高中数学人教A版必修四课时训练 第1章 三角函数 章末检测(B) Word版含答案
高一数学人教a版必修四练习:第一章_三角函数1.1.1_word版含解析
![高一数学人教a版必修四练习:第一章_三角函数1.1.1_word版含解析](https://img.taocdn.com/s3/m/3c66bd1305087632301212ab.png)
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.-215°是()A.第一象限角C.第三象限角B.第二象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案:B2.下面各组角中,终边相同的是()A.390°,690°C.480°,-420°B.-330°,750°D.3000°,-840°解析:∵-330°=-360°+30°,750°=720°+30°,∴-330°与750°终边相同.答案:B3.已知下列各角:①-120°;②-240°;③180°;④495°,其中是第二象限角的是()A.①②C.②③B.①③D.②④解析:-120°是第三象限角;-240°是第二象限角;180°角不在任何一个象限内;495°=360°+135°,所以495°是第二象限角.答案:D4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.答案:D二、填空题(每小题5分,共15分)5.在下列说法中:①时钟经过两个小时,时针转过的角是60°;9.已知 α 与 240°角的终边相同,判断 是第几象限角. ②钝角一定大于锐角;③射线 OA 绕端点 O 按逆时针旋转一周所成的角是 0°;④小于 90°的角都是锐角.其中错误说法的序号为________(错误说法的序号都写上).解析: ①时钟经过两个小时,时针按顺时针方向旋转 60°,因而转过的角为-60°,所以①不正确.②钝角 α 的取值范围为 90°<α<180°,锐角θ的取值范围为 0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线 OA 按逆时针旋转一周所成的角是 360°,所以③不正确.④锐角 θ 的取值范围是 0°<θ<90°,小于 90°的角也可以是零角或负角,所以④不正确.答案: ①③④6.α 满足 180°<α<360°,5α 与 α 有相同的始边,且又有相同的终边,那么 α=________.解析: 5α=α+k ·360°,k ∈Z ,∴α=k ·90°,k ∈Z .又∵180°<α<360°,∴α=270°.答案: 270°7.若角 α=2 016°,则与角 α 具有相同终边的最小正角为________,最大负角为________.解析: ∵2 016°=5×360°+216°,∴与角 α 终边相同的角的集合为{α|α=216°+k ·360°,k ∈Z },∴最小正角是 216°,最大负角是-144°.答案: 216° -144°三、解答题(每小题 10 分,共 20 分)8.在 0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°; (2)-60°; (3)-503°36′.解析: (1)549°=189°+360°,而 180°<189°<270°,因此,549°角为第三象限角,且在 0°~360°范围 内,与 189°角有相同的终边.(2)-60°=300°-360°,而 270°<300°<360°,因此,-60°角为第四象限角,且在 0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而 180°<216°24′<270°,因此,-503°36′角是第三象限角,且在 0°~360°范围内,与 216°24′角有相同的终边.α 2解析: 由 α=240°+k ·360°,k ∈Z ,得 =120°+k ·180°,k ∈Z .则 =120°+n ·360°,n ∈Z , 与 120°角的终边相同,是第二象限角;则 =300°+n ·360°,n ∈Z , 与 300°角的终边相同, 2 α 2若 k 为偶数,设 k =2n ,n ∈Z ,α α 2 2若 k 为奇数,设 k =2n +1,n ∈Z ,α α2 2是第四象限角.α所以, 是第二象限角或第四象限角.。
高中数学课时训练(人教版必修四)第一章 1.2 1.2.1 任意角的三角函数的定义及其应用(一)
![高中数学课时训练(人教版必修四)第一章 1.2 1.2.1 任意角的三角函数的定义及其应用(一)](https://img.taocdn.com/s3/m/b4b45171b7360b4c2e3f64b5.png)
数学·必修4(人教A 版)1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及其应用(一)基础提升1.角α的终边落在y =-x (x >0)上,则sin α的值等于( )A .±12 B.22 C .±22 D .-22答案:D2.sin 330°等于( )A .-32 B .-12 C.12 D.32答案:B3.若角θ的终边经过点⎝ ⎛⎭⎪⎫-32,12,则tan θ的值是( ) A .-33 B .-32 C. 3 D.12答案:A4.点P 从(-1,0)出发,沿单位圆x 2+y 2=1顺时针运动π3弧长到达Q 点,则点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32 D.⎝ ⎛⎭⎪⎫-32,12解析:旋转角为-π3,此时点Q 所在终边对应的角为2π3, ∴x =cos ⎝ ⎛⎭⎪⎫2π3=-12,y =sin ⎝ ⎛⎭⎪⎫2π3=32.故选A. 答案:A5.当α为第二象限角时,|sin α|sin α-|tan α|tan a 的值是________.解析:∵α为第二象限角,∴sin α>0,tan α<0,∴|sin α|sin α-|tan α|tan α=sin αsin α--tan αtan α=2. 答案:26.若α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则sin α的值为( )A.104 B.64 C.24 D .-104解析:∵α是第二象限角,∴x <0,∴r =|OP |=x 2+5,故cos α=xx 2+5=24x ,解得x =-3, ∴r =x 2+5=22, ∴sin α=5r =522=104,故选A. 答案:A巩固提高7.若θ是第三象限角,且cos θ2>0,则θ2是第____角( ) A .一象限 B .二象限C .三象限D .四象限解析:∵θ是第三象限角,∴2k π+π<θ<2k π+32π(k ∈Z), ∴k π+π2<θ2<k π+34π(k ∈Z), 即θ2是第二或第四象限角, 又由cos θ2>0, ∴θ2只能是第四象限角,故选D. 答案:D8.已知α的终边经过点(3a -9,a +2)且cos α≤0,sin α>0,则a 的取值范围是________.答案:(-2,3]9.确定三角函数式tan (-3)cos 5sin 8的符号.解析:∵-π<-3<-π2,∴tan(-3)>0. ∵3π2<5<2π,∴cos 5>0.∵5π2<8<3π,∴sin 8>0. ∴tan (-3)cos 5sin 8>0.10.已知sin x <0,且tan x >0.(1)求角x 2的终边所在的象限; (2)试判断tan x 2与sin x 2·cos x 2的符号.解析:(1)∵sin x <0,且tan>0, ∴x 是第三象限角.∴2k π+π<x <2k π+32π,k ∈Z , ∴k π+π2<x 2<k π+34π(k ∈Z), ∴角x 2的终边在第二或第四象限.(2)由(2)得tan x 2<0,sin x 2· cos x 2<0.。
高一数学人教A版必修四练习第一章 三角函数1.1.2 Word版含解析
![高一数学人教A版必修四练习第一章 三角函数1.1.2 Word版含解析](https://img.taocdn.com/s3/m/4561094d4a7302768e9939d3.png)
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).将-°化为弧度数为( ).-π.-π.-π.-π解析:-°=-×=-π.答案:.下列与的终边相同的角的表达式中,正确的是( ).·°+.π+°.·°-°(∈).π+(∈)解析:与的终边相同的角可以写成π+(∈),但是角度制与弧度制不能混用,所以只有答案正确.答案:.已知α=-,则角α的终边所在的象限是( ).第二象限.第一象限.第四象限.第三象限解析:因为-π<-<-,所以α在第三象限.答案:.一扇形的面积是,半径为,则该扇形的圆心角是( )解析:∵=θ,=,∴=×=π,∴θ=.答案:二、填空题(每小题分,共分).在扇形中,已知半径为,弧长为,则圆心角是弧度,扇形面积是.解析:α===,=·=××=.答案:.若角α的终边与角π的终边相同,则在[,π)上,终边与角的终边相同的角是.解析:由题意,得α=π+π(∈),所以=π+(∈).令=,,,,得=π,π,π,π.答案:π,π,π,π.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的.解析:由于=,若′=,′=,则′=′′=××=.答案:三、解答题(每小题分,共分).已知α=-°.()把α改写成β+π(∈,≤β<π)的形式,并指出α是第几象限角;()求γ,使γ与α的终边相同,且γ∈.解析:()∵-°=-×°+°,°=π,∴α=-°=π+(-)×π.∵α与角终边相同,∴α是第四象限角.()∵与α终边相同的角可写为π+,∈的形式,而γ与α的终边相同,∴γ=π+,∈.又γ∈,∴-<π+<,∈,解得=-,∴γ=-π+=-..如图,已知扇形的圆心角为°,半径长为,求弓形的面积.解析:∵°=π=π,∴=×π=π,∴的长为π.∵扇形==×π×=π,如图所示,有△=××(为中点)=××°×=.∴弓形=扇形-△=π-.∴弓形的面积为π-.。
高中数学人教A版必修四课时训练 第一章 三角函数 章末检测(A) Word版含答案
![高中数学人教A版必修四课时训练 第一章 三角函数 章末检测(A) Word版含答案](https://img.taocdn.com/s3/m/3549f6b908a1284ac9504319.png)
第一章 三角函数(A) (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.sin 600°+tan 240°的值是( )A .-32 B.32C .-12+ 3 D.12+32.已知点P ⎝⎛⎭⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π43.已知tan α=34,α∈⎝⎛⎭⎫π,32π,则cos α的值是( ) A .±45 B.45 C .-45 D.354.已知sin(2π-α)=45,α∈(3π2,2π),则sin α+cos αsin α-cos α等于( )A.17 B .-17C .-7D .7 5.已知函数f (x )=sin(2x +φ)的图象关于直线x =π8对称,则φ可能取值是( )A.π2 B .-π4 C.π4 D.3π46.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2 D.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫3π4,π 7.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )8.为了得到函数y =sin ⎝⎛⎭⎫2x -π6的图象,可以将函数y =cos 2x 的图象( ) A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度9.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωx +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是( )A .-5 AB .5AC .5 3 AD .10 A10.已知函数y =2sin(ωx +θ)(0<θ<π)为偶函数,其图象与直线y =2的某两个交点横坐标为x 1、x 2,若|x 2-x 1|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π411.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ) A.23 B.43 C.32D .3 12.如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 题号 1 2 3 4 5 6 7 8 9 10 11 12答案13.已知一扇形的弧所对的圆心角为54°,半径r =20 cm ,则扇形的周长为________.14.方程sin πx =14x 的解的个数是________.15.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f (7π12)=________.16.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.18.(12分)已知函数y =a cos ⎝⎛⎭⎫2x +π3+3,x ∈⎣⎡⎦⎤0,π2的最大值为4,求实数a 的值.19. (12分)如右图所示,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ≤π2)的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A (π2,0),点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈[π2,π]时,求x 0的值.20.(12分)已知α是第三象限角,f (α)=sin (π-α)·cos (2π-α)·tan (-α-π)tan (-α)·sin (-π-α).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-32π=15,求f (α)的值; (3)若α=-1 860°,求f (α)的值.21.(12分)在已知函数f (x )=A sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中A >0,ω>0,0<φ<π2的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.22.(12分)已知函数f (x )=A sin(ωx +φ) (A >0且ω>0,0<φ<π2)的部分图象,如图所示.(1)求函数f (x )的解析式;(2)若方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根,试求a 的取值范围.第一章 三角函数(A)答案1.B 2.D 3.C4.A [sin(2π-α)=-sin α=45,∴sin α=-45.