测定流体流经直管、管件和阀门时阻力损失的实验方法;2、测定直管摩擦系数λ与雷诺准数Re,验证在一般湍流区λ与Re的关系;3、测定流体流经阀门时的局部阻力系数ξ;4、学会流量计的使用方法;5、辨识组成管路的各种管件、阀门,并了解其作用。
二、实验原理1.直管阻力摩擦系数λ与雷诺数Re的测定原理流体流经直管时,流体阻力、流体本身的黏性以及管路的粗糙程度是产生能量损失的主要原因。
当流体在水平等径直管中稳定流动时,阻力损失为:流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在的关系为:上式相连可得:,也可为雷诺数计算公式,也可为2、流体经过截止阀门的局部阻力系数ξ的测定原理局部阻力损失测量法有:当量长度法和局部阻力系数法,本实验采取局部阻力系数法------流体通过某一管件或者阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数。
,可化为λ--- 直管阻力摩擦系数;d --- 直管内径,m;---压力降,Pa;---流体流经直管的机械能损失;P --- 流体密度,kg/m3;l --- 直管长度,m;u --- 流体在管内流动的平均速度,m/s;μ--- 流体粘度,kg/(m*s);三、实验设备及流程1、实验设备由水槽、离心泵、不同管径、材质的水管、阀门、管件、涡轮流量计和U形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别为用于粗糙管直管阻力系数和光滑管直管阻力系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力系数。
水的流量使用涡流流量计测量,管路直管阻力和局部阻力采用差压传感器测量。
2、实验流程流体由水槽流经离心泵进入排出管路,首先经过一个流量调节阀门,然后经过转子流量计,最后遇到三根平行的管路,最上方的管路是一根粗糙管,主要用于测定粗糙管的摩擦阻力系数λ与雷诺数Re之间的关系;第二根管是一根光滑管,主要用于测定光滑管的摩擦阻力系数λ与雷诺数Re之间的关系,由于光滑管是透明的,也可用它进行雷诺实验的演示;第三根管是中间安装了一个截止阀,主要用于测定流体流经阀门的局部阻力系数ξ;且这几根管路每根管路的入口处都有一个管路阀门,当测量某一跟管路时,需要将这一根管路的管路阀门打开,其余管路阀门关闭。
流体的综合实验报告
一、实验目的1. 了解流体力学的基本概念和基本规律;2. 掌握流体实验的基本方法和实验设备的使用;3. 通过实验验证流体力学的基本定律,提高实验技能和数据分析能力;4. 培养团队协作精神和严谨的实验态度。
二、实验原理1. 流体力学基本定律:质量守恒定律、动量守恒定律、能量守恒定律;2. 流体流动的基本方程:连续性方程、伯努利方程、动量方程;3. 流体流动的实验研究方法:量纲分析、相似理论、模型实验。
三、实验仪器与设备1. 流体力学实验台:包括管道、阀门、流量计、压力计、水槽等;2. 计算机及数据采集系统:用于实验数据采集、处理和分析;3. 实验器材:测力计、计时器、温度计等。
四、实验内容1. 管道流量实验:测量不同流量下的管道流速、流量和压力损失;2. 伯努利方程实验:验证伯努利方程在流体流动中的应用;3. 动量方程实验:验证动量方程在流体流动中的应用;4. 能量守恒方程实验:验证能量守恒方程在流体流动中的应用;5. 流体阻力实验:测量不同形状、不同尺寸的物体在流体中的阻力系数。
五、实验步骤1. 管道流量实验:(1)开启阀门,调节流量,使管道内流速稳定;(2)使用流量计和压力计测量流量和压力;(3)记录实验数据,进行数据分析。
2. 伯努利方程实验:(1)将管道一端封闭,另一端连接压力计;(2)逐渐降低管道一端的压力,观察压力计读数;(3)记录实验数据,验证伯努利方程。
3. 动量方程实验:(1)使用测力计和计时器测量流体对物体的冲击力;(2)记录实验数据,验证动量方程。
4. 能量守恒方程实验:(1)使用温度计测量流体进入和流出管道的温度;(2)记录实验数据,验证能量守恒方程。
5. 流体阻力实验:(1)将不同形状、不同尺寸的物体放入流体中;(2)使用测力计测量物体在流体中的阻力;(3)记录实验数据,分析阻力系数。
六、实验结果与分析1. 管道流量实验:根据实验数据,绘制流量-流速、流量-压力损失曲线,分析管道流量与流速、压力损失的关系。
实验三、流体力学综合实验 化工基础实验
