电力系统继电保护课程设计——三段式电流保护的设计说明
实验三 三段式电流保护实验
实验三三段式电流保护实验【实验名称】三段式电流保护实验【实验目的】1.掌握无时限电流速断保护、限时电流速断保护及过电流保护的电路原理,工作特性及整定原则;2.理解输电线路阶段式电流保护的原理图及保护装置中各继电器的功用;3.掌握阶段式电流保护的电气接线和操作实验技术。
【预习要点】1.复习无时限电流速断保护、限时电流速断保护及过电流保护相关知识。
2.根据给定技术参数,对三段式电流保护参数进行计算与整定。
【实验仪器设备】【实验原理】1.无时限电流速断保护三段式电流保护通常用于3-66kV电力线路的相间短路保护。
在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。
在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。
短路电流值还与系统运行方式及短路的类型有关。
图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。
图3-1 瞬时电流速断保护的整定及动作范围由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。
如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。
这样,就不能保证应有的选择性。
为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流I op1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流I f.B.max,即I op1.1 I f.b.max,I op1.1=K rel I f.b.max式中,K rel—可靠系数,当采用电磁型电流继电器时,取K rel=1.2~1.3。
显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其他各种运行方式和短路类型下,其保护范围均不至于超出本线路范围。
(完整word版)三段式电流保护
三段式电流保护一、 电流速断保护(第I 段)图1 简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护.为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A 母线处的保护1来讲,其起动电流'.1dz I 必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B 母线上三相短路时的电流..max d B I ,即:'.1..maxdz d B I I >(1—1)引入可靠系数' 1.2~1.3k K =,则上式即可写为: ''.1..max dz k d B I K I =•(1—2)当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C 母线上三相短路时的电流..max d C I ,即:''.2..max dz k d C I K I =•(1—3)当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数' 1.2~1.31k K =>,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、 限时电流速断保护(第II 段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
三段式零序电流保护
实习〔实训〕报告实习〔实训〕名称:电力系统继电保护课程设计学院:专业、班级:指导教师:报告人:学号:时间: 2017年1月5日I / 21II / 21目录1设计题目......................................................................... (3)2 分析设计要求........................................................................... (4)2.1设计规定................................................................... . (5)2.2本线路保护计........................................................................... .. (6)2.3 系统等效电路图 (7)3 三段式零序电流保护整定计算........................................................................... .. (8)III / 213.1 三段式零序电流保护中的原那么........................................................................... . (9)3.2 M侧保护1零序电流保护Ⅰ段整定........................................................................... (10)3.3 N侧保护1零序电流保护Ⅰ段整定........................................................................... . (11)4 