又α∈(3π2,2π),∴cos α=35.∴sin α+cos αsin α-cos α=17,故选A.] 5.C [检验f ⎝⎛⎭⎫π8=sin ⎝⎛⎭⎫π4+φ是否取到最值即可.]6.B [sin α-cos α>0且tan α>0,∴α∈⎝⎛⎭⎫π4,π2或α∈⎝⎛⎭⎫π,54π.] 7.D [当a =0时f (x )=1,C 符合,当0<|a |<1时T >2π,且最小值为正数,A 符合, 当|a |>1时T <2π,B 符合.排除A 、B 、C ,故选D.]8.B [y =sin ⎝⎛⎭⎫2x -π6=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x -π6=cos ⎝⎛⎭⎫2π3-2x =cos ⎝⎛⎭⎫2x -23π=cos2⎝⎛⎭⎫x -π3.] 9.A [由图象知A =10,T 2=4300-1300=1100,∴T =150,∴ω=2πT =100π.∴I =10sin(100πt +φ). (1300,10)为五点中的第二个点, ∴100π×1300+φ=π2.∴φ=π6.∴I =10sin(100πt +π6),当t =1100秒时,I =-5 A ,故选A.]10.A [∵y =2sin(ωx +θ)为偶函数,∴θ=π2.∵图象与直线y =2的两个交点横坐标为x 1,x 2,|x 2-x 1|min =π,即T min =π, ∴2πω=π,ω=2,故选A.] 11.C [由函数向右平移43π个单位后与原图象重合,得43π是此函数周期的整数倍.又ω>0,∴2πω·k =43π,∴ω=32k (k ∈Z ),∴ωmin =32.] 12.A [∵y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,即3cos(2×4π3+φ)=0,∴8π3+φ=π2+k π,k ∈Z . ∴φ=-13π6+k π.∴当k =2时,|φ|有最小值π6.]13.(6π+40) cm解析 ∵圆心角α=54°=3π10,∴l =|α|·r =6π.∴周长为(6π+40) cm. 14.7解析 在同一坐标系中作出y =sin πx 与y =14x 的图象观察易知两函数图象有7个交点,所以方程有7个解. 15.0解析 方法一 由图可知,32T =5π4-π4=π,即T =2π3,∴ω=2πT =3.∴y =2sin(3x +φ),将(π4,0)代入上式sin(3π4+φ)=0. ∴3π4+φ=k π,k ∈Z ,则φ=k π-3π4. ∴f (7π12)=2sin(7π4+k π-3π4)=0. 方法二 由图可知,32T =5π4-π4=π,即T =2π3.又由正弦图象性质可知,若f (x 0)=f (x 0+T 2)=0,∴f (7π12)=f (π4+π3)=f (π4)=0.16.8 解析T =6,则5T4≤t ,∴t ≥152,∴t min =8.17.解 y =3-4sin x -4cos 2x =4sin 2x -4sin x -1=4⎝⎛⎭⎫sin x -122-2,令t =sin x ,则-1≤t ≤1, ∴y =4⎝⎛⎭⎫t -122-2 (-1≤t ≤1). ∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7.18.解 ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π3∈⎣⎡⎦⎤π3,4π3, ∴-1≤cos ⎝⎛⎭⎫2x +π3≤12. 当a >0,cos ⎝⎛⎭⎫2x +π3=12时,y 取得最大值12a +3, ∴12a +3=4,∴a =2. 当a <0,cos ⎝⎛⎭⎫2x +π3=-1时,y 取得最大值-a +3, ∴-a +3=4,∴a =-1, 综上可知,实数a 的值为2或-1.19.解 (1)将x =0,y =3代入函数y =2cos(ωx +θ)中,得cos θ=32, 因为0≤θ≤π2,所以θ=π6.由已知T =π,且ω>0,得ω=2πT =2ππ=2.(2)因为点A (π2,0),Q (x 0,y 0)是P A 的中点,y 0=32,所以点P 的坐标为(2x 0-π2,3). 又因为点P 在y =2cos(2x +π6)的图象上,且π2≤x 0≤π,所以cos(4x 0-5π6)=32,且7π6≤4x 0-5π6≤19π6,从而得4x 0-5π6=11π6,或4x 0-5π6=13π6,即x 0=2π3,或x 0=3π4.20.解 (1)f (α)=sin α·cos (-α)·[-tan (π+α)]-tan α[-sin (π+α)]=-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α, 又cos ⎝⎛⎭⎫α-32π=15,∴sin α=-15. 又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.(3)f (α)=f (-1 860°)=cos(-1 860°)=cos 1 860°=cos(5×360°+60°)=cos 60°=12.21.解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2. 由x 轴上相邻两个交点之间的距离为π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2. 由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2, 即sin ⎝⎛⎭⎫4π3+φ=-1, 故4π3+φ=2k π-π2(k ∈Z ), ∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6, 故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].22.解 (1)由图象易知函数f (x )的周期为 T =4×⎝⎛⎭⎫7π6-2π3=2π,A =1,所以ω=1.方法一 由图可知此函数的图象是由y =sin x 的图象向左平移π3个单位得到的,故φ=π3,所以函数解析式为f (x )=sin ⎝⎛⎭⎫x +π3. 方法二 由图象知f (x )过点⎝⎛⎭⎫-π3,0,则sin ⎝⎛⎭⎫-π3+φ=0,∴-π3+φ=k π,k ∈Z . ∴φ=k π+π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫0,π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎫x +π3. (2)方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根等价于y =f (x )与y =a 的图象在⎝⎛⎭⎫0,5π3上有两个交点,在图中作y =a 的图象,如图为函数f (x )=sin ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫0,5π3上的图象,当x =0时,f (x )=32,当x =5π3时,f (x )=0,由图中可以看出有两个交点时,a ∈⎝⎛⎭⎫32,1∪(-1,0).。
精品高一数学必修4课时练:第一章+三角函数+单元同步测试(含解析)
![精品高一数学必修4课时练:第一章+三角函数+单元同步测试(含解析)](https://img.taocdn.com/s3/m/7913778aa1c7aa00b52acbb4.png)
第一章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中,正确的是( ) A .第二象限的角是钝角B .第三象限的角必大于第二象限的角C .-831°是第二象限角D .-95°20′,984°40′,264°40′是终边相同的角解析 A 、B 均错,-831°=-720°-111°是第三象限的角,C 错,∴选D.答案 D2.若点(a,9)在函数y =3x的图象上,则tan a π6的值为( )A .0 B.33 C .1D. 3解析 由题意,得3a=9,得a =2,∴tan a π6=tan 2π6=tan π3= 3. 答案 D3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( ) A .第一、三象限 B .第二、四象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上解析 由题意知,cos θ≥0,tan θ≤0,所以θ在x 轴上或在第四象限,故θ2在第二、四象限或在x 轴上.答案 D4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2 B .T =1,θ=π C .T =2,θ=π D .T =1,θ=π2解析 由题意知T =2ππ=2,又当x =2时,有2π+θ=2k π+π2(k ∈Z ),∴θ=π2.答案 A5.若sin ⎝ ⎛⎭⎪⎫π2-x =-32,且π<x <2π,则x 等于( )A.43π B.76π C.53πD.116π解析 sin ⎝ ⎛⎭⎪⎫π2-x =cos x =-32,又x ∈(π,2π),∴x =7π6. 答案 B6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )解析 三角函数的周期为T =2π|a |,当振幅大于1时,∵|a |>1,∴T <2π.∵D 的振幅大于1,但周期反而大于2π,∴D 不符合要求.答案 D7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin ⎝ ⎛⎭⎪⎫x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6D.11π6解析 当φ=11π6时,则y =sin ⎝ ⎛⎭⎪⎫x +11π6 =sin ⎝ ⎛⎭⎪⎫x +2π-π6=sin ⎝ ⎛⎭⎪⎫x -π6. 答案 D8.若tan θ=2,则2sin θ-cos θsin θ+2cos θ的值为( )A .0B .1C.34D.54解析 ∵tan θ=2,∴2sin θ-cos θsin θ+2cos θ=2tan θ-1tan θ+2=2×2-12+2=34.答案 C9.函数f (x )=tan x1+cos x 的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数 解析要使f (x )有意义,必须使⎩⎨⎧x ≠k π+π2,1+cos x ≠0,即x ≠k π+π2,且x ≠(2k +1)π(k ∈Z ), ∴函数f (x )的定义域关于原点对称.又∵f (-x )=tan (-x )1+cos (-x )=-tan x1+cos x =-f (x ),∴f (x )=tan x1+cos x 是奇函数.答案 A10.函数f (x )=x -cos x 在(0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点解析 在同一坐标系里分别作出y =x 和y =cos x 的图象易知,f (x )=0有且仅有一个零点.答案 B11.已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A =n ,则lgsin A的值是( )A .m +1n B .m -n C.12⎝ ⎛⎭⎪⎫m +1n D.12(m -n )解析 ∵m -n =lg(1+cos A )-lg 11-cos A=lg(1+cos A )+lg(1-cos A )=lg(1+cos A )(1-cos A )=lgsin 2A =2lgsin A , ∴lgsin A =12(m -n ),故选D. 答案 D12.函数f (x )=3sin ⎝⎛⎭⎪⎫2x -π3的图象为C ,①图象C 关于直线x =1112π对称;②函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数;③由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C ,其中正确命题的个数是( )A .0B .1C .2D .3解析 ①把x =1112π代入f (x )知,f ⎝ ⎛⎭⎪⎫1112π=3sin ⎝ ⎛⎭⎪⎫2×11π12-π3=3sin 3π2=-3. ∴x =1112π是函数f (x )的对称轴,∴①正确. ②由2k π-π2≤2x -π3≤2k π+π2,得增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).令k =0得增区间⎣⎢⎡⎦⎥⎤-π12,5π12,∴②正确.③依题意知y =3sin2⎝ ⎛⎭⎪⎫x -π3=3sin ⎝ ⎛⎭⎪⎫2x -2π3, ∴③不正确.应选C. 答案 C二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)13.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α=________. 解析 sin ⎝ ⎛⎭⎪⎫α+π2=cos α=13,∵α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin α=-223,∴tan α=sin αcos α=-2 2.答案 -2 214.函数y =3cos x (0≤x ≤π)的图象与直线y =-3及y 轴围成的图形的面积为________.解析 如图,由于y =3cos x (0≤x ≤π)的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,所以区域(Ⅰ)与区域(Ⅱ)也关于点⎝ ⎛⎭⎪⎫π2,0成中心对称图形,故区域(Ⅰ)的面积为矩形ABCD 的面积的一半,即12×π×6=3π.答案 3π15.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.解析 由图知,T 4=2π3-π3=π3,∴T =43π. 又T =2πω=43π,∴ω=32. 答案 3216.给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数x ,使sin x +cos x =2;③若α,β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎪⎫2x +5π4的一条对称轴;⑤函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象关于点⎝⎛⎭⎪⎫π12,0成中心对称.其中正确命题的序号为__________. 解析 ①y =cos ⎝⎛⎭⎪⎫23x +π2=-sin 23x 是奇函数.②因为sin x ,cos x 不能同时取最大值1,所以不存在实数x 使sin x +cos x =2成立.③α=π3,β=13π6,则tan α=3,tan β=tan ⎝ ⎛⎭⎪⎫2π+π6=tan π6=33,tan α>tan β,∴③不成立.④把x =π8代入函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4,得y =-1. ∴x =π8是函数图象的一条对称轴.