实验三、流体力学综合实验流体力学综合实验包括流体在管路内流动时的直管和局部阻力的测定,流量计的流量系数校核和在一定的转速下离心泵的特性曲线的测定。
这三个实验都是以柏努利方程为基础。
流体流动时会产生阻力,为了克服阻力需损耗一部分能量,因此,柏努利方程在实际应用中Σh f一项代表每公斤流体因克服各种流体流动阻力而损耗的能量,在应用柏努利方程时,不管是为了求取各能量之间的互相转化关系式或是计算流体输送机械所需的能量及功率都必须算出Σh f:对于在长距离的流体输送,流体输送机械所作的功,主要是用于克服输送管路中的流体阻力,故阻力的大小关系到流体输送机械的动力消耗,也涉及到流体输送机械的选用。
流体阻力的大小与流体的性质(如粘性的大小),流体流动类型、流体所通过管路或设备的壁面情况(粗糙或光滑)通过的距离及截面的大小等因素有关。
在流体流动的管路上装有孔板或文氏流量计用于测定流体的流量,流量计一般都按标准规范制造,给出一定的流量系数按规定公式计算或者给出标定曲线,照其规定使用,如果不慎遗失原有的流量曲线或者流量计经过长期使用而磨损较大,或者被测流体与标准流体的成分或状态不同;或者由于科研往往需要自制一些非标准形式的流量计,此时,为了精确地测定流量,必须对自制流量计进行校验,求出具体计算式或标定流量曲线。
泵是输送液体的机械,离心泵铭牌上所示的流量,扬程,功率是离心泵在一定转速下效率最高点所对应的Q,H,N的值。
在一定转速下,离心泵的扬程H,轴功率N及效率η均随流量的大小而改变,其变化关系可用曲线表示,该所示曲线称为离心泵的特性曲线。
通常根据H~Q曲线,可以确定离心泵在给定管路条件下输送能力,根据N~Q曲线可以给离心泵合理选配电动机功率,根据η~Q曲线可以选择离心泵的工况处于高效工作区,发挥泵的最大效率。
离心泵的特性曲线目前还不能用解析方法进行准确计算,只能通过实验来测定。
一、管道流体阻力测定一、实验目的:1.掌握测定流体阻力的实验方法。
实验16 综合流体力学实验
净功率)
qH g P电 100
%
(11)
⑷ 电机功率P电
P电—电动机的功率,用三相功率表直接测定[Kw]。
⑸ 转速校核:应将以上所测参数校正为额定转速n’=2900 rpm下的数据来绘制特
性曲线图。
q' n' qn
H H
'
n' n
2
P' P
n' n
3
n ' 额定转速 2900 n 实际转速 rpm
原理结构如图。
测压孔
流向
u0 u
ΔP
孔板
管道 法兰
图1 孔板流量计结构图
为了减小流体通过孔口后由于突然扩大而引起的大量 旋涡能耗,在孔板后开一渐扩形圆角。因此孔板流量计的 安装是有方向的。若是反方向安装,不光是能耗增大,同 时其流量系数也将改变,实际上这样使用没有意义。
其计算式为:
q C0 A0
四、操作步骤
1.熟悉:按事先(实验预习时)分工,熟悉流程及各测量仪表的作用。 2.检查:检查各阀是否关闭。 3.模块安装:根据实验内容选择对应的管路模块,通过活连接接入管路系统,使
用软管正确接入对应的差压传感器。 注意:①无论完成什么实验内容两个支路上必须保证有模块连接 ②如有未连接的测压孔,请使用软管串联到一起,防止液体溢出。
2.设备仪表参数
离心泵:不锈钢材质,0.55kW,6m3/h 循环水池:有机玻璃材质,700×500×380mm (长×宽×高) 涡轮流量计:有机玻璃壳体,0.5-10m3/h 差压传感器:测量范围0~40kPa,0~400kPa 温度传感器:Pt100 航空接头 细管测量段尺寸:DN15,内径φ16,透明PVC,测点长1000 mm 粗管测量段尺寸:DN20,内径φ20,透明PVC,测点长1000 mm 阀门测量段尺寸:DN20,内径φ20,PVC球阀。
实验一 流体力学综合实验实验报告
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳 2.测定直管摩擦系数λ和e R 关系曲线及局部阻力系数ζ 3. 了解离心泵的构造,熟悉其操作和调节方法 4. 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。