零序电流保护评价........................................................................... .. (12)4.1原理与容 (13)4.2零序电流保护的优缺点 (13)5 总结........................................................................... . (14)参考文献.............................................................................. (15)IV / 21V / 216 / 211 设计题目如图1所示为双电源网络中,线路的阻抗km X /4.01Ω=,km X /4.10Ω=,两侧系统等值电源的参数:相电动势:kV E E N M 3115==各电源阻抗:Ω==521M M X X ,Ω==1021N N X X ,Ω=80M X ,Ω=150N X 。
三段式电流保护课程设计心得【模版】
学号 125《电力系统继电保护》课程设计(2012届本科)题目:三段式电流保护课程设计学院:物理与机电工程学院专业:电气工程及其自动化作者姓名:指导教师:职称:完成日期: 2015 年 12 月 25 日摘要本次课程设计以电网的某条线路为例进行了三段式电流保护的分析设计。
重点进行了电路的化简,求各节点短路电流,继电保护中电流保护整定值的具体计算,并对计算出的数值进行灵敏度校验。
由于题中所给部分数据缺失,保护3限时电流速断未进行整定计算。
关键字:继电保护;电流保护目录1设计原始资料 (1)1.1具体题目 (1)2设计要考虑的问题 (2)2.1设计规程 (2)2.1.1短路电流计算规程 (2)2.1.2保护方式的选取及整定计算 (3)2.2设计的保护配置 (3)2.2.1主保护配置 (3)2.2.2后备保护配置 (3)3短路电流计算 (3)3.1等效电路的建立 (3)3.2保护短路点及短路点的选取 (4)3.3短路电流的计算 (5)3.3.1最大运行方式短路电流计算 (5)3.3.2最小运行方式短路电流计算 (5)4保护的配合及整定计算 (6)4.1主保护的整定计算 (6)4.1.1动作电流的整定 (6)5原理图及展开图的的绘制 (8)5.1原理接线图 (8)5.2交流回路展开图 (8)5.3直流回路展开图 (9)6继电器的选择 (9)7保护的评价 (11)参考文献 (12)1设计原始资料1.1 具体题目如图所示网络,过电流保护1、2、3的最大负荷电流分别为300、400、500A ,E φ=37/√3KV ,Z 1=0.4Ω/km ,K rel Ⅰ=1.2,K rel Ⅱ=1.1,K rel ,Ⅲ=1.15,K ss =1.5,K res =0.85;L A−B =40Km ,L B−C =60Km,Z T =72Ω。
t 1.max =t 2.max =0.5s ,t 3.max =1s 。
Z s.min =3Ω,Z s.max =5 Ω。
电力系统继电保护原理PPT 2-1三段电流保护
电气工程与自动化学院(School of Electrical Engineering & Automation)
电气工程与自动化学院(School of Electrical Engineering & Automation)
线路短,保 护范围内始 端和末端电 流差别不大
电气工程与自动化学院(School of Electrical Engineering & Automation)
终端采用线 路-变压器接 线方式,保
电气工程与自动化学院(School of Electrical Engineering & Automation)
电气工程与自动化学院(School of Electrical Engineering & Automation)
当电路网络中任意点发生三相或两相断路故障时, 其短路工频周期分量近似计算为:
IⅠop
IⅠ set.1
nTA
Kcon
其中 nTA是电流互感器变比。 Kcon 是接线系数,一般取1.0。
电气工程与自动化学院(School of Electrical Engineering & Automation)
保护范围的校验
保护范围:在已知保护的动作电流后,大于一次动作电流的 短路电流对应的短路点区域。最小的保护范围为在系统最小 运行方式下两相短路时出现。
电气工程与自动化学院(School of Electrical Engineering & Automation)
三段式电流速断保护
1.25 954
1198 A
1 lmin Z1
3 2
ES I oIp
ZS .max
1 0.4
3 2
37 / 3 1198
9
16.3km
8km
想一想
还能够采 用什么措 施计算?
电力系统继电保护
电流保护
第三节 时限电流速断保护
(specified time current quick-break protection)
K sen
I (2) k .B.min I II op .1
1.3
1.5
若敏捷系数不满足要求, 改为与下一线路II段配合
I II op .1
K II rel
I II op .2
t1II t2II t
降低动作电 流
电力系统继电保护
5.单相原理图
QF
TQ
QF1
信号
KA I KT t KS
TA
电流保护
xT
U
k
%
U
2 av
100 SN
7.5 372
100 7.5
13.69
电力系统继电保护
A1
~
B2
电流保护
Ck
I (3) k .C .max
ES xS .min xAB xT
37 / 3 0.954kA 5.5 3.2 13.69
I
I op
KI rel
I (3) k .C .max
找一 找
与I段 保护 单相 原理 图旳 区别?
电力系统继电保护
电流保护
