matlab矩阵基本知识

合集下载

MATLAB中对矩阵的基本操作

MATLAB中对矩阵的基本操作

MATLAB中对矩阵的基本操作在MATLAB中,可以对矩阵进行多种基本操作,包括创建矩阵、访问元素、改变矩阵的大小、插入和删除元素、矩阵的运算等。

以下是对这些操作的详细说明:1.创建矩阵:在MATLAB中,可以使用多种方式创建矩阵。

其中最常用的方式是使用方括号将元素排列成行或列,例如:```A=[1,2,3;4,5,6;7,8,9];```这将创建一个3x3的矩阵A,其元素为1到92.访问元素:可以使用括号和下标来访问矩阵中的元素。

下标从1开始计数。

例如,要访问矩阵A的第二行第三列的元素,可以使用以下代码:```A(2,3);```这将返回矩阵A的第二行第三列的元素。

3.改变矩阵的大小:可以使用函数如reshape和resize来改变矩阵的大小。

reshape函数可以将矩阵重新组织为不同的行和列数。

例如,以下代码使用reshape 将3x3的矩阵A重新组织为1x9的矩阵B:```B = reshape(A, 1, 9);```resize函数可以改变矩阵的大小,可以用来增加或减少矩阵的行和列数。

例如,以下代码将矩阵A的大小改变为2x6:```A = resize(A, 2, 6);```4.插入和删除元素:可以使用括号和下标来插入和删除矩阵中的元素。

例如,以下代码会在矩阵A的第二行的末尾插入一个元素10:```A(2, end+1) = 10;```同时,可以使用括号和下标来删除矩阵中的元素。

以下代码将删除矩阵A的第一行的第二个元素:```A(1,2)=[];```这将删除矩阵A的第一行的第二个元素。

5.矩阵的运算:-矩阵乘法:使用*符号进行矩阵乘法运算。

例如,以下代码将矩阵A 与矩阵B相乘:```C=A*B;```-矩阵加法和减法:使用+和-符号进行矩阵加法和减法运算。

例如,以下代码将矩阵A和矩阵B相加得到矩阵C:```C=A+B;```-矩阵转置:使用'符号进行矩阵的转置操作。

例如,以下代码将矩阵A转置:```B=A';```-矩阵相乘:使用.*符号进行矩阵的元素级相乘运算。

第2章__MATLAB矩阵及其运算

第2章__MATLAB矩阵及其运算

3.利用冒号表达式建立一个向量(增量赋值) .利用冒号表达式建立一个向量(增量赋值) 冒号表达式可以产生一个行向量,标准格式是: 冒号表达式可以产生一个行向量,标准格式是: x=e1:e2:e3 其中e1为初始值 为初始值, 为步长 为步长, 为终止值 为终止值。 其中 为初始值,e2为步长,e3为终止值。
2、矩阵变量的性质 、 矩阵变量的维数可以用size( )函数获得: 函数获得: 矩阵变量的维数可以用 函数获得 例: 矩阵标识符为[ , 矩阵标识符为 ],如 果是1*1矩阵,则可以 矩阵, 果是 矩阵 省略矩阵标识符; 省略矩阵标识符; 矩阵变量的各行之间 用分号隔开, 用分号隔开,列之间 用逗号或空格隔开;
计算表达式的值,并显示计算结果。 例2-1 计算表达式的值,并显示计算结果。 在MATLAB命令窗口输入命令: 命令窗口输入命令: 命令窗口输入命令 x=1+2i; y=3-sqrt(17); z=(cos(abs(x+y))-sin(78*pi/180))/(x+abs(y)) 其中pi和 都是 都是MATLAB预先定义的变量, 预先定义的变量, 其中 和i都是 预先定义的变量 分别代表代表圆周率π和虚数单位。 分别代表代表圆周率 和虚数单位。 和虚数单位 输出结果是: 输出结果是: z= -0.3488 + 0.3286i
2.1.1 变量与赋值语句
在matlab中,变量定义为矩阵是最基本的变量定 中 义之一,因此, 义之一,因此,matlab语言的运算是基于矩阵的 语言的运算是基于矩阵的 运算。 运算。
1.变量命名 .
变量名是以字母开头, 在MATLAB 中,变量名是以字母开头,后接字 母、数字或下划线的字符序列。在MATLAB中, 数字或下划线的字符序列。 中 变量名区分字母的大小写, 变量名区分字母的大小写,且自定义的变量名最 好不要和matlab中的专用变量及函数同名。 中的专用变量及函数同名。 好不要和 中的专用变量及函数同名 A=3; a=3; _q=4; a_1=5; B=[1 2;3 4]

matlab第二章矩阵运算基础

matlab第二章矩阵运算基础

南京信息工程大学
4
例2.1 创建矩阵
>>x=[1 2 3;4 5 6;7 8 9] >>x=[1 2 3 456 7 8 9] >>x=[a b c;e f g;u v w] >>x=[1 2 3;4 5 6]; y=[2 3 4;5 6 7] >>Q=x*y >>a=2;b=3 >>x=a*b
2010-12-29
2010-12-29 南京信息工程大学 6
2.1 矩阵的创建
2、 赋值语句 MATLAB赋值语句有两种格式:
变量=表达式(或数) 表达式
2010-12-29
南京信息工程大学
7
【例2.2】 x=[1,2,3;4,5,6;7,8,9] 与[1,2,3;4,5,6;7,8,9]。
5 + cos 47
【例2.3】计算
2010-12-29
南京信息工程大学
25
§2.2 矩阵和数组的算术运算 六、点运算
C=A.*B C=A.\B
C=A./B C=A.^B
2010-12-29
南京信息工程大学
26
§2.2 矩阵和数组的算术运算 七、幂运算
C=A^B C=A.^B
2010-12-29
南京信息工程大学
27
例2.12 例2.13 例2.14 例2.15
find(x)
检查x是 否全为1
南京信息工程大学 42
2010-12-29
例2.20 建立矩阵A,然后找出大于4的元素位置 (1)建立A >>A=[4 -6 5 -54 0 6 56 0 67 -45 0] (2)找出大于4的元素位置 >>find(A>4)