直管阻力是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1) 局部阻力主要是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2) 管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m ; d ——直管内径,m ;u ——管内平均流速,1s m -⋅;g ——重力加速度,9.812s m -⋅p ∆——直管阻力引起的压强降,Pa ;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ和Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5) 式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅;2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7) 式中:e N ——泵的有效功率,K w ;N ——电机的输入功率,由功率表测出,K w ; Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
流体力学综合实训报告范文
一、实训目的本次流体力学综合实训旨在通过实际操作和实验,加深对流体力学基本理论的理解,掌握流体力学实验的基本方法和技能,提高分析问题和解决问题的能力。
通过实训,使学生能够熟练运用流体力学原理解决实际问题,为今后的学习和工作打下坚实的基础。
二、实训内容1. 流体力学基本实验(1)流体静力学实验:通过测量不同深度下的液体压强,验证流体静力学基本公式。
(2)流体运动学实验:通过测量不同位置的流速和流线,研究流体运动规律。
(3)流体动力学实验:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。
2. 流体力学综合实验(1)流体流动可视化实验:通过实验观察流体流动状态,分析流动特点。
(2)管道流动实验:通过测量管道内流体流动参数,研究管道流动特性。
(3)湍流流动实验:通过测量湍流流动参数,研究湍流流动特性。
三、实训过程1. 流体静力学实验(1)实验原理:根据流体静力学基本公式,测量不同深度下的液体压强,验证公式。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同深度处测量液体压强;④记录实验数据。
(3)实验结果分析:通过对比理论值和实验值,验证流体静力学基本公式。
2. 流体运动学实验(1)实验原理:通过测量不同位置的流速和流线,研究流体运动规律。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同位置测量流速;④绘制流线。
(3)实验结果分析:通过对比理论值和实验值,研究流体运动规律。
3. 流体动力学实验(1)实验原理:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。
(2)实验步骤:①将实验装置组装好;②将物体放入实验装置;③测量物体在不同流速下的阻力;④记录实验数据。
(3)实验结果分析:通过对比理论值和实验值,分析流体动力学特性。
4. 流体流动可视化实验(1)实验原理:通过实验观察流体流动状态,分析流动特点。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③观察流体流动状态;④记录实验现象。
流体力学综合实验指导书
流体力学综合实验一、实验目的1.能进行光滑管、粗糙管、闸阀局部阻力测定,测出湍流区阻力系数与雷诺数关系曲线图;2.能进行离心泵特性曲线测定,测出扬程、功率和效率与流量的关系曲线图;3.学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解涡轮流量计、C1000、电动调节阀以及相关仪表的原理和操作。
二、装置整体流程图:1-水箱;2-进口压力变送器;3-离心泵;4-出口压力变送器;5-涡沦流量计;6-管路选择球阀;7-均压环;8-连接均压环和压力变送器球阀;9-局部阻力管上的闸阀;10-差压变送器;11-出水管路闸阀;12-水箱放水阀;13-宝塔接头;14-温度传感器;15-离心泵的管路阀;16-旁路阀;17-电动调节阀;图1 实验装置流程示意图实验三、离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1. 流量的测定流量是在实验过程中设定值,可直接设定流量3m 3/h ——12m 3/h 共取10组数据。
也可设定出口阀的开度从10%——100%共取10组数据。