第三节 定时限过电流保护
(specified time over-current protection)
电流三段保护课程设计
电流三段保护课程设计一、教学目标本课程旨在让学生掌握电流三段保护的基本原理、接线方式、动作逻辑及应用场合。
通过学习,学生能熟练运用电流三段保护知识解决实际问题,提高电气设备的安全运行能力。
1.理解电流三段保护的定义、分类及作用。
2.掌握电流三段保护的原理、接线方式及动作逻辑。
3.熟悉电流三段保护在不同场合的应用案例。
4.能够分析电气设备的保护需求,选择合适的电流三段保护方案。
5.能够正确安装、调试电流三段保护装置。
6.能够对电流三段保护装置进行故障排查和维护。
情感态度价值观目标:1.培养学生对电气设备安全运行的重视。
2.培养学生动手实践、团队协作的能力。
3.培养学生关注新技术、新动态的意识。
二、教学内容本课程的教学内容主要包括电流三段保护的基本原理、接线方式、动作逻辑及应用场合。
具体安排如下:1.电流三段保护的基本原理:介绍电流三段保护的定义、分类及作用。
2.电流三段保护的接线方式:讲解电流三段保护的接线方式及其优缺点。
3.电流三段保护的动作逻辑:分析电流三段保护的动作逻辑,让学生理解其工作原理。
4.电流三段保护的应用场合:通过案例介绍电流三段保护在不同场合的应用。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于讲解电流三段保护的基本原理、接线方式和动作逻辑。
2.讨论法:学生针对实际案例进行讨论,提高学生分析问题和解决问题的能力。
3.案例分析法:通过分析具体案例,使学生更好地理解电流三段保护的应用。
4.实验法:安排实验室实践活动,让学生亲自动手操作,提高实际操作能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的电流三段保护教材作为主要教学资源。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:准备电流三段保护实验装置,让学生进行实际操作。
线路三段式电流保护
实验一三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路X L-2的一部分,其动作时限为t1II= t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括X L-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
继电保护三段电流保护
短路点
K1 K2 K3
• 先求出相邻线路保护2的无 时限电流速断一次动作电流
最大运行方式下三相短路电流(A) 3520 740 310 最小运行方式下两相短路电流(A) 2420 600 300
I K I I oper.2
(3) rel K .2.max
1.25740 925A
I K I II oper.1
I rel oper.2
1.151.25740 1064A
3、过电流保护 保护1的过电流保护动作电流:
继电器动作电流
K II I n I g.oper.1
con II ope r .1
TA
1064 26.6A 200/5
动作时限为
t
II 1
t
I 2
t
0.5s
灵敏度校验
I II oper.1
K II rel oper.2
1.151.25 310
445.625A
保护1的过电流保护动作电流:
继电器动作电流
I II g .oper.1
K con nTA
I II ope oper
K rel K ss K res
(1)在串联线路上 • 三相星形接线:保护1和保护2之间有配合关系,100%切除NP线
• 两相星形接线:2/3机会切除NP线。(即1/3机会无选择性动作)
M
N
P
(2)在并联线路上
• 三相星形接线:保护2和保护3同时动作, 切除线路Ⅱ、Ⅲ。
• 两相星形接线:2/3机会只切一条线路。
(2)在并联线路上
Ig Ia Ic
课程设计报告书---电力系统继电保护课程设计
课程设计报告书---电力系统继电保护课程设计目录电力系统继电保护课程设计 (1)一、题目要求 (1)二、设计方案 (6)三、短路点短路电流计算 (11)四、整定计算 (13)五、继电器选型 (20)六、总结 (22)参考文献 (23)电力系统继电保护课程设计一、题目要求1.目的任务电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。
通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术资料的能力。
本次课程设计主要以中型企业变电所主变压器及相邻线路为对象,主要完成继电保护概述、主变压器及线路继电保护方案确定、短路电流计算、继电保护装置整定计算、绘保护配置图等设计和计算任务。
为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。
2.设计内容2.1主要内容(1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。
(2)继电保护概述,主变压器继电保护方案确定,线路保护方案的确定。
(3)短路电流计算。
(4)继电保护装置整定计算。
(5)各种保护装置的选择。
2.2原始数据某变电所电气主接线如图1所示,两台变压器均为双绕组、油浸式、强迫风冷、分级绝缘,其参数如下:S N=63MVA;电压为110±8×1.25%/38.5 kV;接线为Y N/d11(Y0/Δ-11);短路电压U k(%)=10.5。
两台变压器同时运行,110kV侧的中性点只有一台接地,若只有一台运行,则运行变压器中性点必须接地。