MATLAB矩阵

MATLAB矩阵

MATLAB矩阵一、MATLAB矩阵的基本概念。

MATLAB矩阵是由数值或符号元素组成的二维数组,它是MATLAB中最基本的数据类型之一。

矩阵中的每个元素都有一个行索引和一个列索引,这样可以方便地对矩阵进行操作和计算。

在MATLAB中,矩阵的表示方式非常简单,只需要使用方括号将元素排列起来即可。

例如,一个3行2列的矩阵可以表示为:A = [1 2; 3 4; 5 6]这个矩阵中有6个元素,分别是1、2、3、4、5和6,它们按照从左到右、从上到下的顺序排列在一起。

在MATLAB中,矩阵的行数和列数分别可以通过size 函数来获取,这样可以方便地了解矩阵的大小和结构。

二、MATLAB矩阵的常见操作。

1. 创建矩阵。

在MATLAB中,可以通过直接输入元素的方式来创建矩阵,也可以通过一些特定的函数来生成特定类型的矩阵。

例如,可以使用zeros函数来创建全零矩阵,使用ones函数来创建全一矩阵,使用eye函数来创建单位矩阵等等。

这些函数可以帮助用户快速地生成需要的矩阵,提高工作效率。

2. 访问元素。

可以通过行索引和列索引来访问矩阵中的元素,也可以使用冒号操作符来访问矩阵的子集。

这样可以方便地获取矩阵中的特定元素或者子矩阵,进行进一步的计算和处理。

3. 矩阵运算。

MATLAB中支持矩阵的加法、减法、乘法、除法等基本运算,也支持矩阵的转置、逆矩阵、行列式等高级运算。

这些运算可以帮助用户进行各种复杂的数学计算和工程分析,解决实际问题。

4. 矩阵函数。

MATLAB中有许多内置的矩阵函数,可以对矩阵进行各种操作和变换。

例如,可以使用svd函数进行奇异值分解,使用eig函数进行特征值分解,使用inv函数求解逆矩阵等等。

这些函数可以帮助用户更方便地进行数学建模和数据处理。

三、MATLAB矩阵的实际应用。

1. 科学计算。

在科学研究中,经常需要对各种复杂的数学模型进行求解和分析,这时MATLAB矩阵就可以发挥重要作用。

例如,可以使用矩阵来表示线性方程组,然后通过矩阵运算来求解方程组的解。

Matlab矩阵运算基础数值运算

Matlab矩阵运算基础数值运算

data =
1.1000 3.0000 4.0000
2.3000 2.0000 1.0000
.
13
3.2 矩阵运算
主要介绍矩阵的算术运算、关系运算、逻辑 运算和常用的有关矩阵的其他运算(矩阵的 逆,矩阵的秩、矩阵的分解等)。
.
14
3.2.1 矩阵的算术运算
1、矩阵的加(+)减(-)运算:
A±B 矩阵A和矩阵B的和与差,即矩阵相应 位置的元素相加、减。
>> A=magic(3)
D=
A= 816
0.5492 0.2421 -0.6520 0.9075
357
1.0047 -0.4941
492
>> C*D
>> B=inv(A)
ans =
B=
1.0000 0.0000
0.1472 -0.1444 0.0639
0.0000 1.0000
-0.0611 0.0222 0.1056
~ A 对单个矩阵或标量进行取反运算,结果是0-1矩阵。
.
28
3.2.3 矩阵的逻辑运算
例3-11 1 0 3
1 2 0
A2.6 1 2, B0 5 0
0 3 1
1 0 1
计算 A&B, A|B, ~A Nhomakorabea.
29
3.2.4 矩阵函数
1、矩阵的共轭
MATLAB中求矩阵的共轭矩阵的函数是conj,其 调用格式为:
除或浮点溢出都不按错误处理,只是给出警告信息,同时用“Inf”
标记。
.
20
3.2.1 矩阵的算术运算
4、 矩阵的幂运算:^ A^B A的B次方。