⑤因为y =sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称中心在图象上,而⎝ ⎛⎭⎪⎫π12,0不在图象上,所以⑤不成立.答案 ①④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知方程sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝ ⎛⎭⎪⎫3π2-α-sin (-α)的值.解 ∵sin(α-3π)=2cos(α-4π), ∴-sin(3π-α)=2cos(4π-α). ∴-sin(π-α)=2cos(-α). ∴sin α=-2cos α. 可知cos α≠0.∴原式=sin α+5cos α-2cos α+sin α=-2cos α+5cos α-2cos α-2cos α=3cos α-4cos α=-34. 18.(12分)在△ABC 中,sin A +cos A =22,求tan A 的值. 解 ∵sin A +cos A =22,① 两边平方,得2sin A cos A =-12,从而知cos A <0,∴∠A ∈⎝ ⎛⎭⎪⎫π2,π.∴sin A -cos A = (sin A +cos A )2-4sin A cos A=12+1=62.②由①②,得sin A =6+24,cos A =-6+24, ∴tan A =sin Acos A =-2- 3.19.(12分)已知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+32,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )的单调减区间;(3)函数f (x )的图象可以由函数y =sin2x (x ∈R )的图象经过怎样变换得到?解 (1)T =2π2=π.(2)由2k π+π2≤2x +π6≤2k π+3π2,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z . 所以所求的单调减区间为 ⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).(3)把y =sin2x 的图象上所有点向左平移π12个单位,再向上平移32个单位,即得函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+32的图象.20.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝⎛⎭⎪⎫π12,0,图象与P 点最近的一个最高点坐标为⎝⎛⎭⎪⎫π3,5. (1)求函数解析式;(2)求函数的最大值,并写出相应的x 的值; (3)求使y ≤0时,x 的取值范围. 解 (1)由题意知T 4=π3-π12=π4,∴T =π.∴ω=2πT =2,由ω·π12+φ=0,得φ=-π6,又A =5, ∴y =5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)函数的最大值为5,此时2x -π6=2k π+π2(k ∈Z ).∴x =k π+π3(k ∈Z ).(3)∵5sin ⎝ ⎛⎭⎪⎫2x -π6≤0, ∴2k π-π≤2x -π6≤2k π(k ∈Z ).∴k π-5π12≤x ≤k π+π12(k ∈Z ).21.(12分)已知cos ⎝ ⎛⎭⎪⎫π2-α=2cos ⎝ ⎛⎭⎪⎫32π+β,3sin ⎝ ⎛⎭⎪⎫3π2-α =-2sin ⎝ ⎛⎭⎪⎫π2+β,且0<α<π,0<β<π,求α,β的值. 解 cos ⎝ ⎛⎭⎪⎫π2-α=2cos ⎝ ⎛⎭⎪⎫32π+β,即sin α=2sin β① 3sin ⎝ ⎛⎭⎪⎫32π-α=-2sin ⎝ ⎛⎭⎪⎫π2+β,即3cos α=2cos β② ①2+②2得2=sin 2α+3cos 2α.又sin 2α+cos 2α=1,∴cos 2α=12.∴cos α=±22. 又∵α∈(0,π),∴α=π4,或α=34π.(1)当α=π4时,cos α=22,cos β=32cos α=32, 又β∈(0,π),∴β=π6.(2)当α=3π4时,cos α=-22,cos β=32cos α=-32,又β∈(0,π),∴β=5π6.综上,α=π4,β=π6,或α=3π4,β=5π6.22.(12分)已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中θ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当θ=-π6时,求函数的最大值和最小值;(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).解 (1)当θ=-π6时,f (x )=x 2-233x -1=⎝ ⎛⎭⎪⎫x -332-43. ∵x ∈[-1,3],∴当x =33时,f (x )的最小值为-43,当x =-1时,f (x )的最大值为233.(2)f (x )=(x +tan θ)2-1-tan 2θ是关于x 的二次函数.它的图象的对称轴为x =-tan θ.∵y =f (x )在区间[-1,3]上是单调函数,∴-tan θ≤-1,或-tan θ≥3,即tan θ≥1,或tan θ≤- 3.∵θ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴θ的取值范围是⎝ ⎛⎦⎥⎤-π2,-π3∪⎣⎢⎡⎭⎪⎫π4,π2.。
高一数学人教a版必修四练习:第一章_三角函数1.3_第一课时_word版含解析
![高一数学人教a版必修四练习:第一章_三角函数1.3_第一课时_word版含解析](https://img.taocdn.com/s3/m/a64751f6172ded630b1cb69b.png)
高一数学人教a 版必修四练习:第一章_三角函数1.3_第一课时_word 版含解析(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.sin 600°的值是( )A.12 B .-12 C.32 D .-32解析: sin 600°=sin(360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32.答案: D2.若sin(π+α)=-12,则sin(4π-α)的值是( ) A.12 B .-12C .-32 D.32解析: sin α=12,sin(4π-α)=-sin α=-12. 答案: B3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为() A .-255 B .-55 C.55 D.255解析: ∵r =1,∴cos θ=-55,∴cos(π-θ)=-cos θ=55. 答案: C 4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A.13B .-13 C.233D .-233 解析: ∵tan ⎝⎛⎭⎪⎫2π3+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α=-tan ⎝ ⎛⎭⎪⎫π3-α,∴tan ⎝ ⎛⎭⎪⎫2π3+α=-13. 答案: B二、填空题(每小题5分,共15分) 5.求值:(1)cos 29π6=________;(2)tan(-225°)=________. 解析: (1)cos 29π6=cos ⎝⎛⎭⎪⎫4π+5π6=cos 5π6 =cos ⎝⎛⎭⎪⎫π-π6=-cos π6=-32. (2)tan(-225°)=tan(360°-225°)=tan 135°=tan(180°-45°)=-tan 45°=-1. 答案: (1)-32 (2)-16.1-2sin (π+2)cos (π-2)=________.解析:1-2sin (π+2)cos (π-2) =1-2sin 2cos 2=|sin 2-cos 2|.又∵π2<2<π, ∴sin 2>0,cos 2<0,∴原式=sin 2-cos 2.答案: sin 2-cos 27.已知a =tan ⎝⎛⎭⎫-76π,b =cos 234π,c =sin ⎝⎛⎭⎫-334π,则a ,b ,c 的大小关系是________. 解析: a =-tan ⎝⎛⎭⎪⎫π+ π6=-tan π6=-33,b =cos 234π=cos π4=22, c =sin ⎝ ⎛⎭⎪⎫-π4=-22,∴c <a <b . 答案: b >a >c三、解答题(每小题10分,共20分)8.求下列各三角函数值:(1)sin ⎝⎛⎭⎫-8π3;(2)cos 19π6;(3)tan(-855°). 解析: (1)sin ⎝ ⎛⎭⎪⎫-8π3=sin ⎝⎛⎭⎫-4π+43π=sin 43π =sin ⎝⎛⎭⎪⎫π+π3=-sin π3=-32. (2)cos 19π6=cos ⎝⎛⎭⎫2π+76π=cos 76π=cos ⎝⎛⎭⎪⎫π+π6 =-cos π6=-32. (3)tan (-855°)=tan(-3×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1.9.若cos α=23,α是第四象限角,求 sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值. 解析: 由已知cos α=23,α是第四象限角得sin α=-53, 故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)= sin α-sin αcos α-cos α+cos 2α=52.。
高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.1 Word版含答案.docx
![高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.1 Word版含答案.docx](https://img.taocdn.com/s3/m/8192ad3da26925c52cc5bf6b.png)
§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( ) A .-sin x B .sin x C .-cos x D .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2D.⎝⎛⎭⎫5π4,7π45.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π6.方程sin x =lg x 的解的个数是( )7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象. (1)y =|sin x |,x ∈R ; (2)y =sin|x |,x ∈R .能力提升13.求函数f (x )=lgsin x +16-x 2的定义域.14.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-212.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π). 14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin xx ∈(π,2π].图象如图,若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据上图可得k的取值范围是(1,3).。
高一数学人教a版必修四练习:第一章_三角函数1.4.1_word版含解析
![高一数学人教a版必修四练习:第一章_三角函数1.4.1_word版含解析](https://img.taocdn.com/s3/m/3a11812c3968011ca300913a.png)
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列叙述:①作正弦函数的图象时,单位圆的半径长与x 轴的单位长度必须一致;②y =sin x ,x ∈[0,2π]的图象关于点P (π,0)对称;③y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称图形;④正、余弦函数y =sin x 和y =cos x 的图象不超出直线y =-1与y =1所夹的区域,其中正确的个数为( )A .1B .2C .3D .4解析: 结合正、余弦函数的图象可知,①②③④均正确. 答案: D2.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .g (x )=-sin xB .g (x )=sin xC .g (x )=-cos xD .g (x )=cos x解析: 结合正弦函数与余弦函数的图象可知,函数y =cos x (x ∈R )的图象向右平移π2个单位,得到y=sin x (x ∈R )的图象.答案: B3.用“五点法”作出函数y =3-cos x 的图象,下列点中不属于五点作图中的五个关键点的是( ) A .(π,-1) B .(0,2) C .⎝⎛⎭⎫π2,3 D .⎝⎛⎭⎫3π2,3 解析: 由五点作图法知五个关键点分别为(0,2),⎝ ⎛⎭⎪⎫π2,3,(π,4),⎝ ⎛⎭⎪⎫3π2,3,(2π,2),故A 错误.答案: A4.函数y =cos x ·|tan x |⎝⎛⎭⎫-π2<x <π2的大致图象是( )解析: y =cos x ·|tan x |=⎩⎪⎨⎪⎧sin x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,-sin x ,x ∈⎣⎢⎡⎭⎪⎫-π2,0.故选C .答案: C二、填空题(每小题5分,共15分)5.函数y =sin x 的图象和y =x2π的图象交点个数是________.解析: 在同一直角坐标系内作出两个函数的图象如图所示:由图可知交点个数是3. 答案: 36.下列函数中:①y =sin x -1;②y =|sin x |;③y =-cos x ;④y =cos 2x ;⑤y =1-cos 2x 与函数y =sin x 形状完全相同的有________.解析: y =sin x -1是将y =sin x 向下平移1个单位,没改变形状;y =-cos x =sin ⎝ ⎛⎭⎪⎫x -π2,故y =-cos x 是将y =sin x 向右平移π2个单位,没有改变形状,与y =sin x 形状相同,∴①③完全相同,而②y=|sin x |,④y =cos 2 x =|cos x |和⑤y =1-cos 2x =|sin x |与y =sin x 的形状不相同.答案: ①③7.函数y = 2cos x -2的定义域是________.解析: 要使函数有意义,只需2cos x -2≥0,即cos x ≥22.由余弦函数图象知(如图),所求定义域为⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z .