2.3设计任务图1 主接线图结合系统主接线图,要考虑L1L2两条110kV高压线路既可以并联运行也可以单独运行。
针对某一主变压器及相邻线路的继电保护进行设计,变压器的后备保护(定时限过电流电流)作为线路的远后备保护。
已知条件如下:(1)变压器35kV母线母线单电源辐射形线路L3L4的保护方案拟定为三段式电流保护,保护采用两相星形接线,L5L6馈出线定时限过流保护最大的时限为1.5s,线路L3L4的正常最大负荷电流为450A,(2)L1L2各线路均装设距离保护,试对其相间短路保护I,II,III段进行整定计算,即求各段动作阻抗Z OP I,Z OP II,Z OP III和动作时限t1I、t1II、t1III,并校验其灵敏度,线路L1L2的最大负荷电流为变压器额定电流的2倍,功率因数cosϕ=0.9,各线路每千米阻抗Z1=0.4Ω,阻抗角ϕL=700,电动机自启动系数K SS=1.5,继电器的返回系数Kre=1.2,并设Krel`=0.85, Krel``=0.8, Krel```=1.2,距离III段采用方向阻抗继电器,(3)变压器主保护采用能保护整个变压器的无时限纵差保护,变压器的后备保护作为线路的远后备保护。
继电保护三段电流保护实验实验报告
北京交通大学Beijing Jiaotong University继电保护三段电流保护实验实验报告姓名: ****学号: *******(1005班)指导老师:倪**课程老师:和***实验日期: 2013.5.29(8--10)目录一、实验预习 (1)二、实验目的 (1)三、实验电路 (1)四、实验注意问题 (2)五、保护动作参数的整定 (2)六、模拟故障观察保护的动作情况 (2)七、思考题 (3)一、实验前预习:三段电流保护包括:Ⅰ段:无时限电流速断保护Ⅱ段:限时电流速断保护Ⅲ段:定时限过电流保护三段保护都是反应于电流增大而动作的保护,它们之间的区别主要在于按照不同的原则来整定动作电流。
三段式保护整定计算内容及顺序:1 动作电流:选取可靠系数,计算短路电流和继电器动作电流;2 动作时间的整定;3灵敏度校验。
对继电保护的评价,主要是从选择性、速动性、灵敏性和可靠性四个方面评价。
二、实验目的1、熟悉三段电流保护的接线;2、掌握三段电流保护的整定计算原则和保护的性能三、实验电路实验电路如下图:其中继电器的接线法有:(1)三相三继电器的完全星形接线(2)两相两继电器的不完全星形接线另外还有两种继电器的接法如下:(3)两相三继电器接线法(4)两相继电器接线法对三相继电保护的评价:由I段、II段或III段而组成的阶段式电流保护,其最主要的优点就是简单、可靠,并且在一般情况下能满足快速切除故障的要求,因此在电网中特别是在35kV及以下的单侧电源辐射形电网中得到广泛的应用。
其缺点是受电网的接线及电力系统运行方式变化的影响,使其灵敏性和保护范围不能满足要求。
四、实验注意问题1、交流电流回路用允许大于5A的导线;2、接好线后请老师检查。
五、保护动作参数的整定1、要求整定参数如下:保护I段动作电流为4.8A,动作时间为0秒;保护III段动作电流为1.4A,动作时间为2秒。
2、按上述要求进行电流继电器和时间继电器的整定。
三段式电流保护设计论文
三段式电流保护设计【设计目的】1.理论与实践相结合,强化学生的工程实际能力。
2.通过具体电路的设计和调试,加深对电力系统微机保护整个流程的理解,锻炼运用常用算法编程解决问题的能力。
【设计任务】用DSP或单片机实现简单的三段式(瞬时电流速断,限时电流速断,定时限过流)电流保护功能。
【实施方案】三段式电流保护装置的设计包括电压形成回路、采样保持电路。
模拟低通滤波、A/D转换和输出几部分。
装置的工作回路属于二次回路,根据模数转换器输入范围要求,采用电流变换器将输入信号变换为正负5V范围内的电压信号。
由于采用DSP设计,故转换为3.3V。
系统频率为50HZ,即周期为20ms,低通滤波器的频率为100hz,滤波后电压信号存在正负值,采用电压跟随器保留正值,且范围在0~2.5V。
实际操作中由信号发生器产生低压工频输入信号,用以模拟实际电网测量调理后的信号。
输出用三对红绿两色LED指示三段保护是否启动和发布跳闸命令。
相邻线路三段保护动作时限和整定值自定,采用两点积分法进行采样,采样间隔为5ms,严格满足采样定理(fs>2fmax)。
将处理后的电流值与整定值比较,用以判定哪段动作。
当I>I1时,I段启动并动作,通过一定延时后II段,III段有感应但不动作;当I2<I<I1时,II段启动并动作,通过延时后III 段有感应但不动作;当I3<I<I2时,则III段启动并动作。
在整个保护装置中,电流I段、II段构成线路主保护,且II段兼做I段的近后备;电流III段作为本线路的近后备,相邻线路的远后备。
【电路图】 1. 设计原理图2. 保护装置图3. 微机保护跳闸原理图【程序成图】1.系统主程序流程图2.中断服务程序【问题解决】出于每次只能采样一个数据,第二次采样就会覆盖第一次的数据,这次我们编程造成了极大的困扰.采样计算后的数据存在负值,对究竟是用程序实现将其正值化还是利用硬件来实现不太清楚.若由编程来实现不知道该如何处理,但是由硬件来做的话就简单很多,因为电压跟随器就是用来实现这一功能的。
电力系统继电保护实验指导书一--三段式电流保护与自动重合闸装置综合实验
实验一三段式电流保护与自动重合闸装置综合实验(-)实验目的1.了解电磁式电流保护的组成。
2.学习电力系统电流保护中电流、时间整定值的调整方法。
3.研究电力系统中运行方式变化对保护灵敏度的影响。
4.分析三段式电流保护动作配合的正确性。
()基本原理1.电流保护实验基本原理图in 电流保护实验一次系统图1)三段式电流保护当网络发生短路时,电源与故障点之间的电流会增大。
根据这个特点可以构成电流保护。