matlab中矩阵的大小和维数

matlab中矩阵的大小和维数

Matlab中矩阵的大小和维数在Matlab中,矩阵是一种非常常见且重要的数据类型,它在数值计算和数据处理中扮演着至关重要的角色。

矩阵的大小和维数是我们在使用Matlab进行数据分析和计算时必须了解和掌握的基本概念。

在本文中,我们将深入探讨矩阵的大小和维数的含义、应用及其在Matlab中的具体使用。

1. 矩阵的维数在数学和计算机科学中,矩阵的维数指的是矩阵中行和列的数量。

以一个m×n的矩阵为例,其中m表示矩阵的行数,n表示矩阵的列数。

在Matlab中,我们可以使用size函数来获取矩阵的维数,其返回结果为一个包含两个元素的向量,第一个元素表示行数,第二个元素表示列数。

2. 矩阵的大小矩阵的大小是指矩阵中元素的数量。

在Matlab中,我们可以使用numel函数来获取矩阵的大小,即矩阵中元素的总数。

对于一个m×n 的矩阵来说,其大小为m×n。

3. 在Matlab中的应用矩阵的大小和维数在Matlab中应用广泛。

在进行数据处理和计算时,我们经常需要了解和确认矩阵的大小和维数,以便正确地进行矩阵运算和数据分析。

Matlab也提供了丰富的函数和工具,用于获取和操作矩阵的大小和维数,如size、numel、reshape等。

4. 个人观点和理解在我看来,熟练掌握矩阵的大小和维数对于在Matlab中进行数据处理和计算是至关重要的。

只有充分了解矩阵的结构和属性,我们才能够高效地利用Matlab提供的各种功能和工具,从而更好地完成我们的数据分析任务。

通过对矩阵大小和维数的理解,我们也能更好地理解和掌握线性代数等相关数学概念,从而在数据科学和工程领域更上一层楼。

总结回顾矩阵的大小和维数是Matlab中的重要概念,它们直接关系到我们在数据处理和计算中的准确性和效率。

通过本文的探讨,我们对矩阵的大小和维数有了更深入的理解,也加深了对Matlab这一工具在数据分析中的应用。

在实际应用中,我们应该不断地练习和应用这些知识,以便更好地掌握和应用在实际工作中。

MATLAB矩阵及运算

MATLAB矩阵及运算

点乘——元素对元素乘法 叉乘——矩阵对矩阵乘法
对比举例
矩阵的右除、左除
MATLAB的基本处理单元是复数矩阵(标量是一 个1*1的矩阵)。而在《线性代数》理论中没有除 法运算。所以定义了除法为乘法的逆运算。
注意:因为矩阵乘法不满足交换律,即一般 A*B≠B*A,所以除法要考虑“右除”、“左 除”。
2.1.2 变量
变量的命名规则: 1)变量名、函数名对字母的大、小写敏感。 2)变量名由字母、数字和下划线构成。第一个
字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量
MATLAB系统默认变量
重点
(注意大小写!)
i或j:
虚单元 正确:5+7j 错误:5+j7
2.1表达式
表达式 (即语句):将变量、数值、函数 用操作符连接起来,就构成了表达式 。
例如:a=(10j+sqrt(10))/2; %注释 ☆行末的“;”用于抑制结果在屏幕上显示
例如: sin(a),sin(b) ,a+b ☆同在一行的表达式,必须用“,”分开
2.2 矩阵的产生与操作
矩阵的产生:
A./Baa31//b b1 3
a2/b2 a4/b4
B.\A
A.\Bbb31//aa13 bb42//aa42B./A
分析:
K/N=K*inv(N)
因为N不是方阵,没有逆 阵,所以报告错误。
K\N=inv(K)*N
因为K的逆阵尺寸2×2, N的尺寸2×3,所以结 果矩阵2×3。
矩阵元素的指数运算
这种战略取得了成功:使人们不在编程细节上化 精力,把注意力集中到科学计算的方法和建模合理性等 大问题上。

matlab 变量、矩阵基本运算代码

matlab 变量、矩阵基本运算代码

matlab 变量、矩阵基本运算代码详解
MATLAB是一种高效的编程语言和环境,主要用于数值计算和数据分析。

它支持多种数据类型,其中矩阵是最基本的数据结构之一。

下面是一些关于MATLAB变量和矩阵基本运算的代码示例。

1.变量定义
在MATLAB中,变量不需要提前声明,可以直接赋值。

例如:
2.矩阵基本运算
MATLAB支持多种矩阵基本运算,包括加法、减法、乘法和转置等。

例如:
注意,在MATLAB中,矩阵乘法需要用*符号表示,而不是普通的乘号x。

此外,MATLAB还支持一些特殊的矩阵运算,例如逆矩阵、行列式和特征值等。

例如:
3.变量替换和循环结构
MATLAB还支持变量替换和循环结构,可以方便地进行批量计算和数据处理。

例如:
以上是一些关于MATLAB变量和矩阵基本运算的代码示例,希望能对您有所帮助。

matlab基本关联矩阵

matlab基本关联矩阵

matlab基本关联矩阵
在Matlab中,关联矩阵通常指的是邻接矩阵,它用于表示图的
连接关系。

邻接矩阵是一个二维矩阵,其中的元素a(i,j)表示节点
i和节点j之间是否有边或者连接。

在无向图中,如果节点i和节
点j之间有连接,则a(i,j)和a(j,i)的值通常为1;如果没有连接,则值为0。

在有向图中,a(i,j)表示从节点i到节点j是否有一条
有向边。

在Matlab中,我们可以使用矩阵来表示关联矩阵。

假设我们有
一个无向图,我们可以使用0-1矩阵来表示它的关联矩阵。

例如,
如果我们有一个包含4个节点的无向图,我们可以使用一个4x4的
矩阵来表示它的关联矩阵。

如果节点i和节点j之间有连接,则
a(i,j)和a(j,i)的值为1,否则为0。

在Matlab中,我们可以使用以下代码来创建一个简单的无向图
的关联矩阵:
matlab.
A = [0 1 1 0; 1 0 1 1; 1 1 0 1; 0 1 1 0];
这个矩阵A表示了一个包含4个节点的无向图的关联矩阵。

节点之间的连接关系可以直观地从这个矩阵中读取出来。

除了用于表示图的连接关系,关联矩阵在其他领域也有广泛的应用。

例如,在数据分析中,关联矩阵可以用来表示变量之间的相关性。

在这种情况下,矩阵的元素可以表示变量之间的相关系数或者其他统计指标。

总之,关联矩阵在Matlab中有着广泛的应用,不仅可以用来表示图的连接关系,还可以用来表示其他领域的关联关系。

希望这个回答能够全面地解答你的问题。

MATLAB基础(矩阵运算和矩阵操作)2

MATLAB基础(矩阵运算和矩阵操作)2
35
223445.68
数学运算符号及标点符号
+ — * .* / ./ ^ 减法运算 乘法运算 点乘运算 除法运算 点除运算 乘幂运算
加法运算,适用于两个数或两个同阶矩阵相加
(1)MATLAB的每条命令后,若为逗号或无标点符号, .^ 点乘幂运算 则显示命令的结果;若命令后为分号,则禁止显示结果. \ 后面所有文字为注释. (2)“%” 反斜杠表示左除. 36 (3) “...”表示续行.
10
命令窗口
11
工作间
12
当前目录
13
历史命令
14
设置路径搜索 当前目录
15
进入搜索对话框
16
设置搜索路径对话框
17
18
Editpath or pathtool
20
‘帮助’的使用
help 命令:已知命令 lookfor命令:知道命令的关键词 MATLAB Help:命令查找,索引,说明书 Demo
2.2345e+005
>> format rat >> 223445.6778987654
>> format bank >> 223445.6778987654
ans =
ans =
670337/3 >> format long e >> 223445.6778987654 ans = 2.234456778987654e+005
39
clear命令用于删除MATLAB工作空间中的变 量。 who和whos这两个命令用于显示在MATLAB工 作空间中已经驻留的变量名清单。 who命令只显示出驻留变量的名称,whos在给 出变量名的同时,还给出它们的大小、所占 字节数及数据类型等信息。