答案: ⎣⎡⎦⎤-π4+2k π,π4+2k π,k ∈Z三、解答题(每小题10分,共20分)8.用“五点法”作函数y =2sin x (x ∈[0,2π])的简图. 解析: (1)列表:(2)描点作图,如下:9.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解析: 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |π3≤x ≤5π6或7π6≤x ≤53π.能力测评10.方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根 C .有且仅有两个根D .有无穷多个根解析: 求解方程|x |=cos x 在(-∞,+∞)内根的个数问题,可转化为求解函数f (x )=|x |和g (x )=cos x 在(-∞,+∞)内的交点个数问题.f (x )=|x |和g (x )=cos x 的图象如下图,显然有两交点,即原方程有且仅有两个根.答案: C11.函数y =2cos x ,x ∈[0,2π]的图象和直线y =2围成的一个封闭的平面图形的面积是________.解析: 如右图所示,将余弦函数的图象在x 轴下方的部分补到x 轴的上方,可得一个矩形,其面积为2π×2=4π.答案: 4π12.求函数y =1-2cos x +lg (2sin x -1)的定义域. 解析: 要使函数有意义,只要⎩⎪⎨⎪⎧1-2cos x ≥0,2sin x -1>0,即⎩⎨⎧cos x ≤12,sin x >12.如图所示.cos x ≤12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π3+2k π≤x ≤53π+2k π,k ∈Z ,sin x >12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π<x <5π6+2k π,k ∈Z ,它们的交集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π3+2k π≤x <5π6+2k π,k ∈Z , 即为函数的定义域.13.作出函数y =sin x +sin |x |,x ∈R 的图象.解析: y =sin x +sin |x |=⎩⎪⎨⎪⎧2sin x ,x ≥0,0,x <0,其图象如图所示.。
人教A版高中数学必修四学单元测试三角函数Word含答案
![人教A版高中数学必修四学单元测试三角函数Word含答案](https://img.taocdn.com/s3/m/2c50b4afc1c708a1284a44aa.png)
必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=CC .A CD .A=B=C202120sin 等于 ( )A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=xx 22tan 1tan 1+- 5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34±D 36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8π D.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数12.函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________ 15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(1)必修4第一章三角函数(1)参考答案一、选择题:1. B2. B3. D4. D5.B6.A7.B8.A9.D 10. B 11.D 12.D 二、填空题 13.21 14 0158 0000020022160158,(21603606)-=-+=⨯ 15.23-16 [2,0][,2]3π- 三、解答题:17.略18 解:(1)222222222121sin cos tan 2173434sin cos 34sin cos tan 112x x x x x x x x +++===++ (2)2222222sin sin cos cos 2sin sin cos cos sin cos x x x xx x x x x x-+-+=+ 22tan tan 17tan 15x x x -+==+19.–2tanα 20 T=2×8=16=ωπ2,ω=8π,A=2设曲线与x 轴交点中离原点较近的一个点的横坐标是0x ,则2-0x =6-2即0x =-2 ∴ϕ=–ω0x =()428ππ=-⨯-,y=2sin(48ππ+x ) 当48ππ+x=2kл+2π,即x=16k+2时,y 最大=2当48ππ+x =2kл+23π,即x=16k+10时,y 最小=–2 由图可知:增区间为[16k-6,16k+2],减区间为[16k+2,16k+10](k ∈Z)。
高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.2(一) Word版含答案
![高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.2(一) Word版含答案](https://img.taocdn.com/s3/m/50e2514183c4bb4cf7ecd1ba.png)
1.4.2 正弦函数、余弦函数的性质(一) 课时目标 1.了解周期函数、周期、最小正周期的定义.2.会求f (x )=A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握y =sin x ,y =cos x 的周期性及奇偶性.1.函数的周期性(1)对于函数f (x ),如果存在一个______________,使得当x 取定义域内的____________时,都有____________,那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__________________.2.正弦函数、余弦函数的周期性由sin(x +2k π)=________,cos(x +2k π)=________知y =sin x 与y =cos x 都是______函数,____________________都是它们的周期,且它们的最小正周期都是________.3.正弦函数、余弦函数的奇偶性(1)正弦函数y =sin x 与余弦函数y =cos x 的定义域都是______,定义域关于________对称.(2)由sin(-x )=________知正弦函数y =sin x 是R 上的______函数,它的图象关于______对称.(3)由cos(-x )=________知余弦函数y =cos x 是R 上的______函数,它的图象关于______对称.一、选择题1.函数f (x )=3sin(x 2-π4),x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π 2.函数f (x )=sin(ωx +π6)的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .203.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.下列函数中,不是周期函数的是( )A .y =|cos x |B .y =cos|x |C .y =|sin x |D .y =sin|x |5.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( ) A .-12 B.12 C .-32 D.326.函数y =cos(sin x )的最小正周期是( )A.π B .π C .2π D .4π7.函数f (x )=sin(2πx +π4)的最小正周期是________. 8.函数y =sin ⎝⎛⎭⎫ωx +π4的最小正周期是2π3,则ω=______. 9.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是______________.10.关于x 的函数f (x )=sin(x +φ)有以下命题:①对任意的φ,f (x )都是非奇非偶函数;②不存在φ,使f (x )既是奇函数,又是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中的假命题的序号是________.三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x ); (2)f (x )=1+sin x +1-sin x ; (3)f (x )=e sin x +e -sin xe sin x -e-sin x .12.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52π,3π]时f (x )的解析式.能力提升13.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,则ω的最小值是________.14.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性.1.4.2 正弦函数、余弦函数的性质(一)答案知识梳理1.(1)非零常数T 每一个值 f (x +T )=f (x ) (2)最小正周期2.sin x cos x 周期 2k π (k ∈Z 且k ≠0) 2π3.(1)R 原点 (2)-sin x 奇 原点 (3)cos x 偶 y 轴作业设计1.D 2.B3.B [∵sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )的最小正周期为π的偶函数.]4.D [画出y =sin|x |的图象,易知.]5.D [f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3=-sin ⎝⎛⎭⎫-π3=sin π3=32.] 6.B [cos[sin(x +π)]=cos(-sin x )=cos(sin x ).∴T =π.]7.18.±3解析 2π|ω|=2π3,∴|ω|=3,∴ω=±3. 9.f (x )=sin|x |解析 当x <0时,-x >0,f (-x )=sin(-x )=-sin x ,∵f (-x )=f (x ),∴x <0时,f (x )=-sin x .∴f (x )=sin|x |,x ∈R .10.①④解析 易知②③成立,令φ=π2,f (x )=cos x 是偶函数,①④都不成立. 11.解 (1)x ∈R ,f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x )=-sin 2x ·(-cos x )=sin 2x cos x . ∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x =-f (x ).∴y =f (x )是奇函数.(2)对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0.∴f (x )=1+sin x +1-sin x 定义域为R .∵f (-x )=1+sin (-x )+1-sin (-x )=1+sin x +1-sin x =f (x ), ∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x )e sin (-x )-e -sin (-x )=e -sin x +e sin xe -sin x -esin x =-f (x ), ∴该函数是奇函数.12.解 x ∈[52π,3π]时,3π-x ∈[0,π2], ∵x ∈[0,π2]时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈[52π,3π]. 13.1992π 解析 要使y 在闭区间[0,1]上至少出现50个最小值,则y 在[0,1]上至少含49 34个周期, 即⎩⎨⎧(49 34)T ≤1T =2πω,解得ω≥1992π. 14.解 ∵sin x +1+sin 2x ≥sin x +1≥0,若两处等号同时取到,则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0.∵f (-x )=ln(-sin x +1+sin 2x )=ln(1+sin 2x -sin x )=ln(1+sin 2x +sin x )-1=-ln(sin x +1+sin 2 x )=-f (x ),∴f (x )为奇函数.。
高一数学人教A版必修四练习:第一章 三角函数1.1.2 Word版含解析
![高一数学人教A版必修四练习:第一章 三角函数1.1.2 Word版含解析](https://img.taocdn.com/s3/m/be98e75bb84ae45c3b358cc6.png)
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分) 1.将-300°化为弧度数为( ) A .-43πB .-53πC .-76πD .-74π解析: -300°=-300×π180=-53π.答案: B2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°B .k ·360°+9π4C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )解析: 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.答案: C3.已知α=-3,则角α的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析: 因为-π<-3<-π2,所以α在第三象限. 答案: C4.一扇形的面积是3π8,半径为1,则该扇形的圆心角是( )A.3π16B.3π8C.3π4D.3π2 解析: ∵l =θR ,S =12lR ,∴S =θ2×R 2=38π,∴θ=3π4.答案: C二、填空题(每小题5分,共15分)5.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________. 解析: |α|=l r =128=32,S =12l ·r =12×12×8=48. 答案: 32486.若角α的终边与角85π的终边相同,则在[0,2π)上,终边与角α4的终边相同的角是________.解析: 由题意,得α=85π+2k π(k ∈Z ),所以α4=25π+k π2(k ∈Z ).令k =0,1,2,3,得α4=25π,910π,75π,1910π. 答案: 25π,910π,75π,1910π7.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析: 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案: 34三、解答题(每小题10分,共20分) 8.已知α=-800°.(1)把α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限角; (2)求γ,使γ与α的终边相同,且γ∈⎝⎛⎭⎫-π2,π2.解析: (1)∵-800°=-3×360°+280°,280°=149π, ∴α=-800°=149π+(-3)×2π.∵α与14π9角终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z .又γ∈⎝⎛⎭⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z ,解得k =-1,∴γ=-2π+14π9=-4π9.9.如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积. 解析: ∵120°=120180π=23π,∴l =6×23π=4π,∴AB 的长为4π.∵S 扇形OAB =12lr =12×4π×6=12π,如图所示,有S △OAB =12×AB ×OD (D 为AB 中点)=12×2×6cos 30°×3=9 3.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.。