电流保护分无时限电流速断保护(简称I段)、带时限速断保护(简称II 段)和过电流保护(简称II段)。
下面分别讨论它们的作用原理和整定计算方法。
(1)无时限电流速断保护(I段)单侧电源路线上无时限电流速断保护的作用原理可用图1-2来说明。
短路电流的大小人和短路点至电源间的总电阻R E及短路类型有关。
三相短路和两相短路时,短路电流人与R E的关系可分别表示如下:/⑶=E, = E,K R E凡+ R。
,/ (2)=心* Esk — 2R +R,ls式中,E——电源的等值计算相电势;R——归算到保护安装处网络电压的系统ss等值电阻;Ro——路线单位长度的正序电阻;I ――短路点至保护安装处的距离。
由上两式可以看到,短路点距电源愈远(Z愈长)短路电流&愈小;系统运行方式小(尺愈大的运行方式)4亦小。
4与I的关系曲线如图1-2曲线1和2所示。
曲线1为最大运行方式(R,最小的运行方式)下的衣=/( /)曲线,曲线2为最小运行方式(Rs最大的运行方式)下的I K=JU)曲线。
路线AB和BC上均装有仅反应电流增大而瞬时动作的电流速断保护,则当路线AB上发生故障时,希翼保护KA?能瞬时动作,而当路线BC 士故障时,希望保护KAi 能瞬时动作,它们的保护范围最好能达到本路线全长的00%。
但是这种愿望是否能实现,需要作具体分析。
以保护KA 2为例,当本路线末端妇点短路时,希翼速断保护KA2能够瞬时动作切除故障,而当相邻路线BC的始端(习惯上又称为出口处)化点短路时,按照选择性的要求,速断保护KA2就不应该动作,因为该处的故障应由速断保护KAi动作切除。
电力系统继电保护课程设计——三段式电流保护的设计
电力系统继电保护课程设计题目:三段式电流保护的设计班级:姓名:学号:指导教师:设计时间:1 设计原始资料1.1 具体题目如图1.1所示网络,系统参数为ϕE =115/3kV ,1G X =15Ω、2G X =10Ω、3G X =10Ω, 1L =2L =60km 、3L =40km 、C B L -=50km 、D C L -=30km 、E D L -=20km ,线路阻抗0.4Ω/km ,I rel K =1.2、II rel K =IIIrel K =1.15,max C B I -=300A ,max D C I -=200A ,maxE D I -=150A ,ss K =1.5,re K =0.85。
AB图1.1 系统网络图试对线路BC 、CD 进行电流保护的设计。
1.2 要完成的内容(1)保护的配置及选择;(2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑);(3)保护配合及整定计算; (4)保护原理展开图的设计; (5)对保护的评价。
2 设计要考虑的问题2.1 设计规程2.1.1 短路电流计算规程在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流, 然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。
其计算步骤及注意事项如下。
(1)系统运行方式的考虑除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。
在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。
(2)短路点的考虑求不同保护的整定值和灵敏度时,应注意短路点的选择。
若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。
(3)短路类型的考虑相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。
10KV单侧电源三段式继电保护设计
电气综合课程设计题目:10KV单侧电源三段式继电保护设计院(系):机电工程学院专业:电气工程及其自动化学生姓名:~~~~~~~~~学号:指导教师:2014年01 月03日目录摘要 --------------------------------------------- 2 前言 --------------------------------------------- 3 一、10KV单侧电源三段式继电保护设计--------------- 4(一)10KV单侧电源三段式继电保护设计课题 ------ 4 (二)10KV单侧电源三段式保护系统概况说明 ------ 4 (三)10KV单侧电源三段式保护设计原理 ---------- 5 (四)10KV单侧电源三段式保护计算 -------------- 6二、结论 ----------------------------------------- 8三、结束语 --------------------------------------- 9四、参考文献 ------------------------------------ 10五、附录 ---------------------------------------- 11摘要电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。
在单侧电源辐射形网络中采用阶段式电流保护,它由无时限电流速断保护、限时电流速断保护、定时限过电流保护组成,可根据实际情况采用两段式或三段式。
无时限电流速断保护、限时电流速断保护共同构成电流的主保护,定时限过电流保护是本线路的近后备保护和相邻线路的远后备保护。
设计首先是对保护原理进行分析,保护的整定计算及灵敏性效验。
设计内容包括原理分析、保护整定计算和灵敏性校验。
前言电力系统是由发电、变电、输电、供电、配电、用电等设备和技术组成的一个将一次能源转换为电能的同一系统。
三段式电流保护设计