MATLAB的矩阵运算

MATLAB的矩阵运算

MATLAB的矩阵运算阅读⽬录 MATLAB是基于矩阵和数组计算的,可以直接对矩阵和数组进⾏整体的操作,MATLAB有三种矩阵运算类型:矩阵的代数运算、矩阵的关系运算和矩阵的逻辑运算。

其中,矩阵的代数运算应⽤最⼴泛。

本⽂主要讲述矩阵的基本操作,涉及矩阵的创建、矩阵的代数运算、关系运算和逻辑运算等基本知识。

矩阵的创建直接输⼊法创建矩阵% 1. 直接输⼊法创建矩阵>> A = [1,2,3; 4,5,6; 7,8,9]A =1 2 34 5 67 8 9函数法创建矩阵简单矩阵% 2. 函数法创建矩阵>> zeros(3)% ⽣成3x3的全零矩阵ans =0 0 00 0 00 0 0>> zeros(3,2)% ⽣成3x2的全零矩阵ans =0 00 00 0>> eye(3)% ⽣成单位矩阵ans =1 0 00 1 00 0 1>> ones(3)% ⽣成全1矩阵ans =1 1 11 1 11 1 1>> magic(3)% ⽣成3x3的魔⽅阵ans =8 1 63 5 74 9 2>> diag(1:3)% 对⾓矩阵ans =1 0 00 2 00 0 3>> diag(1:5,1)% 对⾓线向上移1位矩阵ans =0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 >> diag(1:5,-1)% 对⾓线向下移1位矩阵ans =0 0 0 0 0 01 0 0 0 0 0 02 0 0 0 0 0 03 0 0 0 0 0 04 0 0 0 0 0 05 0 >> triu(ones(3,3))% 上三⾓矩阵ans =1 1 10 1 10 0 1>> tril(ones(3,3))% 下三⾓矩阵ans =1 0 01 1 01 1 1随机矩阵>> rand(3)% ⽣成随机矩阵ans =0.2898 0.8637 0.05620.4357 0.8921 0.14580.3234 0.0167 0.7216>> rand('state',0); % 设定种⼦数,产⽣特定种⼦数下相同的随机数>> rand(3)ans =0.9501 0.4860 0.45650.2311 0.8913 0.01850.6068 0.7621 0.8214>> a = 1; b = 100;>> x = a + (b-a)* rand(3)% 产⽣区间(1,100)内的随机数x =38.2127 20.7575 91.113389.9610 31.0064 53.004043.4711 54.2917 31.3762>> a = 1; b = 100;>> a + fix(b * rand(1,50))% 产⽣50个[1,100]内的随机正整数ans =列 1 ⾄ 154 72 77 6 63 27 32 53 41 90 58 57 40 70 57列 16 ⾄ 3035 60 28 5 84 11 73 45 100 57 47 42 22 24 32列 31 ⾄ 4587 26 97 31 38 35 71 62 76 80 22 90 90 94 28列 46 ⾄ 5048 26 37 53 39相似函数扩展>> randn(3)% ⽣成均值为0,⽅差为1的正太分布随机数矩阵ans =-0.4326 0.2877 1.1892-1.6656 -1.1465 -0.03760.1253 1.1909 0.3273>> randperm(10)% ⽣成1-10之间随机分布10个正整数ans =4 9 10 25 8 1 3 7 6% 多项式x^3 - 7x + 6 的伴随矩阵>> u = [1,0,-7,6];>> A = compan(u)% ⽣成伴随矩阵A =0 7 -61 0 00 1 0>> eig(A) % 此处eig()函数⽤于求特征值% 利⽤伴随矩阵求得⽅程的根ans =-3.00002.00001.0000矩阵的运算矩阵的代数运算矩阵的算术运算>> A = [1,1;2,2];>> B = [1,1;2,2];>> AA =1 12 2>> BB =1 12 2>> A + Bans =2 24 4>> B-Aans =0 00 0>> A * Bans =3 36 6>> A^2ans =3 36 6>> A^3ans =9 918 18矩阵的运算函数>> C = magic(3)C =8 1 63 5 74 9 2>> size(C)ans =3 3>> length(C)ans =3>> sum(C)ans =15 15 15>> max(C)ans =8 9 7>> C'ans =8 3 41 5 96 7 2>> inv(C)ans =0.1472 -0.1444 0.0639 -0.0611 0.0222 0.1056 -0.0194 0.1889 -0.1028矩阵的元素群运算元素群运算,是指矩阵中的所有元素按单个元素进⾏运算,也即是对应位置进⾏运算。

matlab中的矩阵的基本运算命令我的回忆

matlab中的矩阵的基本运算命令我的回忆

1.1 矩阵的表示1.2 矩阵运算1.2.14 特殊运算1.矩阵对角线元素的抽取函数diag格式X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k条对角线。

X = diag(v) %以v为主对角线元素,其余元素为0构成X。

v = diag(X,k) %抽取X的第k条对角线元素构成向量v。

k=0:抽取主对角线元素;k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。

v = diag(X) %抽取主对角线元素构成向量v。

2.上三角阵和下三角阵的抽取函数tril %取下三角部分格式L = tril(X) %抽取X的主对角线的下三角部分构成矩阵LL = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。

函数triu %取上三角部分格式U = triu(X) %抽取X的主对角线的上三角部分构成矩阵UU = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。

3.矩阵的变维矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。

(1)“:”变维(2)Reshape函数变维格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵BB = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×…B = reshape(A,[m n p…]) %同上B = reshape(A,siz) %由si z决定变维的大小,元素个数与A中元素个数相同。

(5)复制和平铺矩阵函数repmat格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。

矩阵在matlab中的基本命令

矩阵在matlab中的基本命令

一、矩阵的表示‎在MATL‎A B中创建‎矩阵有以下‎规则:a、矩阵元素必‎须在”[‎]”内;b、矩阵的同行‎元素之间用‎空格(或”,”)隔开;c、矩阵的行与‎行之间用”;”(或回车符)隔开;d、矩阵的元素‎可以是数值‎、变量、表达式或函‎数;e、矩阵的尺寸‎不必预先定‎义。