必修4第一章《三角函数》章末检测试题含答案
![必修4第一章《三角函数》章末检测试题含答案](https://img.taocdn.com/s3/m/75414010c5da50e2524d7f20.png)
班级姓名考号必修4第一章《三角函数》章末检测(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.sin 600°+tan 240°的值是()A.-32 B.32C.-12+ 3 D.12+ 32.把-114π表示成θ+2kπ(k∈Z)的形式,使|θ|的最小的θ值是()A.-34πB.-π4 C.π4 D.3π43.设α角属于第二象限,且⎪⎪⎪⎪cosα2=-cosα2,则α2角属于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知tan α=34,α∈⎝⎛⎭⎫π,32π,则cos α的值是()A.±45 B.45C.-45 D.355.已知一扇形的弧所对的圆心角为54°,半径r=20 cm,则扇形的周长为() A.6π cm B.60 cmC.(40+6π) cm D.1 080 cm6.若点P(sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是() A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫3π4,π7.下列四个命题中,正确的是()A.函数y=tan⎝⎛⎭⎫x+π4是奇函数B.函数y=⎪⎪⎪⎪sin⎝⎛⎭⎫2x+π3的最小正周期是πC.函数y=tan x在(-∞,+∞)上是增函数D.函数y=cos x在区间⎣⎡⎦⎤2kπ+π,2kπ+74π(k∈Z)上是增函数8.为了得到函数y=sin⎝⎛⎭⎫2x-π6的图象,可以将函数y=cos 2x的图象() A.向右平移π6个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向左平移π3个单位长度9.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()第9题 第13题10.把函数y =cos ⎝⎛⎭⎫x +4π3的图象向左平移φ (φ>0)个单位,所得的函数为偶函数,则φ的最小值是( )A.4π3B.2π3C.π3D.5π3二、填空题(本大题共5小题,每小题5分,共25分)11.已知tan α=2,则sin αcos α+2sin 2α的值是________. 12.函数f (x )=|sin x |的单调递增区间是________________.13.已知函数f (x )=2sin(ωx +φ)的图象如上图所示,则f (7π12)=___ ____.14.已知函数y =sin π3x 在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是____ __.15.方程sin πx =14x 的解的个数是 .三、解答题(本大题共6小题,共75分) 16.(本小题12分)求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.17.(本小题12分)求函数12y=log sin 2x 3π⎛⎫-⎪⎝⎭的单调递增区间.18.( 本小题12分)已知函数y =a cos ⎝⎛⎭⎫2x +π3+3,x ∈⎣⎡⎦⎤0,π2的最大值为4,求实数a 的值.19.(本小题12分)已知α是第三象限角,f (α)=sin (π-α)·cos (2π-α)·tan (-α-π)tan (-α)·sin (-π-α).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-32π=15,求f (α)的值;(3)若α=-1860°,求f (α)的值.20.( 本小题13分)在已知函数f (x )=A sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中A >0,ω>0,0<φ<π2的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.21.(本小题14分)已知函数f (x )=A sin(ωx +φ) (A >0且ω>0,0<φ<π2)的部分图象,如图所示.(1)求函数解析式;(2)若方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根,试求a 的取值范围.必修4第一章《三角函数》章末检测参考答案1.B 2.A 3.C 4.C.5.C.6.B 7.D.8.B 9.D 10.B11.2 12.⎣⎡⎦⎤k π,k π+π2,k ∈Z 13.0 14.8 15. 716.解 y =3-4sin x -4cos 2x=4sin 2x -4sin x -1=4⎝⎛⎭⎫sin x -122-2, 令t =sin x ,则-1≤t ≤1,∴y =4⎝⎛⎭⎫t -122-2 (-1≤t ≤1). ∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7.17.解 y =log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3log 212=-log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3, ∵2>1,由复合函数的单调性知,要求sin ⎝⎛⎭⎫2x -π3的单调递增且小于0恒成立. ∴2x -π3在第四象限.∴2k π-π2<2x -π3<2k π(k ∈Z ).解得:k π-π12<x <k π+π6(k ∈Z ).∴原函数的单调递增区间为⎝⎛⎭⎫-π12+k π,π6+k π,k ∈Z .18.解 ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π3∈⎣⎡⎦⎤π3,4π3, ∴-1≤cos ⎝⎛⎭⎫2x +π3≤12. 当a >0,cos ⎝⎛⎭⎫2x +π3=12时,y 取得最大值12a +3, ∴12a +3=4,∴a =2. 当a <0,cos ⎝⎛⎭⎫2x +π3=-1时,y 取得最大值-a +3, ∴-a +3=4,∴a =-1,综上可知,实数a 的值为2或-1.19.解 (1)f (α)=sin α·cos (-α)·[-tan (π+α)]-tan α[-sin (π+α)]=-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α,又cos ⎝⎛⎭⎫α-32π=15,∴sin α=-15. 又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.(3)f (α)=f (-1 860°)=cos(-1 860°)=cos 1 860°=cos(5×360°+60°)=cos 60°=12.20.解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2.由x 轴上相邻两个交点之间的距离为π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2.由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1, 故4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].21.解 (1)由图象易知函数f (x )的周期为T =4⎝⎛⎭⎫7π6-2π3=2π,A =1,所以ω=1.方法一 由图可知此函数的图象是由y =sin x 的图象沿x 轴负方向平移π3个单位得到的,故φ=π3,其函数解析式为f (x )=sin ⎝⎛⎭⎫x +π3. 方法二 由图象知f (x )过点⎝⎛⎭⎫-π3,0,则sin ⎝⎛⎭⎫-π3+φ=0, ∴-π3+φ=k π,k ∈Z .∴φ=k π+π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫0,π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎫x +π3. (2)方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根等价于y =f (x )与y =a 的图象在⎝⎛⎭⎫0,5π3上有两个交点,在图中作y =a 的图象,如图为函数f (x )=sin ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫0,5π3上的图象, 当x =0时,f (x )=32,当x =5π3时,f (x )=0,由图中可以看出有两个交点时,a ∈⎝⎛⎭⎫32,1∪(-1,0).。
高中数学 第一章 三角函数 1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4(
![高中数学 第一章 三角函数 1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4(](https://img.taocdn.com/s3/m/4ea27b1a2cc58bd63086bdae.png)
高中数学第一章三角函数1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4的全部内容。
1.2。
1 任意角的三角函数(一)课时目标1。
借助单位圆理解任意角的三角函数(正弦、余弦、正切)定义.2。
熟记正弦、余弦、正切函数值在各象限的符号.3.掌握诱导公式(一)及其应用.1.任意角三角函数的定义设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则sin α=________,cos α=________,tan α=________。
2.正弦、余弦、正切函数值在各象限的符号3.诱导公式一终边相同的角的同一三角函数的值________,即:sin(α+k·2π)=______,cos(α+k·2π)=________,tan(α+k·2π)=________,其中k∈Z。
一、选择题1.sin 780°等于()A。
错误! B.-错误! C。
错误! D.-错误!2.点A(x,y)是300°角终边上异于原点的一点,则错误!的值为()A。
错误! B.-错误! C。
错误! D.-错误!3.若sin α<0且tan α>0,则α是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.角α的终边经过点P(-b,4)且cos α=-错误!,则b的值为( )A.3 B.-3 C.±3 D.55.已知x为终边不在坐标轴上的角,则函数f(x)=错误!+错误!+错误!的值域是() A.{-3,-1,1,3} B.{-3,-1}C.{1,3} D.{-1,3}6.已知点P错误!落在角θ的终边上,且θ∈[0,2π),则θ的值为()A。
2020高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.3 Word版含答案
![2020高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.3 Word版含答案](https://img.taocdn.com/s3/m/46e1a8fd84868762cbaed50b.png)
1.4.3 正切函数的性质与图象函数y =tan x 的性质与图象见下表:一、选择题 1.函数y =3tan(2x +π4)的定义域是( ) A .{x |x ≠k π+π2,k ∈Z } B .{x |x ≠k 2π-3π8,k ∈Z } C .{x |x ≠k 2π+π8,k ∈Z } D .{x |x ≠k2π,k ∈Z } 2.函数f (x )=tan(x +π4)的单调递增区间为( )A .(k π-π2,k π+π2),k ∈Z B .(k π,(k +1)π),k ∈ZC .(k π-3π4,k π+π4),k ∈Z D .(k π-π4,k π+3π4),k ∈Z 3.函数y =tan ⎝ ⎛⎭⎪⎪⎫12x -π3在一个周期内的图象是( )4.下列函数中,在⎝ ⎛⎭⎪⎪⎫0,π2上单调递增,且以π为周期的偶函数是( ) A .y =tan|x | B .y =|tan x |C .y =|sin 2x |D .y =cos 2x5.下列各式中正确的是( )A .tan 735°>tan 800°B .tan 1>-tan 2C .tan 5π7<tan 4π7D .tan 9π8<tan π76.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝ ⎛⎭⎪⎪⎫π4的值是( ) A .0 B .1 C .-1 D.π47.函数y =tan x -1的定义域是____________.8.函数y =3tan(ωx +π6)的最小正周期是π2,则ω=____. 9.已知a =tan 1,b =tan 2,c =tan 3,则a ,b ,c 按从小到大的排列是________________.10.函数y =3tan ⎝ ⎛⎭⎪⎪⎫x +π3的对称中心的坐标是_________________________________.三、解答题11.判断函数f (x )=lg tan x +1tan x -1的奇偶性.12.求函数y =tan ⎝ ⎛⎭⎪⎪⎫x 2-π3的定义域、周期、单调区间和对称中心.能力提升13.