2.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方 程: fHgu gp z H gu g p z ∑+++=+++2222222111ρρ (1-1) 由于两截面间的管长较短,通常可忽略阻力项f H ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- (1-2)式中: 12z z -,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。
流体力学综合实验实验报告
流体力学综合实验实验报告一、实验目的流体力学综合实验是为了通过实验操作,结合理论知识,提高学生对流体力学理论的理解,以及培养学生分析和解决问题的能力和实验操作技能。
二、实验原理流体力学是研究流体运动规律和相应力学问题的学科。
流体力学综合实验主要涉及流体力学的基本理论和方法,如流体静力学实验、流速测量实验和流体动力学实验等。
主要实验装置包括流量计、细管、不同形状的孔洞等。
三、实验内容流体力学综合实验包括以下几个实验内容:1.流体静力学实验:通过水柱和压力计器测量水平管道的压力,验证其与高度和流速的关系。
2.流速测量实验:通过使用流量计和测速仪器,测量不同位置和不同孔径处的流速,探究流速与孔径大小的关系。
3.流体动力学实验:通过流过不同形状的孔洞的流体,测量不同孔洞形状的流速和流量,以及分析孔形对流速的影响。
四、实验步骤1.流体静力学实验:安装水柱和压力计器,利用压力计器测量不同高度处的压力值,并记录下来。
根据实测数据,绘制压力与高度的关系曲线。
2.流速测量实验:选择不同位置和不同孔径的流量计和测速仪器,测量流体在这些位置和孔径处的流速,并记录下来。
将实测数据整理成表格,并分析不同孔径大小对流速的影响。
3.流体动力学实验:利用不同形状的孔洞,将流体流过孔洞,同时测量流体在不同孔洞处的流速和流量。
绘制不同孔洞形状的流速和流量曲线,并分析孔形对流速的影响。
五、实验结果与分析根据实验结果的分析和计算,可以得出以下结论:1.流体静力学实验表明,水平管道的压力与高度呈线性关系,压强随高度的增加而增加。
2.流速测量实验结果显示,流速随孔径的减小而增加,即孔径越小,流速越大。
3.流体动力学实验结果表明,孔洞形状对流速存在影响。
如孔洞形状为圆形时,流速较大;而孔洞形状为方形时,流速较小。
六、实验结论通过流体力学综合实验的操作与分析,得出以下结论:1.流体力学中的流体静力学理论得到了实验的验证,水平管道的压力与高度呈线性关系。
流体力学综合实验报告
流体力学综合实验报告一、实验目的本次实验旨在通过对流体力学的实验操作,掌握流速、流量、压力、阻力和流体力学定律等内容的研究方法和实验技巧,进一步加深对流体力学的理解,培养实验设计和数据分析的能力。
二、实验仪器与材料1.流量计2.压力计3.流速计4.直管段5.U型管6.PVC水管三、实验原理1.流速的测量流速是单位时间内流体通过其中一截面的速度,可以采用流速计进行测量。
2.流量的测量流量是单位时间内通过其中一截面的流体量,可以通过流速计算得出。
3.压力的测量压力是单位面积上受到的力的大小,可以通过压力计进行测量。
4.阻力的测量阻力是流体通过管道时受到的阻力,可以通过流速和流量的测量计算得出。
5.流体力学定律通过实验可以验证贝尔劳定律和弗侖定律,贝尔劳定律:流体通过管道时速度越大,压力越低;弗侖定律:流体通过管道时流量与压力成反比。
四、实验步骤1.测量直管段内的流速:在直管段上安装流速计,流量计读数固定,在一分钟内记录流速读数,取平均值。
2.测量U型管的压力:将U型管一个端口与直管段相连,另一个端口与压力计相连,调整高度使液面平衡,记录液面高度差。
3.测量不同液面高度下的流量:调整U型管液面高度,记录流量计读数,计算流量。
4.计算阻力:根据流速、流量和压力计算出阻力。
五、实验结果与分析1.流速的测量结果表明,流体在直管段内的速度是均匀的,流速测量值较为接近,说明测量结果准确可靠。
2.U型管的压力测量结果表明,压力与液面高度呈线性关系,验证了贝尔劳定律的准确性。
3.不同液面高度下的流量测量结果表明,流量随着液面高度的增加而减小,验证了弗侖定律的准确性。
4.阻力的计算结果表明,阻力与流速、流量和压力成正比,符合阻力的定义。
六、实验结论通过本次综合实验,我们掌握了流速、流量、压力、阻力和流体力学定律的测量方法和计算方法,进一步加深了对流体力学的理解。
实验结果验证了贝尔劳定律和弗侖定律的准确性。
流速、流量和压力之间存在一定的关系,阻力与流速、流量和压力成正比。
流体力学综合实验
五. 实验数据记录及整理
实验数据记录必需可靠、如实、不能任意改动数据,数据一律记在