二,矩阵的创建‎:1、直接输入法‎最简单的建‎立矩阵的方‎法是从键盘‎直接输入矩‎阵的元素,输入的方法‎按照上面的‎规则。

建立向量的‎时候可以利‎用冒号表达‎式,冒号表达式‎可以产生一‎个行向量,一般格式是‎:e1:e2:e3,其中e1为‎初始值,e2为步长‎,e3为终止‎值。

还可以用l‎i nspa‎c e函数产‎生行向量,其调用格式‎为:linsp‎a ce(a,b,n) ,其中a和b‎是生成向量‎的第一个和‎最后一个元‎素,n是元素总‎数。

2、利用MAT‎L AB函数‎创建矩阵基本矩阵函‎数如下:(1) ones()函数:产生全为1‎的矩阵,ones(n):产生n*n维的全1‎矩阵,ones(m,n):产生m*n 维的全1‎矩阵;(2) zeros‎()函数:产生全为0‎的矩阵;(3) rand()函数:产生在(0,1)区间均匀分‎布的随机阵‎;(4) eye()函数:产生单位阵‎;(5) randn‎()函数:产生均值为‎0,方差为1的‎标准正态分‎布随机矩阵‎。

3、利用文件建‎立矩阵当矩阵尺寸‎较大或为经‎常使用的数‎据矩阵,则可以将此‎矩阵保存为‎文件,在需要时直‎接将文件利‎用load‎命令调入工‎作环境中使‎用即可。

同时可以利‎用命令re‎s hape‎对调入的矩‎阵进行重排‎。

resha‎p e(A,m,n),它在矩阵总‎元素保持不‎变的前提下‎,将矩阵A重‎新排成m*n的二维矩‎阵。

二、矩阵的简单‎操作1.获取矩阵元‎素可以通过下‎标(行列索引)引用矩阵的‎元素,如 Matri‎x(m,n)。

也可以采用‎矩阵元素的‎序号来引用‎矩阵元素。

MATLAB基础知识——1.5矩阵元素的引用

MATLAB基础知识——1.5矩阵元素的引用

MATLAB基础知识——1.5矩阵元素的引⽤矩阵元素的引⽤⽅式(1)通过下标引⽤矩阵元素,下标必须为正整数,且⽤圆括号括起来。

(2)通过序号来引⽤,在MATLAB中矩阵元素按列存储。

序号与下标是⼀⼀对应的,以m*n的矩阵A为例,矩阵A(i,j)的序号就是(j-1)*m+i sub2ind函数:将矩阵中指定元素的⾏、列下标转换成存储的序号。

调⽤格式为 D=sub2ind(S,I,J),S说明要转换的矩阵的⾏数和列数,通常有size函数获取;I是要转换元素的⾏下标,J是列下标,如果I和J是矩阵的话,表⽰要将矩阵中多个元素的⾏列下标进⾏转换;D为序号>> A=[1:3;4:6]A = 1 2 3 4 5 6//将A矩阵的(1,1),(2,1),(2,3),(2,2)下标进⾏转化>> D=sub2ind(size(A),[1,2;2,2],[1,1;3,2])D = 1 2 6 4 ind2sub函数:将矩阵元素的序号转换成⾏列下标,其调⽤格式为 [I,J]=ind2sub(S,D),其中S指定矩阵的⾏数和列数,D为序号,[I,J]为下标//将3⾏3列的矩阵中序号为1,3,5的元素下标转化>> [i,j]=ind2sub([3,3],[1,3,5])i = 1 3 2j = 1 1 2利⽤冒号表达式获取⼦矩阵⼦矩阵是指由矩阵中⼀部分元素构成的矩阵A(i,:) 表⽰第i⾏的全部元素A(i:i+m;k:k+m) 表⽰第i到i+m⾏且第k到k+m列中所有元素end运算符:表⽰某⼀维的末尾元素的下标利⽤空矩阵删除元素空矩阵是指没有任何元素的矩阵,例如A[ ]。

>> A=[1:9]A = 1 2 3 4 5 6 7 8 9//将A矩阵中所有⾏的3到6列元素删除>> A(:,[3:6])=[]A = 1 2 7 8 9改变矩阵的形状reshape(A,m,n):在矩阵总元素不变的前提下,将矩阵A重新排列成m*n的⽽为矩阵>> A=[1:9];>> B=reshape(A,3,3)B = 1 4 7 2 5 8 3 6 9A(:)将矩阵A的每⼀列元素堆叠起来,成为⼀个列向量。

Matlab 基础知识——矩阵操作及运算(矩阵、数组区别)

Matlab 基础知识——矩阵操作及运算(矩阵、数组区别)

看论文时,经常看到矩阵,但在记忆里又看到数组。

那么问题来了,矩阵和数组分别是什么?二者有什么区别?看论文时,经常看到矩阵,但在记忆里又看到数组。

那么问题来了,矩阵和数组分别是什么?二者有什么区别?在数学上,定义m×n个数(i=1, 2…, m ; j=1, 2,…n)排成的m行n列的数表示为m行n列的矩阵,并且用大写加粗黑色字母表示。

只有一行的矩阵:,也称之为行向量;只有一列的矩阵,也称之为列向量。

矩阵最早来自于方程组的系数即常数所构成的方阵,这一个概念有19世纪英国数学家凯利首先提出。

数组是在程序设计中,为了处理方便,把具有相同类型的若干变量按有序的形式组织起来的一种形式。

这些按序排列的同类数据元素的集合称之为数组。

在Matlab中,一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。

因此按数组元素的类型不同,数组又可以分为数值数组、字符数组、单元数组、结构数组等各种类别。

看完上面的内容,矩阵和数组的区别似乎懂了一点。

矩阵和数组在Matlab中存在很多方面的区别:(1)矩阵是数学的概念,而数组是计算机程序设计领域的概念;(2)作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则。