632019年 01月 第01期三段式电流保护设计王旭升(西安思源学院 陕西 西安 710038)[摘要]110kV线路是输电线路中的重要环节。
它出现故障会对电力系统的安全运行造成极大的威胁,所以应该对110kV的线路装设完善的继电保护装置。
在各种保护方式中,阶段式电流保护由于它的简单可靠等优点在110kV线路上较为常见。
[关键词]110kV线路;继电保护;设计[中图分类号]TM76 [文献标识码]A1 瞬时电流速断保护三段式电流保护的I段保护能感应到电流迅速上升而立即动作断开故障线路[1]。
I段保护的动作值的整定与这条线路尾端发生短路时流过装置的最大短路电流有关,要大于这个电流值即().max act rel k 3I J I =I I (1)其中:act I I ------I段保护的动作电流。
K rel I ------无时限I 段可靠系数,一般为1.2~1.3,由资料取1.2。
I .max k -----被保护的那条线路尾端母线上发生的最大短路电流。
现实中的一些误差会产生影响故引入可靠系数,比如:实际的短路电流值也许会大于动作值,保护设备中的电流继电器的实际启动电流可能小于动作值[2]。
为了使保护设备在保护区域以外动作时不发生错误的动作,因此乘以大于1的可靠系数。
2 对于装置1,2,3的整定、校验对于装置1处...()I K I kA 1211811417..()max act I rel I K 113#===对于装置2处...()I K I kA 1213771652..()max act I rel I K 223#===对于装置3处..().I K I kA 1218342201..()max act I rel I K 333#===校验:I段保护的校验,是依据最小保护范围来校验的,根据一定的规范,一段保护最小的保护范围l min 不能比被保护线路全部长度的()%1520+[3]。
继电保护实验-三段式电流保护
实验三三段式电流保护一、实验目的1.加深了解三段式电流保护的原理。
2.掌握三段式电流保护的参数整定及各段保护之间的配合。
二、实验内容三段式电流保护分电流速断保护(Ⅰ段保护),限时电流速断保护(Ⅱ段保护)和过电流保护(Ⅲ段保护):包括以下4个部分:(1)电流保护Ⅰ段:它是经过傅立叶模块变换的电流与预先设置的继电器电流相比较,若大于预置值则输出0,反之输出1。
其动作电流按躲开线路末端发生三相短路的短路电流整定;因为电流Ⅰ段是瞬时动作,所以延时时间很小(延时0.05S)。
它只能保护线路的一部分,不能保护全长。
(2)电流保护Ⅱ段:其动作原理与电流Ⅰ段相同,其动作电流按与下一级线路的I段或II段配合来整定,整定值小于I段,延时时间0.5S,它能保护本线路的全长。
(3)电流保护Ⅲ段:其动作原理与电流保护Ⅰ段相同,其动作电流按躲开最大负荷电流整定,保护经过一个动作延时启动并切出故障,它不仅能保护本线路的全长,而且能保护下级相邻线路的全长。
当满足灵敏度的情况下,它的动作时间应与下一保护的Ⅲ段相配合。
(4)保护出口部分,该部分的功能就是将电流Ⅰ、Ⅱ和Ⅲ段的输出信号相与。
模拟单侧电源系统中,线路发生故障时保护的动作情况。
图3-1 仿真模型图3-2 子系统模型主要模块参数设置如下:(1)三相电源模块:线电压设置为10kV ;A 相的相位角设置参数为0;频率设置参数为50Hz ,内部连接方式设置为Yg ,星形连接;电源的内部电阻设置参数为3Ω;电源内部电感设置参数为0.04H 。
(2)断路器模块:断路器的起始状态设置为closed ,闭合状态,断三相,即A 、B 、C 开关打勾;开、断时间为外部控制,在前面打勾。
(3)三相故障模块:通过对参数的设置,可以选择故障类型、控制信号、开关状态等。
设置起始状态为闭合,故障时间为0.4~1.6S 。
(4)线路:此模块用于模拟线路,线路长度100公里,其余取默认值。
(5)三相负载:按电压10KV ,频率50HZ ,功率500KW 设置。
课程设计三段保护
课程设计三段保护一、教学目标本课程的教学目标是使学生掌握三段保护的基本概念、原理和方法,能够运用三段保护理论分析和解决实际问题。
具体目标如下:1.知识目标:学生能够准确地描述三段保护的定义、特点和应用场景;了解三段保护的工作原理和设计方法;掌握三段保护的主要性能指标和测试方法。
2.技能目标:学生能够运用三段保护理论分析和解决实际问题;具备三段保护系统的设计和调试能力;能够进行三段保护性能的测试和评估。
3.情感态度价值观目标:学生通过学习三段保护,增强对电力系统安全的重视,培养责任感和使命感;树立正确的科学态度,勇于探索和创新。
二、教学内容本课程的教学内容主要包括三段保护的基本概念、原理和方法,以及三段保护在电力系统中的应用。
具体安排如下:1.第一部分:三段保护的基本概念和原理,包括三段保护的定义、特点和应用场景;三段保护的工作原理和设计方法。
2.第二部分:三段保护的性能指标和测试方法,包括三段保护的主要性能指标、测试方法和测试设备。
3.第三部分:三段保护在电力系统中的应用,包括三段保护系统的设计和调试,以及三段保护性能的测试和评估。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握三段保护的基本概念、原理和方法。
2.讨论法:通过分组讨论,引导学生深入思考三段保护的内涵和应用,提高学生的分析问题和解决问题的能力。
3.案例分析法:通过分析实际案例,使学生了解三段保护在电力系统中的应用,提高学生的实践能力。