预习实验时所拟表格中。
直管阻力和局部阻力测定:
数据记录表
实验管号:
管长:
m 内径:
m
水温:
oC
序 流量
压差
号 (m3/h) (Pa)
备注
1 2 : :
数据整理
实验管号:
管长:
m 内径:
m
水温:
oC 密度: kg/m3 黏度: Pa.s
开启回流转子流量计下方考克13用5ml试管抽取回流液不超过1ml在阿贝折射仪上测出折射率查图得x开启釜液液位指示仪下方的考克30用5ml试管抽取釜液不超过1ml在阿贝折射仪上测出折射率查图得x用5ml注射器两支同时分别抽取相邻两板上的液体不超过1ml在阿贝折射仪上测出折射率查图得x启动加料泵拧开进料阀门16或17调节进料转子流量计18控制进料量关小回流转子流量计11打开产品转子流量计12进行部分回流操作
2. 局部阻力系数 和当量长度le
对于由阀门或管件造成的局部阻力损失,可以用以下的公式计算: 当量长度法 (5) 局部阻力系数法 (6)
式中: hf 局部阻力损失 (J/kg); 局部阻力系数;
le 当量长度 (m);
图2-2 局部阻力测量原理示意图
测出一定流速时流体通过阀门或管件的压降hf,就可利用公式 (5)、(6)计算出对应的当量长度或局部阻力系数。
p表—离心泵出口表压(Pa); p真—离心泵入口真空度(Pa); u — 离心泵出口管内流速(m/s); 流体密度(kg/m3); 离心泵的轴功率N(kW)是指泵轴所消耗的电功率,实验采用功率 表测定后,以下式进行计算。 式中:N — 离心泵轴功率(kW); 电 — 电动机效率,近似取为0.75; 传 — 机械传动效率,近似取为0.95; N电 — 电动机的输入功率,由功率表测定。 离心泵的效率 是理论功率与轴功率的比值。即 而理论功率Nt是离心泵对水所作的有效功,即
流体力学综合实验报告
流体力学综合实验报告引言流体力学是一个涉及流体运动的物理学科,其应用广泛。
流体力学综合实验旨在通过实验手段了解流体的一些基本性质,例如流体的速度、流量、压强等,熟悉流体力学中的基本定律和实验方法。
实验一:流量计测量流量计是一种测量流体性质的仪器,主要用于测量泵站、水箱等液体的流量。
本实验中使用的流量计为硬质异形喉流量计。
实验步骤:1. 装置实验装置:将异形喉流量计、水泵、水箱依次安装,并用软管把它们连接。
2. 调整水泵流量:根据实验要求将水泵的流量调整到合适的大小。
3. 开始测量:打开水泵,记录下从流量计出口处流出的水的体积以及流量计的读数,再根据流量计的刻度推算出水流的流速和流量。
实验数据:开度(mm)流量计读数(L/min)流量(L/s)流速(m/s)2.5 13 0.22 0.00585 26 0.43 0.01157.5 38 0.63 0.016810 51 0.85 0.022712.5 63 1.05 0.02815 76 1.27 0.034图1:异形喉流量计的流量-开度关系图分析与讨论:根据图1和实验数据可以得出,流量计的读数与开度呈现一定的线性关系。
开度越大,流量计的读数越大,流速也越大。
在实验过程中,当我们把开度从2.5mm变为15mm,流量增加了大约6倍。
通过流量计的读数,我们可以得知水流的流量以及流速等重要参数。
同时,我们还可以发现,开度最小值并不是0,这意味着即使在开口部分受到一定阻碍,流量计的测量结果仍然是准确的。
实验二:伯努利实验伯努利实验是流体力学中的一个经典实验,它通过测量流体流经不同断面时的压力,探究了液体压强、流速、密度之间的关系。
2. 调整水平和仪器位置:调整U型水槽、压力计以及水箱等位置,使之处于同一水平面上,并调整压力计的刻度。
3. 开始测量:打开水箱的水龙头,让水从U型水槽中流过,通过测量不同位置的压力差,计算出该处的流速和流量。
高度(cm)压强(pa)流速(m/s)动压(pa)静压(pa)通过实验二,我们可以得到以下结论:1. 伯努利定理得到了证实,流速与压力之间确实成线性关系。
实验一 流体力学综合实验实验报告
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳2.测定直管摩擦系数λ与e R 关系曲线及局部阻力系数ζ 3、 了解离心泵的构造,熟悉其操作与调节方法 4、 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力与局部阻力两种。