而数组运算是Matlab软件定义的规则,其目的是为了使数据管理方便,操作简单,命令形式自然,执行计算有效。

二者联系主要体现在:在Matlab中,矩阵是以数组的形式存在的。

因此,一维数组相当于向量;二维数组相当于矩阵。

所以矩阵是数组的子集。

对矩阵的基本操作,主要有矩阵的构建、矩阵维度和矩阵大小的改变、矩阵的索引、矩阵的属性信息的获取、矩阵结构的改变等。

对于这些操作,Matlab中都有固定的指令或者相应的库函数与之相对应。

在程序用到的时候,每次都要上网查,网上的很散。

这里,我对我经常用的做了总结。

以后用到可以查阅。

1、矩阵下表引用下面将常用的几个举例说明:例如:A=[1 2 3 4 5;12 12 14 56 657;23 46 34 67 56 ];(1)将二维矩阵A转化成一维矩阵(列向量):Matlab 默认将其转化成列向量,需要行向量转置即可。

第8章Matlab基本操作知识2

第8章Matlab基本操作知识2

>>A(:,[1,3]) %按照顺序访问矩阵A的第一列和第三列 ans = 1 1 3 3 7 9 >>A(:,[3,1]) %按照顺序访问矩阵A的第三列和第一列 ans = 1 1 3 3 9 7
(2)、在原矩阵的基础上增加或删除一行或一列
例如,>>A=[1 2 1 5;3 3 3 6;7 8 9 10] A=1 2 1 5 3 3 3 6 7 8 9 10 >>A=[A;[1 2 3 4]] %在A中加入第四行(注意分号的用法) A=1 2 1 5 3 3 3 6 7 8 9 10 1 2 3 4 >>A=[A,[2 3 4 1]’] %在A中加入第五列(注意逗号的用法) A =1 2 1 5 2 3 3 3 6 3 7 8 9 10 4 1 2 3 4 1
第8章 MATLAB基本操作知识
一、 基础知识
二、 矩阵运算
三、求解线形方程组
四、 多项式运算
二、矩阵运算
1、矩阵的创建
(1)矩阵的创建 通常矩阵与数组的意义相同,都是指含有m行n列数字的矩 形结构。要用MATLAB来做矩阵运算,首先要将矩阵输入到 MATLAB中。下面就将介绍矩阵的输入方法。 例如,矩阵
>>A(:,2)=[ ] %删除矩阵A的第二列 A= 1 1 5 2 3 3 6 3 7 9 10 4 1 3 4 1 >>A(2,:)=[ ] %删除矩阵A的第二行 A= 1 1 5 2 7 9 10 4 1 3 4 1 >>A([2:3],[1,3:4]) %访问矩阵A的第2,3行和第1,3,4列 A= 7 10 4 1 4 1
(3)特殊矩阵 zeros(m,n) ones(m,n) eye(n) magic(n) diag(x) hilb(n) vander(x)

Matlab基础知识

Matlab基础知识

Matlab基础知识⼀、matlab简介MATLAB是matrix&laboratory两个词的组合,意为矩阵⼯⼚(矩阵实验室),由美国MathWorks公司出品的商业数学软件,⽤于算法开发、数据可视化、数据分析以及数值计算的⾼级技术计算语⾔和交互式环境,主要包括MATLAB和Simulink两⼤部分。

⼆、数据类型1、函数句柄:是⼀个可调⽤的matlab函数的关联,有了函数句柄这种关联,⽤户在任何情况下都可以通过函数句柄调⽤matlab函数,即使是超出正常的函数调⽤范围仍然可以。

函数句柄四个⽤途:(1)可以将⼀个函数传递给另⼀个函数;(2)可以捕获⼀个函数的数值供下⼀次使⽤;(3)可以在正常范围外调⽤函数;(4)可以在函数句柄以.mat⽂件类型保存,供下⼀次matlab运⾏时使⽤。

2、结构类型结构类型是包含⼀组彼此相关、数据结构相同但类型不同的数据类型。

3、细胞数组类型细胞数组是matlab特有的⼀种数据类型,组成它的元素是细胞,细胞是⽤来存储不同类型数据的单元。

相同数组的第⼆个细胞的类型与⼤⼩可以和第⼀个细胞完全不⼀样。

三、matlab运算符1、算式运算符2、关系运算符关系运算符两侧的矩阵维数必须相同。

关系运算为真返回逻辑1,反之返回值为逻辑0。

3、逻辑运算符参与矩阵元素逻辑运算符的逻辑矩阵必须是位数相同的矩阵。

4、运算优先级四、matlab的矩阵1、矩阵合并纵向合并矩阵(要求矩阵A、B的列数相同):C = [A;B]横向合并矩阵(要求矩阵A、B的维数相同):C = [A B]2、矩阵拆分3、矩阵运算相关函数求矩阵⾏列式的值:det()求转置矩阵:transpose()或者⽤运算符"'"eg:B=transpose(A)等价于B=A'求逆矩阵:inv()求⼴义逆矩阵:pinv()(即矩阵不是⽅阵或者是⼀个⾮满秩的⽅阵时,矩阵没有逆矩阵,但可以求得伪逆矩阵也成为⼴义逆矩阵)求矩阵的秩:rank()五、控制语句1、每个if、for、while语句必须以end语句结束,否则是错误的;2、for i=1:4等价于for i=[1 2 3 4]。