4.实验法:通过实验操作,使学生掌握三段保护的性能测试方法,培养学生的动手能力和实验技能。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的三段保护教材,为学生提供系统的理论知识。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作课件、教案等多媒体资料,提高课堂的教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统继电保护课程设计题目:三段式电流保护的设计班级::学号:指导教师:设计时间:1 设计原始资料1.1 具体题目如图 1.1所示网络,系统参数为ϕE =115/3kV ,1G X =15Ω、2G X =10Ω、3G X =10Ω, 1L =2L =60km 、3L =40km 、C B L -=50km 、D C L -=30km 、E D L -=20km ,线路阻抗0.4Ω/km,I rel K =1.2、II rel K =III rel K =1.15,max C B I -=300A ,max D C I -=200A ,max E D I -=150A ,ss K =1.5,re K =0.85。
A B图1.1 系统网络图试对线路BC 、CD 进行电流保护的设计。
1.2 要完成的容(1)保护的配置及选择;(2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑);(3)保护配合及整定计算;(4)保护原理展开图的设计;(5)对保护的评价。
2 设计要考虑的问题2.1 设计规程2.1.1 短路电流计算规程在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流, 然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。
其计算步骤及注意事项如下。
(1)系统运行方式的考虑除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。
在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。
(2)短路点的考虑求不同保护的整定值和灵敏度时,应注意短路点的选择。
若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。
(3)短路类型的考虑相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。
短路的计算选用三相短路或两相短路进行计算均可,因为对保护所取的残余而言,三相短路和两相短路的残余数值相同。
若采用电流电压连锁速断保护,系统运行方式应采用正常运行方式下的短路电流和电压的数值作为整定之用。
(4)短路电流列表为了便于整定计算时查考每一点的短路时保护安装处的短路电流和,将计算结果列成表格。
流过保护安装处的短路电流应考虑后备保护的计算需要,即列出本线路各短路点短路时流过保护安装处的短路电流,还要列出相邻线路各点短路时流过保护安装处的短路电流。
计算短路电流时,用标幺值或用有名值均可,可根据题目的数据,用较简单的方法计算。
2.1.2 保护方式的选取及整定计算采用什么保护方式,主要视其能否满足规程的要求。
能满足要求时,所采用的保护就可采用;不能满足要求时,就必须采取措施使其符合要求或改用其他保护方式。
选用保护方式时,首先考虑采用最简单的保护,以便提高保护的可靠性。
当采用简单保护不能同时满足选择性、灵敏性和速动性要求时,则可采用较复杂的保护方式。
选用保护方式时,可先选择主保护,然后选择后备保护。
通过整定计算,检验能否满足灵敏性和速动性的要求。
当采用的保护不能很好地满足选择性或速动性的要求时,允许采用自动重合闸来校正选择性或加速保护动作。
当灵敏度不能满足要求时,在满足速动性的前下,可考虑利用保护的相继动作,以提高保护的灵敏性。
在用动作电流、电压或动作时间能保证选择性时,不要采用方向元件以简化保护。
后备保护的动作电流必须配合,要保证较靠近电源的上一元件保护的动作电流大于下一元件保护的动作电流,且有一定的裕度,以保证选择性。
2.2 本设计的保护配置2.2.1 主保护配置选用三段式电流保护,经灵敏度校验可得电流速断保护不能作为主保护。
因此,主保护应选用三段式距离保护。
2.2.2 后备保护配置过电流保护作为后备保护和远后备保护。
3 短路电流计算3.1 等效电路的建立由已知可得,线路的总阻抗的计算公式为L X Z = (3.1) 其中:Z —线路单位长度阻抗;L —线路长度。
所以,将数据代入公式(3.1.1)可得各段线路的线路阻抗分别为)(24604.0121Ω=⨯=⨯==L Z X X L L)(16404.033Ω=⨯=⨯=L Z X L)(20504.0Ω=⨯=⨯=-C B BC L Z X)(12304.0Ω=⨯=⨯=-D C CD L Z X)(8204.0Ω=⨯=⨯=-E D DE L Z X经分析可知,最大运行方式即阻抗最小时,则有三台发电机运行,线路1L 、3L运行,由题意知1G 、3G 连接在同一母线上,则)(6.10)1610(||)126()(||)||||(332121min Ω=++=++=L G L L G G s X X X X X X X 式中 m in s X —最大运行方式下的阻抗值;同理,最小运行方式即阻抗值最大,分析可知在只有1G 和1L 运行,相应地有)(392415X X X 1L 1G max .s Ω=+=+= 由此可得最大运行方式等效电路如图3.1所示,最小运行方式等效电路图如图3.2所示。
图3.1 最大运行方式等效电路图图3.2 最小运行方式等效电路图3.2 保护短路点的选取选取B 、C 、D 、E 点为短路点进行计算。
3.3 短路电流的计算3.3.1 最大方式短路电流计算在最大运行方式下流过保护元件的最大短路电流的公式为ks k Z Z E K Z E I +==∑ϕϕ(3.2)式中 ϕE —系统等效电源的相电动势;k Z —短路点至保护安装处之间的阻抗;s Z —保护安装处到系统等效电源之间的阻抗;ϕK —短路类型系数、三相短路取1,两相短路取23。