直管阻力就是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1)局部阻力主要就是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2)管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m; d ——直管内径,m;u ——管内平均流速,1s m -⋅;g ——重力加速度,9、812s m -⋅p ∆——直管阻力引起的压强降,Pa;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ与Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5)式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅; 2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头与流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7)式中:e N ——泵的有效功率,K w;N ——电机的输入功率,由功率表测出,K w ;Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
流体力学综合实验流动阻力测定
• c)平衡水位。关闭阀(4)、(5)、(3),然后打 开(1)和(2)两个阀门,让水进入玻璃管至平 衡水位(此时系统中旳出水阀门一直是关闭 旳,管路中旳水在零流量时,U形管内水位 是平衡旳。)压差计即处于待用状态
• d)调整管路总出口阀,则被测对象在不同流 量下相应旳差压,就反应为倒U型管压差计 旳左右水柱之差。
• 2.局部阻力系数 旳测定
• 局部阻力损失一般有两种表达措施,即当 量长度法和阻力系数法。
• (1)当量长度法
• 流体流过某管件或阀门时造成旳机械能损
失看作与某一长度为le 旳同直径旳管道所产
生旳机械能损失相当,此折合旳管道长度
称为当量长度,用符号 le 表达。
• 这么,就能够用直管阻力旳公式来计算局 部阻力损失,而且在管路计算时可将管路 中旳直管长度与管件、阀门旳当量长度合 并在一起计算,则流体在管路中流动时旳 总机械能损失 为:
• 2.根据光滑管试验成果,对照柏拉修斯方程, 计算其误差。
• 3.根据局部阻力试验成果,求出闸阀全开时 旳平均ξ值。
• 4.对试验成果进行分析讨论。
• 七、思索题
1.在对装置做排气工作时,是否一定要关闭 流程尾部旳出口阀?为何?
2.怎样检测管路中旳空气已经被排除洁净? 3.以水做介质所测得旳λ~Re关系能否合用 于其他流体?怎样应用? 4.在不同设备上(涉及不同管径),不同水温 下测定旳λ~Re数据能否关联在同一条曲线上? 5.假如测压口、孔边沿有毛刺或安装不垂直, 对静压旳测量有何影响?
u —流体在小截面管中旳平均 流速,m部阻力损失。
• 根据连接管件或阀门两端管径中小管旳直 径d,指示液密度 0 ,流体温度t0(查流体物
性ρ、μ),及试验时测定旳流量V、液柱压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告课程名称:过程工程原理实验(甲) 指导老师: 成绩:__________________ 实验名称:流体力学综合实验(一、二) 实验类型:工程实验 同组学生姓名:姿 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得1、流体流动阻力的测定实验1.1 实验目的:1.1.1 掌握测定流体流经直管、阀门时阻力损失的一般实验方法 1.1.2 测定直管摩擦系数λ与雷诺数 的关系,验证在一般湍流区内λ与 的关系曲线 1.1.3测定流体流经阀门时的局部阻力系数ξ1.1.4 识辨组成管路的各种管件、阀门,并了解其作用 1.2 实验装置与流程: 1.2.1 实验装置:实验对象部分由贮水箱、离心泵、不同管径和材质的水管、阀门、管件、涡轮流量计、U 形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别用于测定粗糙管直管阻力系数和光滑管直管阻力系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力阻力系数。
水的流量使用涡流流量计或转子流量计测量,管路直管阻力和局部阻力采用压差传感器测量。