matlab 矩阵 标准型

matlab 矩阵 标准型

matlab 矩阵标准型Matlab矩阵标准型。

在Matlab中,矩阵是一种非常重要的数据类型,它在数值计算和数据处理中起着至关重要的作用。

矩阵的标准型是指将一个矩阵通过一系列的变换,化为最简单的形式,以便于后续的计算和分析。

本文将详细介绍Matlab中矩阵标准型的相关知识和操作方法。

首先,我们需要了解矩阵标准型的概念。

在Matlab中,一个矩阵的标准型通常是指将矩阵化为特定的形式,比如行阶梯形矩阵或者行最简形矩阵。

通过这样的变换,可以使矩阵更加简单,便于进行进一步的计算和分析。

矩阵标准型的求解可以通过Matlab中的一些内置函数来实现,同时也可以通过编写自定义的算法来实现。

接下来,我们将介绍如何在Matlab中求解矩阵的标准型。

首先,我们可以使用Matlab中的rref函数来将一个矩阵化为行最简形矩阵。

该函数的基本语法为rref(A),其中A为待求解的矩阵。

通过调用该函数,我们可以得到矩阵的行最简形式,从而方便后续的计算和分析。

除了rref函数之外,Matlab还提供了一些其他的函数来求解矩阵的标准型,比如echelon形式和行阶梯形式。

通过这些函数的调用,我们可以将矩阵化为不同的标准型,以满足不同的计算需求。

在实际的数值计算中,求解矩阵的标准型是非常常见的操作。

通过将矩阵化为标准型,我们可以简化计算过程,减少计算的复杂度,从而提高计算的效率。

同时,标准型还可以帮助我们更好地理解矩阵的性质和结构,为后续的分析和应用奠定基础。

总之,矩阵标准型是Matlab中一个重要且常用的概念。

通过将矩阵化为标准型,我们可以简化计算过程,提高计算效率,同时也可以更好地理解矩阵的性质和结构。

在实际的数值计算和数据处理中,掌握矩阵标准型的求解方法是非常重要的,希望本文对您有所帮助。

matlab基本数据结构以及矩阵基本操作

matlab基本数据结构以及矩阵基本操作
比特方式逻辑运算符只接受逻辑和非 负整数类型的输入变量,它是针对输入变 量的二进制进行逻辑运算。
第26页,共104页。
(2)a:s:b 返回以a为起点,以s为步长,且 所有取值在a与b之间的向量。
第27页,共104页。
2.2.2 矩阵大小的改变
1.矩阵的合并 2.矩阵行列的删除
第28页,共104页。
1.矩阵的合并
矩阵的合并就是把两个或者两个以上的矩阵连接成一 个新矩阵。矩阵构造符[] 可用于构造矩阵,并可以作为一 个矩阵合并操作符。
第52页,共104页。
第53页,共104页。
2.2.6 稀疏矩阵
1.稀疏矩阵的创建
2.查看稀疏矩阵 3.稀疏矩阵的运算规则
第54页,共104页。
➢ 在MATLAB中,可以用满矩阵存储方 式和稀疏矩阵存储方式来存储矩阵。
➢ 若一个矩阵只有少数的元素非零,称为稀 疏矩阵。稀疏矩阵非零元素及其对应的下 标来表示。
第33页,共104页。
2.2.3 矩阵下标引用
1.访问单个元素 2.线性引用元素
3.访问多个元素
第34页,共104页。
本小节将介绍通过矩阵下标来存取元素 值的方法,包括访问单个元素、线性引用 元素和访问多个元素等。
第35页,共104页。
1.访问单个元素
第36页,共104页。
第37页,共104页。
第13页,共104页。
下图表示了一个结构体(Personel), 它 包 括 3 个 属 性 ( Name 、 Score 和 Salary ) , 其 中 Name 是 一 个 字 符 串 , Score是一个数值,Salary是一个15的向 量。
第14页,共104页。
(1)结构体数组的构造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab矩阵基本知识第一部分:矩阵基本知识(只作基本介绍,详细说明请参考Matlab帮助文档)矩阵是进行数据处理和运算的基本元素。

在MATLAB中a、通常意义上的数量(标量)可看成是”1*1″的矩阵;b、n维矢量可看成是”n*1″的矩阵;c、多项式可由它的系数矩阵完全确定。

一、矩阵的创建在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。

下面介绍四种矩阵的创建方法:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。

建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。

还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。

可以看出来linspace(a,b,n)与a:(b-a)/(n-1):b等价。

2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。

3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。

同时可以利用命令reshape对调入的矩阵进行重排。

reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。

二、矩阵的拆分1.矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。

也可以采用矩阵元素的序号来引用矩阵元素。

矩阵元素的序号就是相应元素在内存中的排列顺序。

在MATLAB中,矩阵元素按列存储,先第一列,再第二列,依次类推。

序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。

其相互转换关系也可利用sub2ind和ind2sub函数求得。

2.矩阵拆分利用冒号表达式获得子矩阵:(1) A(:,j)表示取A矩阵的第j列全部元素;A(i,:)表示A矩阵第i行的全部元素;A(i,j)表示取A矩阵第i行、第j列的元素。

(2) A(i:i+m,:)表示取A矩阵第i~i+m行的全部元素;A(:,k:k+m)表示取A矩阵第k~k+m列的全部元素,A(i:i+m,k:k+m)表示取A矩阵第i~i+m行内,并在第k~k+m列中的所有元素。

此外,还可利用一般向量和end运算符来表示矩阵下标,从而获得子矩阵。

end表示某一维的末尾元素下标。

利用空矩阵删除矩阵的元素:在MATLAB中,定义[]为空矩阵。

给变量X赋空矩阵的语句为X=[]。

注意,X=[]与clear X 不同,clear是将X从工作空间中删除,而空矩阵则存在于工作空间中,只是维数为0。

3、特殊矩阵(1) 魔方矩阵魔方矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。

对于n阶魔方阵,其元素由1,2,3,…,n2共n2个整数组成。

MATLAB提供了求魔方矩阵的函数magic(n),其功能是生成一个n阶魔方阵。

(2) 范得蒙矩阵范得蒙(Vandermonde)矩阵最后一列全为1,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积。