函数y =tan x +sin x -|tan x -sin x |在区间⎝ ⎛⎭⎪⎪⎫π2,3π2内的图象是( )1.4.3 正切函数的性质与图象答案知识梳理{x |x ∈R ,且x ≠k π+π2,k ∈Z } R π 奇函数 ⎝ ⎛⎭⎪⎪⎫k π-π2,k π+π2 (k ∈Z )作业设计1.C 2.C 3.A 4.B 5.D6.A [由题意,T =πω=π4,∴ω=4. ∴f (x )=tan 4x ,f ⎝ ⎛⎭⎪⎪⎫π4=tan π=0.]7.[k π+π4,k π+π2),k ∈Z . 8.±2解析 T =π|ω|=π2,∴ω=±2. 9.b <c <a解析 ∵tan 2=tan(2-π),tan 3=tan(3-π),又∵π2<2<π,∴-π2<2-π<0, ∵π2<3<π,∴-π2<3-π<0, 显然-π2<2-π<3-π<1<π2, 且y =tan x 在⎝ ⎛⎭⎪⎪⎫-π2,π2内是增函数, ∴tan(2-π)<tan(3-π)<tan 1,即tan 2<tan 3<tan 1.∴b <c <a .10.⎝ ⎛⎭⎪⎪⎫k π2-π3,0 (k ∈Z ) 解析 由x +π3=k π2(k ∈Z ), 得x =k π2-π3(k ∈Z ). ∴对称中心坐标为⎝ ⎛⎭⎪⎪⎫k π2-π3,0 (k ∈Z ). 11.解 由tan x +1tan x -1>0,得tan x >1或tan x <-1. ∴函数定义域为⎝ ⎛⎭⎪⎪⎫k π-π2,k π-π4∪⎝ ⎛⎭⎪⎪⎫k π+π4,k π+π2(k ∈Z ) 关于原点对称.f (-x )+f (x )=lg tan x 1tan x 1+lg tan x +1tan x -1=lg ⎝ ⎛⎭⎪⎪⎫-tan x +1-tan x -1·tan x +1tan x -1=lg 1=0. ∴f (-x )=-f (x ),∴f (x )是奇函数.12.解 ①由x 2-π3≠k π+π2,k ∈Z , 得x ≠2k π+53π,k ∈Z . ∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ∈R 且x ≠2k π+53π,k ∈Z . ②T =π12=2π,∴函数的周期为2π. ③由k π-π2<x 2-π3<k π+π2,k ∈Z , 解得2k π-π3<x <2k π+53π,k ∈Z . ∴函数的单调增区间为⎝ ⎛⎭⎪⎪⎫2k π-π3,2k π+5π3,k ∈Z . ④由x 2-π3=k π2,k ∈Z , 得x =k π+23π,k ∈Z . ∴函数的对称中心是⎝ ⎛⎭⎪⎪⎫k π+23π,0,k ∈Z . 13.D [当π2<x <π,tan x <sin x ,y =2tan x <0; 当x =π时,y =0;当π<x <32π时, tan x >sin x ,y =2sin x .故选D.]。
高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.3 Word版含答案
![高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.3 Word版含答案](https://img.taocdn.com/s3/m/1f88373ef7ec4afe04a1dfba.png)
1.4.3 正切函数的性质与图象课时目标 1.了解正切函数图象的画法,理解掌握正切函数的性质.2.能利用正切函数的图象及性质解决有关问题.函数y =tan x一、选择题1.函数y =3tan(2x +π4)的定义域是( )A .{x |x ≠k π+π2,k ∈Z }B .{x |x ≠k 2π-3π8,k ∈Z }C .{x |x ≠k 2π+π8,k ∈Z }D .{x |x ≠k2π,k ∈Z }2.函数f (x )=tan(x +π4)的单调递增区间为( )A .(k π-π2,k π+π2),k ∈ZB .(k π,(k +1)π),k ∈ZC .(k π-3π4,k π+π4),k ∈ZD .(k π-π4,k π+3π4),k ∈Z3.函数y =tan ⎝⎛⎭⎫12x -π3在一个周期内的图象是( )4.下列函数中,在⎝⎛⎭⎫0,π2上单调递增,且以π为周期的偶函数是( ) A .y =tan|x | B .y =|tan x |C .y =|sin 2x |D .y =cos 2x 5.下列各式中正确的是( ) A .tan 735°>tan 800° B .tan 1>-tan 2C .tan 5π7<tan 4π7D .tan 9π8<tan π76.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝⎛⎭⎫π4的值是( ) A .0 B .1 C .-1 D.π47.函数y =tan x -1的定义域是____________.8.函数y =3tan(ωx +π6)的最小正周期是π2,则ω=____.9.已知a =tan 1,b =tan 2,c =tan 3,则a ,b ,c 按从小到大的排列是________________.10.函数y =3tan ⎝⎛⎭⎫x +π3的对称中心的坐标是_________________________________.三、解答题11.判断函数f (x )=lg tan x +1tan x -1的奇偶性.12.求函数y =tan ⎝⎛⎭⎫x 2-π3的定义域、周期、单调区间和对称中心.能力提升13.函数y =tan x +sin x -|tan x -sin x |在区间⎝⎛⎭⎫π2,3π2内的图象是( )14.已知函数y =tan ωx 在(-π2,π2)内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-11.4.3 正切函数的性质与图象答案知识梳理{x |x ∈R ,且x ≠k π+π2,k ∈Z } R π 奇函数 ⎝⎛⎭⎫k π-π2,k π+π2 (k ∈Z ) 作业设计1.C 2.C 3.A 4.B 5.D6.A [由题意,T =πω=π4,∴ω=4.∴f (x )=tan 4x ,f ⎝⎛⎭⎫π4=tan π=0.]7.[k π+π4,k π+π2),k ∈Z .8.±2解析 T =π|ω|=π2,∴ω=±2.9.b <c <a解析 ∵tan 2=tan(2-π),tan 3=tan(3-π),又∵π2<2<π,∴-π2<2-π<0,∵π2<3<π,∴-π2<3-π<0, 显然-π2<2-π<3-π<1<π2,且y =tan x 在⎝⎛⎭⎫-π2,π2内是增函数, ∴tan(2-π)<tan(3-π)<tan 1, 即tan 2<tan 3<tan 1. ∴b <c <a .10.⎝⎛⎭⎫k π2-π3,0 (k ∈Z )解析 由x +π3=k π2 (k ∈Z ),得x =k π2-π3(k ∈Z ).∴对称中心坐标为⎝⎛⎭⎫k π2-π3,0 (k ∈Z ).11.解 由tan x +1tan x -1>0,得tan x >1或tan x <-1.∴函数定义域为⎝⎛⎭⎫k π-π2,k π-π4∪⎝⎛⎭⎫k π+π4,k π+π2(k ∈Z )关于原点对称.f (-x )+f (x )=lg tan (-x )+1tan (-x )-1+lg tan x +1tan x -1=lg ⎝ ⎛⎭⎪⎫-tan x +1-tan x -1·tan x +1tan x -1=lg 1=0.∴f (-x )=-f (x ), ∴f (x )是奇函数.12.解 ①由x 2-π3≠k π+π2,k ∈Z ,得x ≠2k π+53π,k ∈Z .∴函数的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠2k π+53π,k ∈Z .②T =π12=2π,∴函数的周期为2π.③由k π-π2<x 2-π3<k π+π2,k ∈Z ,解得2k π-π3<x <2k π+53π,k ∈Z .∴函数的单调增区间为⎝⎛⎭⎫2k π-π3,2k π+5π3,k ∈Z . ④由x 2-π3=k π2,k ∈Z ,得x =k π+23π,k ∈Z .∴函数的对称中心是⎝⎛⎭⎫k π+23π,0,k ∈Z . 13.D [当π2<x <π,tan x <sin x ,y =2tan x <0;当x =π时,y =0;当π<x <32π时,tan x >sin x ,y =2sin x .故选D.]14.B [∵y =tan ωx 在(-π2,π2)内是减函数,∴ω<0且T =π|ω|≥π.∴|ω|≤1,即-1≤ω<0.]。
高一数学人教A版必修四练习:第一章 三角函数1.4.3 Word版含解析
![高一数学人教A版必修四练习:第一章 三角函数1.4.3 Word版含解析](https://img.taocdn.com/s3/m/25ba06d8102de2bd960588c6.png)
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.函数y =tan ⎝⎛⎭⎫π4-x 的定义域是( ) A .⎩⎨⎧⎭⎬⎫x |x ≠π4,x ∈R B.⎩⎨⎧⎭⎬⎫x |x ≠-π4,x ∈R C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π4,k ∈Z ,x ∈R D.⎩⎨⎧⎭⎬⎫x |x ≠k π+34π,k ∈Z ,x ∈R 解析: y =tan ⎝⎛⎭⎫π4-x =-tan ⎝⎛⎭⎫x -π4, 所以x -π4≠k π+π2,k ∈Z , 所以x ≠k π+3π4,k ∈Z ,x ∈R . 答案: D2.下列说法正确的是( )A .y =tan x 是增函数B .y =tan x 在第一象限是增函数C .y =tan x 在每个区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )上是增函数 D .y =tan x 在某一区间上是减函数解析: 正切函数在每个区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )上是增函数.但在整个定义域上不是增函数,另外,正切函数不存在减区间.答案: C3.已知a =tan 2,b =tan 3,c =tan 5,不通过求值,判断下列大小关系正确的是( )A .a >b >cB .a <b <cC .b >a >cD .b <a <c解析: tan 5=tan [π+(5-π)]=tan (5-π),由正切函数在⎝⎛⎭⎫π2,π上为增函数可得tan 3>tan 2>tan (5-π).答案: C4.函数y =tan (cos x )的值域是( )A .⎣⎡⎦⎤-π4,π4 B .⎣⎡⎦⎤-22,22 C .[-tan 1,tan 1] D .以上均不对解析: ∵-1≤cos x ≤1,且函数y =tan x 在[-1,1]上为增函数,∴tan (-1)≤tan x ≤tan 1即-tan 1≤tan x ≤tan 1.答案: C 二、填空题(每小题5分,共15分)5.函数y =1-tan x 的定义域是________.解析: 由1-tan x ≥0即tan x ≤1结合图象可解得.答案: ⎝⎛⎦⎤k π-π2,k π+π4(k ∈Z ) 6.函数y =tan ⎝⎛⎭⎫x 2+π3的单调递增区间是________. 解析: 令k π-π2<x 2+π3<k π+π2,k ∈Z ,解得2k π-5π3<x <2k π+π3,k ∈Z . 答案: ⎝⎛⎭⎫2k π-5π3,2k π+π3,k ∈Z 7.函数y =3tan (π+x ),-π4<x ≤π6的值域为________. 解析: 函数y =3tan (π+x )=3tan x ,因为正切函数在⎝⎛⎭⎫-π2,π2上是增函数,所以-3<y ≤3,所以值域为(-3,3].答案: (-3,3]三、解答题(每小题10分,共20分)8.求函数y =tan ⎝⎛⎭⎫12x -π6的定义域、周期及单调区间. 解析: 由12x -π6≠π2+k π,k ∈Z ,得x ≠4π3+2k π,k ∈Z , 所以函数y =tan ⎝⎛⎭⎫12x -π6的定义域为 ⎩⎨⎧⎭⎬⎫x |x ≠4π3+2k π,k ∈Z .T =π12=2π, 所以函数y =tan ⎝⎛⎭⎫12x -π6的周期为2π.由-π2+k π<12x -π6<π2+k π,k ∈Z , 得-2π3+2k π<x <4π3+2k π,k ∈Z , 所以函数y =tan ⎝⎛⎭⎫12x -π6的单调递增区间为 ⎝⎛⎭⎫-2π3+2k π,4π3+2k π(k ∈Z ). 9.求函数y =tan 2x 的定义域、值域和周期,并作出它在区间[-π,π]内的图象. 解析: (1)要使函数y =tan 2x 有意义,必须且只需2x ≠π2+k π,k ∈Z , 即x ≠π4+k π2,k ∈Z , ∴函数y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠π4+k π2,k ∈Z . (2)设t =2x ,由x ≠π4+k π2,k ∈Z 知t ≠π2+k π,k ∈Z , ∴y =tan t 的值域为(-∞,+∞),即y =tan 2x 的值域为(-∞,+∞).(3)由tan 2⎝⎛⎭⎫x +π2=tan (2x +π)=tan 2x , ∴y =tan 2x 的周期为π2. (4)函数y =tan 2x 在区间[-π,π]内的图象如图.。
高一数学人教A版必修四练习:第一章 三角函数1.2.2 Word版含解析
![高一数学人教A版必修四练习:第一章 三角函数1.2.2 Word版含解析](https://img.taocdn.com/s3/m/0ba553c7dd3383c4ba4cd234.png)