1.2.2 实验装置流程示意图,如图1,箭头所示为实验流程:其中:1——水箱 2——离心泵 3——涡轮流量计 4——温度计 5——光滑管实验段 6——粗糙管实验段 7——截止阀 8——闸阀 9、10、11、12——压差传感器 13——引水漏斗图 1 流体力学综合实验装置流程示意图Re Re1.3 基本原理:流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成的机械能损失成为直管阻力损失。
流体通过管件、阀门时由于流体运动方向和速度大小的改变所引起的机械能损失成为局部阻力损失。
1.3.1直管阻力摩擦系数λ的测定:由流体力学知识可知,流体在水平等径直管中稳定流动时,阻力损失为:(1) 公式中:fp ∆:流体流经l 米直管的压力将,Pa ;λ:直管阻力摩擦系数,无因次; d :直管内径,m ;fh :单位质量流体流经l 米直管的机械能损失,J/kg ;ρ:流体密度,kg/ ; l :直管长度,m ;u :流体在管内流动的平均速度,m/s ;由上面的式子可知: (2)雷诺数: ρμ式子中:μ:流体粘度,kg/(m ·s)。
湍流时λ是Re 和相对粗糙度(ε/ d )的函数,须由实验测定。
由(2)可知,要测定λ,需要确定l 、d ,测定f p ∆、u 、ρ、μ等参数。
其中l 和d 由装置参数表给出,ρ、μ通过测定流体温度,查相关手册而得,u 通过测定流体流量,再由管径计算得到。
本装置采用涡流流量计测量流量π(3)式中:v 为流量计测得的流量, /hfp∆可直接从仪表中读出根据实验装置结构参数l 、d ,指示液密度,液体温度,以及实验测定的f p ∆ 、V ,求取Re 和λ,然后将Re 和λ在双对数坐标图上绘制成曲线。
1.3.2 局部阻力系数ξ的测定:流体通过某一管件或者阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种算法,叫做阻力系数法。
即:(4) 故: (5) 2ρ2u d l p h f f λ=∆=2ρlu2fp d ∆=λ2ρ2'u p h f f ξ=∆=ρgu 22'fp ∆=ξ式中:′ :单位流体流经某一管件或者阀门时的机械能损失,J/kg;ξ:局部阻力系数,无因次;′:局部阻力压力降,;(′=,即表示流体经过阀门或管件时的静压损失。
)ρ:流体密度,kg/;g:重力加速度,9.81m/;u:流体在在小截面管内流动的平均速度,m/s;根据连接管件或阀门两端管径中小管的直径d,流体温度t,以及实验测定的相关参数,通过公式(5)求取管件或阀门的局部阻力系数ξ。
1.4 实验步骤:1.4.1 开启仪表柜上的总电源、仪表电源开关。
1.4.2 实验室已经将水泵中灌满水,否则应先将水泵中灌满水。
然后关闭泵出口阀,启动水泵,待电机转动平稳后,把泵的出口阀缓缓开到最大。
然后全开流量阀,以排除测试管内的空气。
本装置使用压差变送器测量压差,应先对差压变送器两侧的引压管进行排气操作。
1.4.3 实验从做最大流量开始做起,最小流量应控制在1 /h。
由于实验数据处理时使用的是双对数坐标,所以实验时每次流量变化取等比数列,这样得到的数据点就会均匀分布。
流量改变后,要等到流动达到稳定后再读数,实验时同时读取不同流量下的压差、流量和温度等有关参数(温度取实验开始时与实验结束时温度的平均值)。
1.4.4 装置确定时,根据和u的实验值,可以计算λ和ξ,在等温条件下,雷诺数=ρμ,绘制λ~曲线(双对数坐标)。
1.4.5 实验结束,关闭泵出口阀,关闭水泵电机,关闭仪表电源和总电源开关,将实验装置恢复原样。
1.5 数据记录和处理:1.5.1 装置参数:名称管内径d(mm)直管测量段长度l(mm)局部阻力测量段长度l(mm)光滑管21 1000 660粗糙管22 1000 6801.5.2 数据记录和处理:水温t=28.3℃,查表得:ρ=996.2 kg/;μ=0.8418Pa·s光滑管实验数据处理序号流量V/(/h) 直管压差(kPa)阀压差‘(kPa)流速u/(m/s)/λξ1 5.232 4.35 5.61 47.78 3.489 8.670 0.0194 7.2713 3.62 3.97 32.6 2.903 7.215 0.0199 7.1414 3 2.76 21.37 2.406 5.979 0.0201 6.7805 2.5 1.96 14.45 2.005 4.983 0.0206 6.5716 2.05 1.24 8.73 1.644 4.086 0.0193 5.8767 1.74 0.86 5.61 1.395 3.468 0.0186 5.1998 1.43 0.5 2.71 1.147 