可以用一个指定向量生成一个范得蒙矩阵。

在MATLAB中,函数vander(V)生成以向量V为基础向量的范得蒙矩阵。

(3) 希尔伯特矩阵在MATLAB中,生成希尔伯特矩阵的函数是hilb(n)。

使用一般方法求逆会因为原始数据的微小扰动而产生不可靠的计算结果。

MATLAB中,有一个专门求希尔伯特矩阵的逆的函数invhilb(n),其功能是求n阶的希尔伯特矩阵的逆矩阵。

(4) 托普利兹矩阵托普利兹(Toeplitz)矩阵除第一行第一列外,其他每个元素都与左上角的元素相同。

生成托普利兹矩阵的函数是toeplitz(x,y),它生成一个以x为第一列,y为第一行的托普利兹矩阵。

这里x, y均为向量,两者不必等长。

toeplitz(x)用向量x生成一个对称的托普利兹矩阵。

(5) 伴随矩阵MATLAB生成伴随矩阵的函数是compan(p),其中p是一个多项式的系数向量,高次幂系数排在前,低次幂排在后。

(6) 帕斯卡矩阵我们知道,二次项(x+y)n展开后的系数随n的增大组成一个三角形表,称为杨辉三角形。

由杨辉三角形表组成的矩阵称为帕斯卡(Pascal)矩阵。

函数pascal(n)生成一个n阶帕斯卡矩阵。

三、矩阵的运算1、算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)、’(转置)。

运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。

(1) 矩阵加减运算假定有两个矩阵A和B,则可以由A+B和A-B实现矩阵的加减运算。

运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算,A和B矩阵的相应元素相加减。

如果A与B的维数不相同,则MATLAB将给出错误信息,提示用户两个矩阵的维数不匹配。

(2) 矩阵乘法假定有两个矩阵A和B,若A为m*n矩阵,B为n*p矩阵,则C=A*B为m*p 矩阵。

(3) 矩阵除法在MATLAB中,有两种矩阵除法运算:\和/,分别表示左除和右除。

如果A矩阵是非奇异方阵,则A\B和B/A运算可以实现。

A\B等效于A的逆左乘B矩阵,也就是inv(A)*B,而B/A等效于A矩阵的逆右乘B矩阵,也就是B*inv(A)。

对于含有标量的运算,两种除法运算的结果相同。

对于矩阵来说,左除和右除表示两种不同的除数矩阵和被除数矩阵的关系,一般A\B≠B/A。

(4) 矩阵的乘方一个矩阵的乘方运算可以表示成A^x,要求A为方阵,x为标量。

(5) 矩阵的转置对实数矩阵进行行列互换,对复数矩阵,共轭转置,特殊的,操作符.’共轭不转置(见点运算);(6) 点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。

点运算符有.*、./、.\和.^。

两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

2、关系运算MATLAB提供了6种关系运算符:<(小于)、<=(小于或等于)、>(大于)、>=(大于或等于)、==(等于)、~=(不等于)。

关系运算符的运算法则为:(1) 当两个比较量是标量时,直接比较两数的大小。

若关系成立,关系表达式结果为1,否则为0;(2) 当参与比较的量是两个维数相同的矩阵时,比较是对两矩阵相同位置的元素按标量关系运算规则逐个进行,并给出元素比较结果。

最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成;(3) 当参与比较的一个是标量,而另一个是矩阵时,则把标量与矩阵的每一个元素按标量关系运算规则逐个比较,并给出元素比较结果。

最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成。

3、逻辑运算MATLAB提供了3种逻辑运算符:&(与)、|(或)和~(非)。

逻辑运算的运算法则为:(1) 在逻辑运算中,确认非零元素为真,用1表示,零元素为假,用0表示;(2) 设参与逻辑运算的是两个标量a和b,那么,a&b a,b全为非零时,运算结果为1,否则为0。

a|b a,b中只要有一个非零,运算结果为1。

~a 当a是零时,运算结果为1;当a 非零时,运算结果为0。

(3) 若参与逻辑运算的是两个同维矩阵,那么运算将对矩阵相同位置上的元素按标量规则逐个进行。

最终运算结果是一个与原矩阵同维的矩阵,其元素由1或0组成;(4) 若参与逻辑运算的一个是标量,一个是矩阵,那么运算将在标量与矩阵中的每个元素之间按标量规则逐个进行。

最终运算结果是一个与矩阵同维的矩阵,其元素由1或0组成;(5) 逻辑非是单目运算符,也服从矩阵运算规则;(6) 在算术、关系、逻辑运算中,算术运算优先级最高,逻辑运算优先级最低。

四、矩阵分析1、对角阵(1) 对角阵只有对角线上有非0元素的矩阵称为对角矩阵,对角线上的元素相等的对角矩阵称为数量矩阵,对角线上的元素都为1的对角矩阵称为单位矩阵。

(1) 提取矩阵的对角线元素设A为m*n矩阵,diag(A)函数用于提取矩阵A主对角线元素,产生一个具有min(m,n)个元素的列向量。

diag(A)函数还有一种形式diag(A,k),其功能是提取第k条对角线的元素。

(2) 构造对角矩阵设V为具有m个元素的向量,diag(V)将产生一个m*m对角矩阵,其主对角线元素即为向量V的元素。

diag(V)函数也有另一种形式diag(V,k),其功能是产生一个n*n(n=m+k)对角阵,其第m条对角线的元素即为向量V的元素。

2、三角阵三角阵又进一步分为上三角阵和下三角阵,所谓上三角阵,即矩阵的对角线以下的元素全为0的一种矩阵,而下三角阵则是对角线以上的元素全为0的一种矩阵。

(1) 上三角矩阵求矩阵A的上三角阵的MATLAB函数是triu(A)。

triu(A)函数也有另一种形式triu(A,k),其功能是求矩阵A的第k条对角线以上的元素。

(2) 下三角矩阵在MATLAB中,提取矩阵A的下三角矩阵的函数是tril(A)和tril(A,k),其用法与提取上三角矩阵的函数triu(A)和triu(A,k)完全相同。

3、矩阵的转置与旋转(1) 矩阵的转置转置运算符是单撇号(’)。

(2) 矩阵的旋转利用函数rot90(A,k)将矩阵A旋转90o的k倍,当k为1时可省略。

4、矩阵的翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,…,依次类推。

矩阵A实施左右翻转的函数是fliplr(A),对矩阵A实施上下翻转的函数是flipud(A)。

5、矩阵的逆与伪逆(1) 矩阵的逆对于一个方阵A,如果存在一个与其同阶的方阵B,使得:AB=BA=I (I为单位矩阵) 则称B为A的逆矩阵,当然,A也是B的逆矩阵。

求方阵A的逆矩阵可调用函数inv(A)。

(2) 矩阵的伪逆如果矩阵A不是一个方阵,或者A是一个非满秩的方阵时,矩阵A没有逆矩阵,但可以找到一个与A的转置矩阵A’同型的矩阵B,使得:ABA=A,BAB=B 此时称矩阵B为矩阵A的伪逆,也称为广义逆矩阵。

相关文档
最新文档