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43B.34 C .±34 D .±43解析: 因为α是第二象限角,sin α=45, 所以cos α=-1-sin 2α=-35, 所以tan α=sin αcos α=-43. 答案: A2.已知sin α-2cos α3sin α+5cos α=-5,那么tan α的值为( ) A .-2B .2 C.2316 D .-2316解析: 由sin α-2cos α3sin α+5cos α=-5,分子分母同除以cos α得:tan α-23tan α+5=-5, 解得tan α=-2316. 答案: D3.化简:1-2sin 10°·cos 10°=( )A .cos 10°-sin 10°B .sin 10°-cos 10°C .sin 10°+cos 10°D .不确定解析: 原式=sin 210°-2sin 10°·cos 10°+cos 210° =(sin 10°-cos 10°)2=|sin 10°-cos 10°|=cos 10°-sin 10°答案: A4.已知sin α=55,则sin 4α-cos 4α的值为( )A .-15B .-35 C.15 D.35解析: sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=2sin 2α-1=2×⎝⎛⎭⎫552-1=-35. 答案: B二、填空题(每小题5分,共15分)5.化简(1+tan 2α)·cos 2α=________.解析: 原式=⎝ ⎛⎭⎪⎫1+sin 2αcos 2α·cos 2α=cos 2α+sin 2α=1. 答案: 16.已知sin α·tan α=1,则cos α=________.解析: sin 2α+cos 2α=1,由sin αtan α=1,得sin 2α=cos α,令cos α=x ,x >0,则1-x 2=x ,解得x =-1+52. 答案: -1+52 7.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α=________. 解析: 1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=12-32=-13. 答案: -13三、解答题(每小题10分,共20分)8.已知sin α+cos αsin α-cos α=2,计算下列各式的值: (1)3sin α-cos α2sin α+3cos α;(2)sin 2α-2sin αcos α+1. 解析: 由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α, 所以tan α=3.(1)方法一:原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89. 方法二:原式=3×sin αcos α-cos αcos α2×sin αcos α+3×cos αcos α=3tan α-12tan α+3=3×3-12×3+3=89. (2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1 =32-2×332+1+1=1310. 9.已知在△ABC 中,sin A +cos A =15. (1)求sin A ·cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解析: (1)由sin A +cos A =15, 两边平方,得1+2sin A ·cos A =125, 所以sin A ·cos A =-1225.(2)由(1)得sin A ·cos A =-1225<0. 又0<A <π,所以cos A <0.所以A 为钝角.所以△ABC 是钝角三角形.(3)因为sin A ·cos A =-1225, 所以(sin A -cos A )2=1-2sin A ·cos A =1+2425=4925, 又sin A >0,cos A <0,所以sin A -cos A >0,所以sin A -cos A =75. 又sin A +cos A =15,所以sin A =45,cos A =-35. 所以tan A =sin A cos A =45-35=-43.。
高一数学人教A版必修四练习:第一章 三角函数1.3 第一课时 Word版含解析
![高一数学人教A版必修四练习:第一章 三角函数1.3 第一课时 Word版含解析](https://img.taocdn.com/s3/m/9de0d97ee45c3b3567ec8bc6.png)
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.sin 600°的值是( )A.12B .-12 C.32 D .-32解析: sin 600°=sin(360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32. 答案: D2.若sin(π+α)=-12,则sin(4π-α)的值是( ) A.12B .-12C .-32 D.32解析: sin α=12,sin(4π-α)=-sin α=-12. 答案: B3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( ) A .-255B .-55 C.55D.255 解析: ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 答案: C4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A.13B .-13 C.233D .-233 解析: ∵tan ⎝⎛⎭⎫2π3+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-α=-tan ⎝⎛⎭⎫π3-α,∴tan ⎝⎛⎭⎫2π3+α=-13. 答案: B二、填空题(每小题5分,共15分) 5.求值:(1)cos29π6=________;(2)tan(-225°)=________. 解析: (1)cos 29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6 =cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (2)tan(-225°)=tan(360°-225°)=tan 135°=tan(180°-45°)=-tan 45°=-1. 答案: (1)-32(2)-16.1-2sin (π+2)cos (π-2)=________.解析: 1-2sin (π+2)cos (π-2) =1-2sin 2cos 2=|sin 2-cos 2|.又∵π2<2<π, ∴sin 2>0,cos 2<0,∴原式=sin 2-cos 2.答案: sin 2-cos 27.已知a =tan ⎝⎛⎭⎫-76π,b =cos 234π,c =sin ⎝⎛⎭⎫-334π,则a ,b ,c 的大小关系是________. 解析: a =-tan ⎝⎛⎭⎫π+ π6=-tan π6=-33, b =cos 234π=cos π4=22, c =sin ⎝⎛⎭⎫-π4=-22,∴c <a <b . 答案: b >a >c三、解答题(每小题10分,共20分)8.求下列各三角函数值:(1)sin ⎝⎛⎭⎫-8π3;(2)cos 19π6;(3)tan(-855°). 解析: (1)sin ⎝⎛⎭⎫-8π3=sin ⎝⎛⎭⎫-4π+43π=sin 43π =sin ⎝⎛⎭⎫π+π3=-sin π3=-32. (2)cos 19π6=cos ⎝⎛⎭⎫2π+76π=cos 76π=cos ⎝⎛⎭⎫π+π6 =-cos π6=-32. (3)tan (-855°)=tan(-3×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1.9.若cos α=23,α是第四象限角,求 sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值. 解析: 由已知cos α=23,α是第四象限角得sin α=-53, 故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)= sin α-sin αcos α-cos α+cos 2α=52.。
高中数学人教A版必修四课时训练 第一章 三角函数 章末检测(B) Word版含答案
![高中数学人教A版必修四课时训练 第一章 三角函数 章末检测(B) Word版含答案](https://img.taocdn.com/s3/m/ad63d71deefdc8d376ee326b.png)
第一章 三角函数(B) (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知cos α=12,α∈(370°,520°),则α等于( )A .390°B .420°C .450°D .480° 2.若sin x ·cos x <0,则角x 的终边位于( ) A .第一、二象限 B .第二、三象限 C .第二、四象限 D .第三、四象限3.函数y =tan x2是( )A .周期为2π的奇函数B .周期为π2的奇函数C .周期为π的偶函数D .周期为2π的偶函数4.已知tan(-α-43π)=-5,则tan(π3+α)的值为( )A .-5B .5C .±5D .不确定5.已知函数y =2sin (ωx +φ))(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2 C.12 D.136.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( )A .-π2B .2k π-π2(k ∈Z )C .k π(k ∈Z )D .k π+π2(k ∈Z )7.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A .-310 B.310 C .±310 D.348.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π20 9.将函数y =sin(x -θ)的图象F 向右平移π3个单位长度得到图象F ′,若F ′的一条对称轴是直线x =π4,则θ的一个可能取值是( )A.5π12 B .-5π12 C.11π12 D .-11π1210.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )11.在同一平面直角坐标系中,函数y =cos ⎝⎛⎭⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是( )A .0B .1C .2D .412.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <b 题号 12 3 4 5 6 7 8 9 10 11 12 答案13.如果cos α=15,且α是第四象限的角,那么cos(α+π2)=________.14.设定义在区间(0,π2)上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________. 15.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.16.给出下列命题:(1)函数y =sin |x |不是周期函数;(2)函数y =tan x 在定义域内为增函数;(3)函数y =|cos 2x +12|的最小正周期为π2;(4)函数y =4sin(2x +π3),x ∈R 的一个对称中心为(-π6,0).其中正确命题的序号是________.三、解答题(本大题共6小题,共70分)17.(10分)已知α是第三象限角,f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α).(1)化简f (α);(2)若cos(α-32π)=15,求f (α)的值.18.(12分)已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.19.(12分)已知sin α+cos α=15.求:(1)sin α-cos α;(2)sin 3α+cos 3α.20.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.21.(12分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤π2)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3. (1)求出此函数的解析式; (2)求该函数的单调递增区间; (3)是否存在实数m ,满足不等式A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.22.(12分)已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?第一章 三角函数(B)答案1.B 2.C 3.A 4.A5.B [由图象知2T =2π,T =π,∴2πω=π,ω=2.]6.D [若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0,∴φ=k π+π2,(k ∈Z ).]7.B [∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2,∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310.]8.C [函数y =sin x y =sin ⎝⎛⎭⎫x -π10――→横坐标伸长到原来的2倍纵坐标不变y =sin ⎝⎛⎭⎫12x -π10.] 9.A [将y =sin(x -θ)向右平移π3个单位长度得到的解析式为y =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π3-θ=sin(x -π3-θ).其对称轴是x =π4,则π4-π3-θ=k π+π2(k ∈Z ).∴θ=-k π-7π12(k ∈Z ).当k =-1时,θ=5π12.]10.D [图A 中函数的最大值小于2,故0<a <1,而其周期大于2π.故A 中图象可以是函数f (x )的图象.图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象.当a =0时,f (x )=1,此时对应C 中图象,对于D 可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.]11.C [函数y =cos ⎝⎛⎭⎫x 2+3π2=sin x 2,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.]12.D [∵a =sin5π7=sin(π-5π7)=sin 2π7. 2π7-π4=8π28-7π28>0. ∴π4<2π7<π2. 又α∈⎝⎛⎭⎫π4,π2时,sin α>cos α.∴a =sin 2π7>cos 2π7=b .又α∈⎝⎛⎭⎫0,π2时,sin α<tan α. ∴c =tan2π7>sin 2π7=a . ∴c >a .∴c >a >b .] 13.265解析 ∵α是第四象限的角且cos α=15.∴sin α= -1-cos 2α=-265,∴cos(α+π2)=-sin α=265.14.23解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x 消去y 得6cos x =5tan x .整理得6cos 2 x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0,所以sin x =23或sin x =-32(舍去).点P 2的纵坐标y 2=23,所以|P 1P 2|=23.15.3解析 由函数y =A sin(ωx +φ)的图象可知: T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3.16.(1)(4)解析 本题考查三角函数的图象与性质.(1)由于函数y =sin |x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义f (x +π2)=|-cos 2x +12|≠f (x ),∴π2不是函数的周期;(4)由于f (-π6)=0,故根据对称中心的意义可知(-π6,0)是函数的一个对称中心,故只有(1)(4)是正确的.17.解 (1)f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α)=-sin (π2-α)sin α(-tan α)(-tan α)sin α=cos αsin αtan α-tan αsin α=-cos α.