2.850 0.0160 3.6339 1.21 0.31 1.35 0.970 2.412 0.0139 2.44210 1 0.14 -0.15 0.802 1.993 0.0092 -0.757 11 0.83 0.05 -0.97 0.666 1.654 0.0048 -4.545粗糙管实验数据处理序号流量 V/( /h) 直管压差 (kPa ) 阀压差 ‘(kPa ) 流速 u/(m/s ) /λξ1 2 3 4 5 6 7 8 9 10 11 计算示例:取粗糙管第3组数据为例: π=3.07/(900*3.1416*0.022*0.022)=2.243=ρμ=0.022*2.243*996.2/(0.8418*10^-3)*10^-4=5.841=2*0.022*10.16*1000/(996.2*1*2.243*2.243)=0.0892 =2*(11.43-0.68*10.16)*1000/(996.2*2.243*2.243)=1.8041.6 实验结果与数据分析1.6.1根据光滑管、粗糙管实验结果,在双对数坐标上分别标绘出λ~Re 曲线(见图2)5.39 24.9624.96 3.939 10.254 0.0711 1.034 4.47 21.51 23.48 3.266 8.504 0.0890 1.666 3.71 14.85 16.66 2.711 7.058 0.0892 1.792 3.07 10.16 11.43 2.243 5.841 0.0892 1.804 2.52 6.93 7.79 1.841 4.794 0.0903 1.822 2.12 4.98 5.65 1.549 4.033 0.0917 1.894 1.76 3.62 4.15 1.286 3.348 0.0967 2.049 1.45 2.38 2.83 1.060 2.759 0.0936 2.167 1.21 1.65 2.02 0.884 2.302 0.0932 2.306 1 1.06 1.43 0.731 1.902 0.0877 2.666 0.83 0.67 1.01 0.607 1.579 0.0804 3.0262ρlu 2fpd ∆=λρg u 22'fp ∆=ξ0.10.01Re图 2光滑管和粗糙管λ-Re曲线Array图 3 Moody图对照Moody图,估算得到:光滑管:相对粗糙度ε/d=0.0002,绝对粗糙度ε=0.0002*21mm=0.0042mm粗糙管:相对粗糙度ε/d=0.06,绝对粗糙度ε=0.06*22mm=1.32mm1.6.2 求均值得光滑管全开ξ=5.821;粗糙管阀门全开ξ=1.9201.6.3 由Moody图,λ是雷诺数Re和相对粗糙度ε/d的函数。
(1)对于光滑管来说,当流体流过光滑管时,因为管的粗糙峰很小,粗糙峰都处在湍流的层流底层之下,故ε/d对流动阻力不产生任何影响,因此λ只是Re的函数,且λ随着Re的增大而减小。
由图2与Moody图对比,实验图中当Re在3万到10万区间时,λ稳定在0.02左右;当Re小于3万时,λ随着Re减小而减小,从0.02减小到0.14。
理论上当Re在2万增加到10万时,λ从0.025减小到0.018。
实验图形与理论图形有较大的差别。
误差分析:1、实验中改变流量后进行数据采集时,等待稳定的时间不够长,数据还未稳定。
在数据读取以及处理时的精确度选择也会实验结果产生影响。
2、仪器测量精度所限,光滑管数据中,当流量在1m^3/h以下时,压差出现负值,可见当流量较小时,测量压差的误差较大,使得所测λ值偏小。
3、实验所选用的光滑管并非理想的光滑管,ε/d比值较大,因而不能忽略其影响。
(2)当流体在粗糙馆内湍流流动时,Re、ε/d 对流动阻力均有影响,且随着Re的增大,ε/d对λ的影响越来越重要,相反,Re的影响却越来越弱。
这是因为,ε/d一定时,Re越大,则暴露在湍流主体区的粗糙峰就越多,ε/d对λ的影响就越大;当 Re 增大到一定程度后,几乎所有的粗糙峰都暴露在湍流主体区内,此时流动进入了阻力平方区,该区域的曲线趋近于水平线。
这时粗糙管的摩擦损失∝。
对比图表和Moody可得,实验结果与理论基本上吻合,偏离不是很大,粗糙管曲线的趋势线接近于水平线,且处在阻力平方区内。
1.6.4总体的误差分析:(1)水槽中的水中杂质很多,导致水的密度和粘度有变化。
(2)实验所用管道内壁腐蚀或生锈,使管径数值不准确。
且光滑管与理想光滑管偏差较大。
(3)在读取仪表显示器数据时,由于数值不断波动使读数存在误差。