(1)对于保护2等值电路图如图2所示,母线E 最大运行方式下发生三相短路流过保护2的最大短路电流为CDBC D X X X EI ++=smin max k代入数据得:(3.3)CD BC D X X X EI ++=smin max k)k (558.1A =(2)对于保护5等值电路图如图2所示,母线C 最大运行方式下发生三相短路流过保护5的最大短路电流为BCC X X EI +=smin max k代入数据得:BC C X X EI +=smin max k)k (17.2A =3.3.2 最小方式短路电流计算在最小运行方式下流过保护元件的最小短路电流的公式为Ls k Z Z E I +=min .min .23ϕ式中 ϕE —系统等效电源的相电动势;min s,Z —保护安装处到系统等效电源之间的阻抗;L Z —短路点到保护安装处之间的阻抗。
所以带入各点的数据可以计算得到各点的的最小短路电流。
)(A I E 8.72781220391311523min =+++⨯⨯=)(A I D 8.8091220391311523min =++⨯⨯=)(A I C 51.97420391311523min =+⨯⨯=4 保护的配合及整定计算4.1 主保护的整定计算 (3.4) (3.5)4.1.1 动作电流的计算最小保护围计算式为min1smax set z 23L Z E I I+⨯=ϕ 其中 ϕE —系统等效电源的相电动势;s.max Z —短路点至保护安装处之间的阻抗;1z —线路单位长度的正序阻抗。
(1)对于保护2等值电路图如图2所示,母线D 最大运行方式下发生三相短路流过保护2的最大短路电流为)(558.1max kA I kD =相应的速断定值为)(87.1558.12.1max 2kA I K I kD I rel I set =⨯=⨯=最小保护围根据式(4.1)可得)(6.70min 2km L =即2处的电流速断保护在最小运行方式下也没有保护区。
(2)对于保护5等值电路图如图2所示,母线C 最大运行方式下发生三相短路流过保护3的最大短路电流为)(17.2max kA I kC =相应的速断定值为)(603.217.22.1max ..ⅠⅠ3.kA I K I C k rel set =⨯=⨯=最小保护围根据式(3.4)可得)(3.42min 3km L =即3处的电流速断保护在最小运行方式下也没有保护区。
所以,以上计算表明,在运行方式变化很大的情况下,电流速断保护在较小运行方式下可能没有保护区。
4.1.2 灵敏度校验限时电流速断定值根据式(4.2)可以计算。
ⅠⅡⅡset rel set I K I = (4.2)其中 Ⅱrel K —可靠系数,取值为1.15。
(4.1)(1)整定保护2的限时电流速断定值为)(806.157.1×15.1Ⅰ1.ⅡⅡkA I K I set rel set === 线路末端(即D 处)最小运行方式下发生两相短路时的电流为)(8098.01421151220393115×23E 23max .min ..kA X X X I CD BC s D k ==++=++=所以保护2处的灵敏度系数为4484.0806.18098.0Ⅱmin ..Ⅱ2.===set D k set I I K即不满足sen K ≥1.2的要求。
(2)同理保护5的限时电流速断定值为)(151.287.1×15.1Ⅰ2.ⅡⅡ3.kA I K I set rel set ===线路末端(即C 处)最小运行方式下发生两相短路时的电流为)(9746.011811520393115×23E 23max .min ..kA X X I BC s C k ==+=+= 所以保护5处的灵敏度系数为4531.0151.29746.0Ⅱmin ..Ⅱ3.===set C k set I I K 也不满足sen K ≥1.2的要求。
可见,由于运行方式变化太大,2、3处的限时电流速断的灵敏度远不能满足要求。
4.2 后备保护的整定计算4.2.1 动作电流的计算过电流整定值计算公式为 re L ss rel rel set K I K K I Imax .Ⅲre ˊⅢK ==(4.3)其中 Ⅲrel K —可靠系数,取值为1.15;ss K —可靠系数,取值为1.5;re K —可靠系数,取值为0.85。
所以有304.5(A)150×03.20.85150×1.5×15.1max.ⅢⅢ1.====-re L E D ss rel set K I K K I同理得406(A)200×03.2Ⅲ2.==set I609(A)300×03.2Ⅲ3.==set I4.2.2 动作时间的计算假设母线E 过电流保护动作时限为0.5s ,保护的动作时间为)(15.05.0Ⅲ1s t =+=)(5.15.0Ⅲ1Ⅲ2s t t =+=)(25.0Ⅲ2Ⅲ3s t t =+=4.2.3 灵敏度校验在最小运行方式下流过保护元件的最小短路电流的公式为Ls k Z Z EI +=max .min .23所以由灵敏度公式(4.4)Ⅲmin.setk sen I IK =可知,保护1作为近后备保护的灵敏度应为39.25.3048.727Ⅲ1.min .Ⅲ1.===set E set I IK ≥1.5满足近后备保护的要求;保护2作为远后备保护的灵敏度为79.14068.727Ⅲ2.min.Ⅲ2.===set E set I I K ≥1.2满足作为远后备保护的要求保护5作为远后备保护的灵敏度为(4.4) (4.5)33.16098.809Ⅲ3.min .Ⅲ3.===set D set I I K ≥1.2 满足作为远后备保护灵敏度的要求。