(2)∵cos(α-3π2)=cos(3π2-α)=-sin α=15.∴sin α=-15.∵α是第三象限角,∴cos α=-265.∴f (α)=-cos α=265.18.解 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611. 解得:tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1.(2)原式=sin 2θ-4sin θcos θ+3cos 2θ=sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15. 19.解 (1)由sin α+cos α=15,得2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75.(2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α),由(1)知sin αcos α=-1225且sin α+cos α=15,∴sin 3α+cos 3α=15×⎝⎛⎭⎫1+1225=37125. 20.解 (1)由图象知A =2.f (x )的最小正周期T =4×(5π12-π6)=π,故ω=2πT =2.将点(π6,2)代入f (x )的解析式得sin(π3+φ)=1,又|φ|<π2,∴φ=π6,故函数f (x )的解析式为f (x )=2sin(2x +π6).(2)变换过程如下:y =2sin x 6π−−−−−−−→图像向左平移个单位y =2sin(x +π6)12→所有点的横坐标缩短为原来的纵坐标不变y =2sin(2x +π6). 21.解 (1)由题意得A =3,12T =5π⇒T =10π,∴ω=2πT =15.∴y =3sin(15x +φ),由于点(π,3)在此函数图象上,则有3sin(π5+φ)=3,∵0≤φ≤π2,∴φ=π2-π5=3π10.∴y =3sin(15x +3π10).(2)当2k π-π2≤15x +3π10≤2k π+π2时,即10k π-4π≤x ≤10k π+π时,原函数单调递增.∴原函数的单调递增区间为[10k π-4π,10k π+π](k ∈Z ).(3)m 满足⎩⎪⎨⎪⎧-m 2+2m +3≥0,-m 2+4≥0, 解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4, ∴0≤-m 2+2m +3≤2,同理0≤-m 2+4≤2.由(2)知函数在[-4π,π]上递增,若有: A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ),只需要:-m 2+2m +3>-m 2+4,即m >12成立即可,所以存在m ∈(12,2],使A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)成立.22.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放,∴12cos π6t +1>1,∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,即12k -3<t <12k +3.①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 三角函数(B) (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知cos α=12,α∈(370°,520°),则α等于( )A .390°B .420°C .450°D .480° 2.若sin x ·cos x <0,则角x 的终边位于( ) A .第一、二象限 B .第二、三象限 C .第二、四象限 D .第三、四象限3.函数y =tan x2是( )A .周期为2π的奇函数B .周期为π2的奇函数C .周期为π的偶函数D .周期为2π的偶函数4.已知tan(-α-43π)=-5,则tan(π3+α)的值为( )A .-5B .5C .±5D .不确定5.已知函数y =2sin (ωx +φ))(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2 C.12 D.136.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( )A .-π2B .2k π-π2(k ∈Z )C .k π(k ∈Z )D .k π+π2(k ∈Z )7.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A .-310 B.310 C .±310 D.348.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π20 9.将函数y =sin(x -θ)的图象F 向右平移π3个单位长度得到图象F ′,若F ′的一条对称轴是直线x =π4,则θ的一个可能取值是( )A.5π12 B .-5π12 C.11π12 D .-11π1210.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )11.在同一平面直角坐标系中,函数y =cos ⎝⎛⎭⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是( )A .0B .1C .2D .412.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <b 题号 12 3 4 5 6 7 8 9 10 11 12 答案13.如果cos α=15,且α是第四象限的角,那么cos(α+π2)=________.14.设定义在区间(0,π2)上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________. 15.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.16.给出下列命题:(1)函数y =sin |x |不是周期函数;(2)函数y =tan x 在定义域内为增函数;(3)函数y =|cos 2x +12|的最小正周期为π2;(4)函数y =4sin(2x +π3),x ∈R 的一个对称中心为(-π6,0).其中正确命题的序号是________.三、解答题(本大题共6小题,共70分)17.(10分)已知α是第三象限角,f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α).(1)化简f (α);(2)若cos(α-32π)=15,求f (α)的值.18.(12分)已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.19.(12分)已知sin α+cos α=15.求:(1)sin α-cos α;(2)sin 3α+cos 3α.20.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.21.(12分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤π2)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3. (1)求出此函数的解析式; (2)求该函数的单调递增区间; (3)是否存在实数m ,满足不等式A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.22.(12分)已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?第一章 三角函数(B)答案1.B 2.C 3.A 4.A5.B [由图象知2T =2π,T =π,∴2πω=π,ω=2.]6.D [若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0,∴φ=k π+π2,(k ∈Z ).]7.B [∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2,∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310.]8.C [函数y =sin x y =sin ⎝⎛⎭⎫x -π10――→横坐标伸长到原来的2倍纵坐标不变y =sin ⎝⎛⎭⎫12x -π10.] 9.A [将y =sin(x -θ)向右平移π3个单位长度得到的解析式为y =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π3-θ=sin(x -π3-θ).其对称轴是x =π4,则π4-π3-θ=k π+π2(k ∈Z ).∴θ=-k π-7π12(k ∈Z ).当k =-1时,θ=5π12.]10.D [图A 中函数的最大值小于2,故0<a <1,而其周期大于2π.故A 中图象可以是函数f (x )的图象.图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象.当a =0时,f (x )=1,此时对应C 中图象,对于D 可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.]11.C [函数y =cos ⎝⎛⎭⎫x 2+3π2=sin x 2,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.]12.D [∵a =sin5π7=sin(π-5π7)=sin 2π7. 2π7-π4=8π28-7π28>0. ∴π4<2π7<π2. 又α∈⎝⎛⎭⎫π4,π2时,sin α>cos α.∴a =sin 2π7>cos 2π7=b .又α∈⎝⎛⎭⎫0,π2时,sin α<tan α. ∴c =tan2π7>sin 2π7=a . ∴c >a .∴c >a >b .] 13.265解析 ∵α是第四象限的角且cos α=15.∴sin α= -1-cos 2α=-265,∴cos(α+π2)=-sin α=265.14.23解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x 消去y 得6cos x =5tan x .整理得6cos 2 x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0,所以sin x =23或sin x =-32(舍去).点P 2的纵坐标y 2=23,所以|P 1P 2|=23.15.3解析 由函数y =A sin(ωx +φ)的图象可知: T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3.16.(1)(4)解析 本题考查三角函数的图象与性质.(1)由于函数y =sin |x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义f (x +π2)=|-cos 2x +12|≠f (x ),∴π2不是函数的周期;(4)由于f (-π6)=0,故根据对称中心的意义可知(-π6,0)是函数的一个对称中心,故只有(1)(4)是正确的.17.解 (1)f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α)=-sin (π2-α)sin α(-tan α)(-tan α)sin α=cos αsin αtan α-tan αsin α=-cos α.(2)∵cos(α-3π2)=cos(3π2-α)=-sin α=15.∴sin α=-15.∵α是第三象限角,∴cos α=-265.∴f (α)=-cos α=265.18.解 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611. 解得:tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1.(2)原式=sin 2θ-4sin θcos θ+3cos 2θ=sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15. 19.解 (1)由sin α+cos α=15,得2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75.(2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α),由(1)知sin αcos α=-1225且sin α+cos α=15,∴sin 3α+cos 3α=15×⎝⎛⎭⎫1+1225=37125. 20.解 (1)由图象知A =2.f (x )的最小正周期T =4×(5π12-π6)=π,故ω=2πT =2.将点(π6,2)代入f (x )的解析式得sin(π3+φ)=1,又|φ|<π2,∴φ=π6,故函数f (x )的解析式为f (x )=2sin(2x +π6).(2)变换过程如下:y =2sin x 6π−−−−−−−→图像向左平移个单位y =2sin(x +π6)12→所有点的横坐标缩短为原来的纵坐标不变y =2sin(2x +π6). 21.解 (1)由题意得A =3,12T =5π⇒T =10π,∴ω=2πT =15.∴y =3sin(15x +φ),由于点(π,3)在此函数图象上,则有3sin(π5+φ)=3,∵0≤φ≤π2,∴φ=π2-π5=3π10.∴y =3sin(15x +3π10).(2)当2k π-π2≤15x +3π10≤2k π+π2时,即10k π-4π≤x ≤10k π+π时,原函数单调递增.∴原函数的单调递增区间为[10k π-4π,10k π+π](k ∈Z ).(3)m 满足⎩⎪⎨⎪⎧-m 2+2m +3≥0,-m 2+4≥0, 解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4, ∴0≤-m 2+2m +3≤2,同理0≤-m 2+4≤2.由(2)知函数在[-4π,π]上递增,若有: A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ),只需要:-m 2+2m +3>-m 2+4,即m >12成立即可,所以存在m ∈(12,2],使A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)成立.22.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放,∴12cos π6t +1>1,∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,即12k -3<t <12k +3.①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。